用户名: 密码: 验证码:
新型可见光响应纳米光催化剂的研制及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,环境污染和能源危机日趋严重,难降解、有毒、有害有机物目前引起的环境污染已经严重影响人类生存与发展,在工业和家用废水中常常发现有机污染物,但是用传统技术很难将其处理。随着公众对环境污染问题的关心与日俱增,污染物治理新方法不断被推动和发展,世界各国已经开始重视如何有效利用太阳能治理污染。光催化氧化技术氧化效率高,反应速度快,对多种有机污染物有良好的处理效果,并且可有效利用太阳能,绿色环保,是一种深度氧化技术。其中,二氧化钛改性和多元复合催化剂能达到大范围的光响应,高效率的电荷分离,充分吸收利用太阳光的要求,目前在光催化领域已经成为研究热点。
     本论文继续沿着这个方向做积极的探索。简要地概述了光催化技术,探讨了影响光催化性能的重要因素,对光催化剂目前在国内外的改性情况和多元复合氧化物的最近进展以及可见光化研究开展了详细的综述,并对光催化技术处理染料废水和抗生素污染物的研究进展做了阐述。在总结前人工作经验研究,充分了解有机污染物和光催化剂的物性及其相互作用机制的基础上,本论文采用较为简单的制备方法成功合成了两个系列的新型纳米光催化剂,一类是稀土和非金属元素共掺杂改性TiO2系列;另一类是三元复合半导体(非TiO2基)系列。详细表征了其结构、形貌、光吸收特性和表面物理化学性质,研究了光催化剂催化活性所受制备工艺和反应条件的影响,并选取染料废水一活性艳蓝19和酸性蓝62,抗生素类药物—磺胺嘧啶和金霉素作为目标物,以含有目标物的实际水源水为研究对象,在模拟太阳光下,研究水环境中污染物的光催化反应的影响因素和动力学规律,探讨了光催化剂降解机理和过程。通过上述研究,本论文取得了一些有意义的成果和有用的结论,为有机污染物的光催化降解应用提供了依据。本论文研究主要内容和成果如下所述:
     1.镧、碘共掺TiO2纳米复合光催化剂的制备和表征
     采用沉淀-浸渍法合成了镧、碘共掺TiO2纳米复合光催化剂,并通过XRD、BET、TEM、XPS和TG-DSC等手段对其进行表征,XRD, TEM和BET的测试结果表明相对于单一镧或碘掺杂TiO2纳米光催化剂而言,在350℃下焙烧2h制得的La/I/TiO2纳米光催化剂粒径较小且比表面积较大。同时,测试表明元素离子掺杂TiO2在一定程度上能够抑制晶体的生长和团聚,本实验中稀土元素镧的最佳理论掺杂浓度为1.5%,通过镧、碘的共掺使得抑制作用变得更强。通过XPS光谱可以断定所制备的掺杂催化剂中Ti元素主要以Ti4+存在,一部分I5+进入晶格中取代了Ti4+,La3+主要以La2O3的形式富集在TiO2的表面,La2O3覆盖在TiO2的表面可使光生电子和空穴进一步分离。同时,研究发现在热处理过程中由于一部分稀土离子进入TiO2的晶格中取代部分Ti4+而导致局部的晶格畸变,并抑制了晶粒的增长。另外,根据紫外-可见光漫反射光谱可以得出,相比未掺杂改性的纯TiO2而言,光催化剂的最大吸收边在经掺杂改性后都向可见光区产生不同程度红移,但并没有削弱在紫外光区的吸收,此发现为光催化剂在模拟日光下有效进行光催化氧化反应提供了新的视野。
     2. La/I/TiO2纳米复合光催化剂光催化活性研究
     以氙灯为光源,以活性艳蓝19和磺胺嘧啶为模拟废水,对镧、碘掺杂TiO2纳米复合光催化剂的活性进行评价。光催化降解实验表明,于350。C下焙烧制备的La/I/TiO2纳米催化剂在模拟太阳光照下能够有效地降解活性艳蓝19染料废水和磺胺嘧啶类药物废水,并且两者的降解反应在一定浓度范围内,均符合表观一级反应动力学,可以证明La/I/TiO2纳米粒子具有优越的可见光催化能力。
     在模拟太阳光照射下,当活性艳蓝19初始浓度为50 mg/L,溶液pH值范围在3-7,催化剂投加量为1.0 g/L时,光照80min, La/I/TiO2纳米光催化剂对活性艳蓝19的降解效率达到98.6%,TOC基本去除完全,显示了较好的催化活性。在不同光源下催化实验表明,在模拟太阳光体系中活性艳蓝19的降解能力要由于其他体系,可能的原因是反应中间产物被吸附在催化剂表面,大量累积会导致催化剂中毒,而模拟太阳光中的紫外光部分对其具有比较好的矿化作用,从而避免了反应中间产物的累积。光催化降解实际工业印染废水的试验表明:La/I/TiO2纳米光催化剂在一定的反应时间内,能够完全去除印染废水的色度,同时也会降低CODcr值,达到90%左右。
     La/I/TiO2纳米光催化剂在模拟太阳光下也显示了较好的光催化降解磺胺嘧啶的能力,模拟太阳光照射90 min后,SD降解率可达到近90%,证明La/I/TiO2光催化氧化能够有效降解水中的低浓度磺胺类药物。La/I/TiO2纳米粒子对SD的降解机理是在羟基自由基的作用下进行的,活性-OH攻击SD的S-N键以及C-S键,脱去O=S=O,同时分子结构发生重组,生成4-(2-氨基吡啶-1(2H)-基)苯胺,然后再通过不同途径进一步矿化。经过多次使用后,La/I/TiO2纳米光催化剂仍有较好的催化活性,预示着La/I/TiO2纳米催化剂工业化前景广阔。
     3.纳米La/CuO-SnO2三元复合光催化剂的制备、表征及光催化活性研究
     作为一种n型半导体,纳米SnO2光学、电学及催化性能独特,且晶体结构与金红石TiO2相似。实验选用SnO2与CuO和La2O3复合,采用条件温和、操作简便的共沉淀法合成了La/CuO-SnO2三元复合纳米光催化剂。XRD、BET、TEM和UV-Vis漫反射等手段测试表明所制备催化剂的晶型、晶粒、对光的吸收性以及比表面积能都会受到焙烧温度显著的影响。实验结果表明,催化剂的最佳热处理温度为450℃,当在该温度下焙烧2.5 h, CuO与SnO2摩尔比为1:1,La的掺杂量为2.0%时,制得的La/CuO-SnO2纳米复合光催化剂颗粒粒径较小、分布相对比较均匀,平均晶粒大小为15.4 nm,比表面为110.35 m2/g,对可见光有一定的吸收,具有最高的光催化活性。以氙灯为光源,以酸性蓝62为模拟废水,对La/CuO-SnO2三元复合光催化剂的活性进行评价。在模拟太阳光照射下,酸性蓝62溶液废水的降解反应速率常数随着溶液初始浓度的增加反而逐渐减小,并且在一定浓度范围内,此反应符合表观一级反应动力学。反应当溶液pH值大小在5.35左右,酸性蓝62初始浓度为50 mg/L,La/CuO-SnO2纳米复合光催化剂投加量为1.0 g/L,光照反应120 min后对酸性蓝62溶液的降解率达到了97.7%,明显高于在同等条件下P25的催化活性。
     4.纳米La/CuO-SnO2复合光催化剂降解盐酸金霉素废水的光催化研究
     选取盐酸金霉素作为La/CuO-SnO2复合光催化剂光催化氧化的对象,分析其光催化降解的可行性,采用实际水源水代替蒸馏水配置一定浓度的盐酸金霉素溶液,进行光催化降解反应。考察了溶液初始浓度、催化剂用量、溶液初始pH值、不同光源等因素的最佳条件,并且研究了添加氧化剂后对光催化降解效果的影响,并对盐酸金霉素废水的反应动力学进行分析。结果显示,在光催化剂催化降解盐酸金霉素的过程中,纳米La/CuO-Sn02复合光催化剂表现出较高地催化活性。对于初始浓度为50 mg/L的金霉素溶液废水而言,其最佳实验条件为La/CuO-SnO2的用量为1.5 g/L、溶液的初始pH值为3,在模拟太阳光下反应120 min,CTC降解率达到88.7%,COD、TOC降解较为完全,显示了较为显著的可见光催化活性。并且,光照反应40 min后BOD5/COD>0.3,明显改善了水质地可生化性能。添加氧化剂可以提高盐酸四环素光催化降解的效果。当加入浓度为300 mg/L的H2O2时,反应时间可大大缩短。盐酸金霉素的光催化反应符合Langmuir-Hinshelwood一级动力学数学模型。在光催化氧化过程中,金霉素发生了一系列反应,反应中间产物包括多种多环化合物,这些多环化合物继续被光催化氧化会进一步开环促使分子从大分子向小分子变化,进而被氧化分解,最后氧化成无机物。结果表明La/CuO-SnO2光催化剂对盐酸金霉素废水具有显著的可见光降解能力,有望进行实际应用。
Worldwide energy resource crisis and environment pollution are becoming more severe with each passing day. In the 21st century, environmental problems caused by noxious and nonbiodegradable organic pollutions such as dyes and PPCPs have deeply affected the survival and development of human beings. Such pollution is difficult to solve with traditional environment technology. How effective use of sunlight to solve environment pollution problems has become the focus to the world. With the public concern for environmental problems increased, novel treatment methods being promoted and developed. Photocatalysis has gained a great deal of attention in the field of pollutant degradation. Photocatalytic technology, an advanced oxidation technology, is a green utilization of solar energy. Studies have proven that photocatalysis oxidation technology is able to treat many kinds of organic pollutants. In recent years, many researchers have focused on modified nano titanium dioxide and binary or ternary compound photocatalysts, because of extending the photoresponse rangea and increasing the efficiency of charge separation.
     We are motivated to work in this direction in the present dissertation, and summarized the mechanism and influencing factors of photocatalysis techniques, and reviewed the study on development and application of modified nano-titanium dioxide and coupled oxide semiconductors visible light-activated photocatalysts. As well as treatment effect of photocatalysis of dye and antibiotic wastewater are illustrated in details.
     Based on a sufficient understanding of the relationship between the organic pollution and photocatalyst specialty, two series of novel nanocomposite photocatalysts are successfully prepared using simple methods. One type comprises rare earth and nonmetal elements co-doped TiO2 photocatalyst. whereas the other comprises ternary nano-composite photocatalysts. Subsequently, the effects of photocatalysts synthesis and reaction conditions on photocatalytic activity are systematically analyzed. Dye wastewater (Reactive Blue 19 and Acid Blue 62) and antibiotic wastewater [sulfadiazine (SD) and chlortetracycline (CTC)]. the target compounds in source water and the most widely used antibiotics, respectively, have been chosen as the study samples. The effects of main factors of photochemical degradation, degradation mechanisms, kinetics, and reaction pathways of the processes under simulated sunlight irradiation are amply studied. Some important valuable achievements and conclusions have been obtained in the current thesis, offering theoretical and experimental guidelines with practical applications for the degradation of organic pollutants. The current dissertation contains the following major parts:
     1. Preparation and characterization of lanthanum and iodine co-doped TiO2 photocatalyst
     The novel visible-light-activated La/I/TiO2 nano-composition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by XRD, BET, TEM, XPS, TG-DSC, and UV-Vis DRS. The characterization results of XRD, TEM, and BET indicate that the La/I/TiO2 photocatalyst calcined at 350℃for 2 h resulted in bigger BET surface area and smaller crystal size, in comparison with La/TiO2 or I/TiO2 photocatalysts. Characterization results also reveal that the lanthanum and iodine co-doped can hinder the aggregation and growth of TiO2 particles, which cause the decrease in particle sizes and the increase internal surface areas. The La optimal doping concentration is 1.5% in the present dissertation. In addition, the XPS spectra indicate that Ti atoms exist in the form of Ti4+ state and that part of I5+ replaced Ti4+ of the prepared photocatalysts. La2O3 was converted on the surface of nano TiO2 particles, resulting in the separation of electrons and holes and structural deformation of TiO2 The crystal size of the TiO2 particles was restrained after the La3+ elements were doped onto the crystal lattice. The UV-Vis-DRS of the as-prepared La/I/TiO2 photocatalysts shows that the absorption edge of the lanthanum and iodine co-doped TiO2 shifting significantly to the visible-light region in comparison with the TiO2, and this work may provide new insights into the development of novel sunlight photocatalysts.
     2. Photocatalytic activity of visible-light-driven TiO2 photocatalyst co-doped with lanthanum and iodine under simulated sunlight
     The photocatalytic activity of lanthanum and iodine co-doped TiO2 photocatalyst was evaluated by studying the photodegradation of Reactive Blue 19 and SD as a probe reaction under Xe light irradiation. Studies have indicated that the La/I/TiO2 photocatalyst calcined at 350℃could effectively mineralize Reactive Blue 19 and SD under simulated sunlight irradiation. In addition, the degradation kinetics of reactive blue 19 and SD in aqueous La/I/TiO2 suspensions follow pseudo-first-order kinetics under simulated sunlight irradiation, when both of the concentration is in the range of investigation, demonstrating that La/I/TiO2 photocatalyst has remarkable photocatalytic activity.
     Under simulated sunlight irradiation, the degradation of Reactive Blue 19 aqueous solution reached 98.6% in 80 min, and the removal rate of TOC was about 90% when the initial concentration of Reactive Blue 19 solution was 50 mg/L, the pH value was approximately 3 to 7, whereas the concentration of La/I/TiO2 photocatalyst was 1.0 g/L. These results show that La/I/TiO2 photocatalyst maximal photocatalytic activity. Furthermore, the degradation of Reactive Blue 19 on La/I/TiO2 photocatalyst under irradiation of different light sources shown in the simulated sunlight system was the best. The possible reason is that the gathering of intermediates adsorbed on the photocatalysts surface will cause the catalysts poisoning, however, the ultraviolet rays in the simulated sunlight can effectively mineralize the intermediates and prevents photocatalysts from poisoning. Experimental results indicate that the La/I/TiO2 photocatalysts can degrade and mineralize the industry dye wastewater when the reaction time is in the range of investigation, and can reach a removal rate of COD was approximately 90%.
     The La/I/TiO2 photocatalyst also exhibited strong photocatalytic activity in photodegradation of SD wastewater, the degradation of SD aqueous solution reached 90% in 90 min under simulated sunlight irradiation.·OH radicals are the most important oxidizing species which can attack and transform the organic molecules to inorganic micro molecule. The mechanism of La/I/TiO2 degradation SD may involved in high oxidation ability of active hydroxyl radicals(·OH) which are strongly enough to break the S-N and C-S bond of SD.-SO2 functional group was removed from SD molecule, generated the intermediate product 4-(2-iminopyrimidine-1(2H)-vl) aniline under the condition of simulated sunlight irradiation. And then·OH again attacks, SD is broken into inorganic micro molecule through different Pathway. After many times of recycle use, La/I/TiO2 photocatalysts still keep high photocatalytic activity, which shows that La/I/TiO2 photocatalysts are promising catalysts in the industrialization field.
     3. Preparation, characterization and photocatalytic activity of La/CuO-SnO2 in simulated sunlight irradiation
     SnO2 is an n-type semiconductor and it has the similar to rutile TiO2 crystal structure. In view of these properties, La/CuO-SnO2 ternary nano-composite photocatalysts were prepared under different calcination temperatures using a simple co-precipitation method in the current dissertation. With different calcining temperatures, the characterization results of XRD, BET, TEM. and UV-Vis display that the samples particle size, crystalline structures, photo absorption and surface area varied significantly. The photocatalytic experimental results show that the maximum specific photocatalytic activity of the La/CuO-SnO2 nano-composite photocatalysts appears after calcination at 450℃for 2.5 h, the molar ratio of CuO to SnO2 of 1:1, and doping concentration of La at 2.0% because of the good crystallization, high BET surface areas (110.35 m2/g), small crystal size (15.4 nm) and strong optical absorption of the sample. The photocatalytic activity of La/CuO-SnO2 nanocomposite oxide was evaluated using the photodegradation efficiency of acid blue 62 as a probe under Xe light.irradiation. Under simulated sunlight irradiation, the degradation kinetics of Acid Blue 62 in aqueous La/CuO-SnO2 suspensions followed pseudo-first-order kinetics, and when the concentration of Acid Blue 62 in the range of investigation, as the initial Acid Blue 62 concentration increased, the degradation rates decreased. The degradation of Acid Blue 62 aqueous solution can reach a removal rate of TOC was approximately 68%, and the degradation rate of 97.71% in 2 h when the initial concentration of Acid Blue 62 solution of 50 mg/L, the concentration of La/CuO-SnO2 photocatalyst was 1.0 g/L, and the pH value was approximately 5.35, showing that the La/CuO-SnO2 nanocomposite photocatalyst has a much higher photocatalytic activity than the standard Degussa P25 photocatalyst.
     4. Photocatalytic degradation of chlortetracycline over La/CuO-SnO2 photocatalysts under simulated sunlight
     The paper chose CTC as the object, and analyzed the feasibility of CTC treatment by La/CuO-SnO2 photocatalysis. The experiment result shows that the La/CuO-SnO2 ternary nano-composite photocatalysts exhibits excellent photocatalytic activity. The paper reviewed the optimal condition of CTC initial concentration, La/CuO-SnO2 photocatalyst concentration, different pH values, and different lights for CTC treatment by La/CuO-SnO2 photocatalysis. In addition, the effect of various oxidant supplies and the dynamics of CTC treatment by photocatalysis were studied. The maximum degradation ratio of CTC by photocatalysis was 88.7% under the following conditions:CTC initial concentration 50 mg/L, La/CuO-SnO2 photocatalyst concentration 1.5 g/L, and pH 3, and COD removal efficiency could reach up to 93% in 120 min. Meanwhile, the value of BOD5/COD> 0.3 of wastewater after 40 min irradiation, it showed chemical and biologic properties were improved. The addition of oxidant also improved the photocatalysis result. When the concentration exceeded 300 mg/L of H2O2 added into the reaction system, the time was cut down. The rate of degradation of CTC can be described by the Langmuir-Hinshelwood equation. A series of photo-oxidation and subsequent chemical reactions were involved on degradation of CTC chemical mechanisms during the photo-catalytic processes. A variety of bicyclic and tricyclic compounds were included in intermediate products of CTC. Polycyclic compounds were opened up, and then small molecular compounds were produced. Ultimately, some inorganic products were investigated. The results indicated that La/CuO-SnO2 photocatalysts have high photocatalytic activity, and have important value in practical application.
引文
[1]J. B. Ellis. Pharmaceutical and personal care products (PPCPs) in urban receiving waters [J]. Environmental Pollution,2006,144 (1):184-189.
    [2]Segura P A, Francois M, Gagnon C, et al. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters [J]. Environ Health Persp,2009,117(5): 675-684.
    [3]Ternes T A, Joss A, Siegrist H. Scrutinizing Pharmaceuticals and personal care products in wastewater treatment [J]. Environ Sci Technol,2004,38(20):392-399.
    [4]周雪飞,张亚雷,代朝猛.城市污水处理系统去除药物和个人护理用品(PPCPs)的机理研究[J].环境保护科学,2009,35(2):15-17.
    [5]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境,2005,14(6):947-952.
    [6]钱易,唐孝炎.环境保护与可持续发展[M].北京,高等教育出版社,2000.
    [7]姜月顺,李铁津,王维平,等.光化学[M].北京:化学工业出版社,2005.
    [8]Davide V, Claudio M, Valter M, et al. Degradation of Phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst [J]. Applied Catalysis B:Environmental,2005,58(2): 79-88.
    [9]Fujishuma A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [10]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Toxicol.1976,16(6):697-701.
    [11]邵绍燕,楚英豪,姚远,等.纳米TiO2在环境应用方面的研究进展[J].环境科学与技术,2008,31(3):43-46.
    [12]Liu B S, Wen L P, Zhao X J. The study of photocatalysis under ultraviolet visible two-bearn light irradiation using undoped nano-titanium dioxide [J]. Materials Chemistry and Physics,2008, 112(1):35-40.
    [13]Chen X, Mao S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chem Rev,2007,107(4):287-289.
    [14]徐顺,杨鹏飞,杜宝石等.掺杂TiO2的光催化性能研究进展[J].化学研究与应用,2003,15(2):146-150.
    [15]Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics [J]. J. Phys. Chem. 1994,98(51):13669-13679.
    [16]Luca D. Mardare D. lacomi F, et al. Increasing surface hydrophilicity of titania thin films by doping [J]. Applied Surface Science,2006,252(18):6122-6126.
    [17]Sakatani Y, Nunoshige J, Ando H. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+and N codoped TiO2 [J]. Chem Lett,2003,32(12):1156-1157.
    [18]孙红旗,程友萍,金万勤,等.镧、碳共掺杂TiO2的制备及其可见光催化性能[J].北工学报,2006,57(7):1570-1574.
    [19]李越湘,王添辉,彭绍琴,等.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004,20(12):1434-1439.
    [20]Xia H L, Zhuang H S, Xiao D C, et al. Photocatalytic Activity of La3+/S/TiO2 Photocatalyst under Visible Light [J]. Journal of Alloys and Compounds,2008,465(1-2):328-332.
    [21]肖东昌,夏慧丽,张涛,等.新型纳米光催化剂La3+/S/TiO2的制备及其可见光活性研究[J].中国稀土学报,2006,24(6):671-674.
    [22]肖东昌,夏慧丽,张涛,等.镧硫共掺杂TiO2光催化剂的制备及其可见光活性研究[J].化工技术与开发,2007,36(3):4-7.
    [23]宋长友,刘大成,魏利滨,等.铕、氮掺杂二氧化钛光催化剂的制备及性能研究[J].中山大学学报:自然科学版,2007,46(2):36-37.
    [24]Hu L Y, Song H W, Pan G H, et al. Photoluminescence Properties of Samarium-doped TiO2 Semiconductor Nancrystalline Powder [J]. Journal of Luminescence,2007,127(1):371-376.
    [25]Wei C H, Tang X H, Liang J R, et al. Preparation, characterization and photocatalytic activities of boron and cerium-codoped TiO2 [J]. Environmental Sci,2007,19(1):90-96.
    [26]张涛,夏慧丽,肖东昌,等.Fe2O3-SnO2纳米光催化剂模拟太阳光下催化降解酸性蓝染料废水的研究[J].化工进展,2006,26(1):48-51.
    [27]Xia H L, Zhuang H S, Zhang T, et al. Visible-light-activated nanocomposite photocatalyst of Fe2O3-SnO2 [J]. Materials Letters,2008,62(6-7):1126-1128.
    [28]Xia H L., Zhuang H S., Zhang T., et al. Synthesis, Characterization and Photocatalytic Activity of CuO-SnO2 Nanocomposite Oxide Photocatalyst [J]. Journal of Advanced Oxidation Technologies,2007,10(2):405-410.
    [29]夏慧丽,张涛,肖东昌,等.纳米CuO-SnO2复合光催化剂的制备及其模拟太阳光下催化性能研究[J].环境科学与技术,2008,31(1):16-19.
    [30]Nguyen V H, Hae-Ryong K, Byeong-Kwon J, et al. Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3 [J]. Sensors and Actuators B:Chemical, 2008,133(1):228-234.
    [31]刘元隆,吴建刚,吴小琴,等.CeO2/SnO2纳米材料的制备与气敏性能研究[J].2008,20(1):26-29.
    [32]Liu Z Y, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber Photocatalyst fabricated by electrospinning with a side-by side dua; spinneret method [J]. Nano Letter,2007, 7(4):1080-1085.
    [33]Yang H M, Shi R R, Zhang K, et al. Synthesis of WO3/TiO2 nanocomposites via sol-gel method [J]. J. Alloys ComPd.,2005,398(1-2):200-202.
    [34]庄惠生,何宁.十聚钨酸钠的制备及其光催化降解甲基橙的研究[J].工业水处理,2006,26(6):53-56.
    [35]曹广胜,俞庆森,董喜贵,等.水热法合成双金属多元型的Mo1.8W162049纳米棒[J].无机化学学报,2005,21(1):73-77.
    [36]易国斌,崔英德,余林,等.MaSibLacCed多元氧化物催化NHP脱水反应合成NVP[J]工业催化,2005,13(9):28-32.
    [37]Harada H, Hosoki C, Kudo A. Overall water splitting by sonophotocatalytic reaction:the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst [J]. J. Photochem. Photobiol. A:chem.,2001,141(2-3):219-224.
    [38]Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chem. Phys. Lett.,2002,356 (3-4):221-226.
    [39]李莉,郭伊若,周萍,等.孔道结构H3PW12O40/TiO2的制备及其可见光光催化降解水溶性染料的性能[J].催化学报,2005,26(3):209-215.
    [40]Tang J W, Zou Z G, Yin J, et al. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light [J]. Chem. Phys. Lett.,2003,382(1-2):175-179.
    [41]Zou Z G, Ye J H, Arakawa H. Photocatalytic properties and electronic structure of a novel series of solid Photocatalysts, Bi2RNbO7 (R=Y, rare earth) [J]. Top. Catal.,2003,22(1-2): 107-110.
    [42]Yin J, Zou Z G, Ye J H. Photophysical and photocatalytic properties of MIn0.5Nb0.5O3 (M=Ca, Sr, Ba) [J]. Phys. Chem. B:Chem.,2003,107(1):61-65.
    [43]蔡铁军.复合催化剂NdPW12O40/TiO2的制备、表征及光催化性能[J].催化学报,2007,35(1):10-16.
    [44]胡蓉蓉,钟顺和.负载型复合半导体V2O5-TiO2/SiO2表面V2O5和TiO2的相互修饰作用[J].催化学报,2005,26(1):32-36.
    [45]Bharat N P, Naik D B, Shrivastava V S. Photocatalytic degradation of hazardous Ponceau-S dye from industrial wastewater using nanosized niobium pentoxide with carbon [J]. Desalination, 2011,269(1-3):276-283.
    [46]Liu H L, Chiou Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology [J]. Chemical Engineering Journal,2005,112(1-3):173-179.
    [47]Rajeev J, Meenakshi S. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide [J]. Journal of Hazardous Materials.2008,152(1):216-220.
    [48]Epling G A, Lin C. Photoassisted bleaching of dyes utilizing TiO2 and visible light [J]. Chemosphere,2002,46(4):561-570.
    [49]Sumandeep K, Vasundhara S. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation [J]. Journal of Hazardous Materials.2007.141(1):230-236.
    [50]Cheng M Y, Yu J C, Wong P K. Degradation of azo dyeproeion red MX-5B by photocatalytic oxidation [J].. Chemosphere,2002,46(6):905-912.
    [51]冯丽娜,刘勇健.TiO2/活性炭光催化技术应用于印染废水深度处理的研究[J].应用化工,2009,38(3):392-394.
    [52]王景芸.二甲酚橙溶液光催化处理研究[J].应用化工,2010,39(9):1363-1365.
    [53]王成国,邓兵.纳米Ti02光催化氧化处理直接耐晒翠蓝染色废液[J].印染,2004,(7):10-12.
    [54]杨水金.TiO2借自然光催化罗丹明B溶液降解脱色的研究[J].北京化工大学学报(自然科学版),2010,37(5):35-39.
    [55]贾瑷,胡建英,孙建仙,等.环境中的医药品与个人护理品[J].化学进展,2009,21(2P3):389-399.
    [56]Marta C, Francisco O, Juan M L, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research,2004,38(1):2918-2926.
    [57]Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water [J]. Sci Total Environ,2009,407(8):2711-2723.
    [58]Gulkowska A., Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Res,2008,42(1-2): 395-403
    [59]Kang X, BhandariA, Das K, et al. Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids [J]. Journal of Environmental Quality,2005,34(1):91-104.
    [60]Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:a review of recent research data [J]. Toxicol Lett,2002,131(1-2):5-17.
    [61]Santiago E, Daniele M B, Luiz Gustavo T K, et al. Ozonation and advanced ox idation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials,2007,149(3): 631-642.
    [62]Sang D K, Jaeweon C, In S K, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking and waste waters [J]. Water Res,2007,41 (5):1013-1021.
    [63]Maria K, Dionissios M, Despo K. Removal of residual pharmaceuticals from aqueous system s by advanced oxidation processes [J]. Environment International,2009,35(2):402-417.
    [64]Jelena R, Mira P, Damia B. Complementary mass spectrometry and bioassays for evaluating pharmaceutical-transformation products in treatment of drinking water and wastewater [J]. TrAC Trends in Analytical Chemistry,2009,28(5):562-580.
    [65]Vera H, Lucia S. Degradation and removal methods of antibiotics from aqueous matrices-A review [J]. Journal of Environmental Management,2011,92 (10):2304-2347.
    [66]Doll T E, Frimmel F H. Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water [J]. Catalysis Today,2005,101(3-4):195-202.
    [67]梁凤颜,尹平河,赵玲,等.水体中微污染磺胺嘧啶光催化降解行为[J].生态环境学报,2009,18(4):1227-1230.
    [68]郭佳,张渊明,杨骏,等.光催化氧化降解制药废水中头孢曲松钠的研究[J].生态科学,2008,27(6):446-451.
    [69]Calza P, Pazzi M, Medana C, et al. The photocatalytic process as a tool to identify metabolitic products formed from dopant substances:the case of buspirone [J]. J Pharmaceut Biomed,2004,3(1):9-19.
    [70]Chatzitakisa A, Berberidoua C, Paspaltsisb I, et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol [J]. Water Res,2008,42(1-2):386-394.
    [71]Kaniou S, PitarakisK, Barlagianni I, et al. Photocatalytic oxidation of sulfam ethazine [J]. Chemosphere,2005,60 (3):372-380.
    [72]Suryanaratana C, Norton Grant M. X-ray Diffraction:A Practical Approach [M]. New York: Plenum Press,1998.
    [73]Birringer R, Gleiten H, Klein H P, et al. Synthesis of n-metals [J]. Phys. Lett.1984,102A(8): 365-369.
    [74]苏品书.超微粒子材料技术[M].台湾:复汉出版社,1989.
    [75]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [76]国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1997.
    [77]Lettmann C, Hildenbrand K, Kisch H. Visible light photodegradation of 4-ehlorophenol with a coke-eontaining titanium dioxide photocatalyst [J]. Appl. Catal. B:Environ.,2001,32(4): 215-227.
    [78]高国龙,李登新,孙利娜.废布料活性炭吸附典型染料动力学研究[J].环境工程学报,2011,5(6):1405-1408.
    [79]Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based Photocatalysts:A review [J]. Journal of Hazardous Materials,2009,170(2-3):520-529
    [80]Leonardo S A, Luis Augusto M R, Romeu C R, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater [J]. Chemosphere,2007,66(11):2035-2043.
    [81]Richardson B J. Lampk S. Martin M. Emerging chemicals of concern:pharmaceuticals and personal care products (PPCPs) in Asia with particular reference to Southern China [J]. Mar. Pollut. Bull,2005,50(9):913-920.
    [82]Sukul P, Spiteller M. Sulfonamides in the Environment as Veterinary Drugs [J]. Reviews of Environmental Contamination and Toxicology,2006,187(1):67-101.
    [83]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展[J].环境科学与技术,2007,30(3):108-110.
    [84]Sukul P, Lamshoft M, Ziihlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems [J]. Chemosphere,2008,73(8):1344-1350.
    [85]常红,胡建英,王乐征.城市污水处理厂磺胺类抗生素的调查研究[J].科学通报,2008,53(2):159-164.
    [86]Chopra I, Roberts M. Tetracycline antibiotics:Mode of action, applications, molecular biology, and epidemiology of bacterial resistance [J]. Microbiol Mol Biol Rev,2001,65(2): 232-260.
    [87]Halling-S Grensen B, Sengelov G, Tjornelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline resistant bacteria [J]. Arch Environ Contam Toxicol,2002,42 (2):263-271.
    [88]Boxall A B A, Fogg L A, Blackwell P A, et al. Veterinary medicines and the environment [J]. Rev Environ Contam Toxicol,2004,180(4):1-91.
    [89]Kumar K, Thompson A, Singh A K, et al. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples [J]. Environ Qual,2004,33(2):250-256.
    [90]Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones and other organic wastewater contaminants in U. S. streams,1999-2000:a national reconnaissance [J]. Environ Sci Technol,2002,36 (6):1202-1211.
    [91]Verwey J W M, Van Der Voort D, Dirksen G J, et al. Luminescence processes in the crystalline and glass modifications of LnBGeO5-type compositions [J]. Journal of Solid State Chemistry,1990,89(1):106-117.
    [92]Weber I T, Vanlentini A, Probst L F D, et al. Catalytic activity of nanometric pure and rare earth-doped SnO2 samples [J]. Materials Letters,2008,62(10-11):1677-1680.
    [93]Stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles [J]. Materials Chemistry and Physics,2009,114(1):217-226.
    [94]Liu Z L, Guo B, Hong L, et al. Preparation and characterization of cerium oxide doped TiO2 nanoparticles [J]. Physics and Chemistry of Solids,2005,66(1):161-167.
    [95]Rusu C N, Yates J T. Defect sites on TiO2 (110) detection by O2 photodesorption [J]. Langmuir,1997,13(16):4311-4318.
    [96]Yan X L, He J, Evans D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors [J]. Catal. B:Environ.,2005, 55(4):243-252.
    [97]Xiao J G, Peng T Y, Li R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles [J]. Solid State Chem.,2006,179(4): 1161-1170.
    [98]Paola A D, Marei G, Palmisano L, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-nitrophenol [J]. J. Phys. Chem. B,2002,106(3):637-645.
    [99]Xie Y B, Yuan C W, Li X Z. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system [J]. Coll. Surf. A:physicochem. Eng. Aspects,2005,252(1):87-94.
    [100]Ikeda M, Li J G, Kobayashi N, et al. Phase formation and luminescence properties in Eu3+-doped TiO2 nanoparticles prepared by thermal plasma pyrolysis of aqueous solutions [J]. Thin Solid Films,2008,516(19):6640-6644.
    [101]Su W Y, Chen J X, Wu L, et al. Visible light photocatalysis on praseodymium(Ⅲ)-nitrate-modified TiO2 prepared by an ultrasound method [J]. Applied Catalysis B:Environmental,2008,77(3-4):264-271.
    [102]Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control [J]. J Available Catalysis B:Environmental,2004, 534(48):185-194.
    [103]何春萍.钕掺杂纳米二氧化钛光催化活性研究[J].吉林化工学院报,2007,24(3):27-29.
    [104]赵清华,全学军,谭怀琴,等.La掺杂TiO2光催化剂的制备与表征[J].催化学报,2008,29(3):269-274.
    [105]Asahi R,Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    [106]Nagaveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004,20(7): 2900-2907.
    [107]Teruhisa O, Zenta M, Kazumoto N, et al. Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations [J]. Applied Catalysis A:General,2006,302(1): 62-68.
    [108]Hong X T, Wang Z P, Cai W M, et al. Visible-Light-Activated nanoparticle photocatalyst of Iodine-doped titanium dioxide [J]. Chem. Mater.,2005,17(6):1548-1552.
    [109]Lei S, Dua W. Formation of impurity bands in iodine cation substitutionally doped TiO2 and its effects on photoresponse and photogenerated carriers [J]. Physics Letters A.,2008,372 (37): 5901-5904.
    [110]Song S, Tu J J, Xu L J, et al. Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid [J]. Chemosphere,2008, 73(9):1401-1406.
    [111]文晨,孙柳,张纪梅,等.碘掺杂对纳米TiO2催化剂光催化活性的影响[J].高等学校化学学报,2006,27(12):2408-2410.
    [112]Su Y L, Xiao Y T, Fu X, et al. Photocatalytic properties and Eelectronic structures of Iodine-Doped TiO2 nanotubes [J]. Materials Research Bulletin,2009,44(12):2169-2173.
    [113]Song S, Tu J J, He Z Q, et al. Visible Light-Driven Iodine-Doped Titanium Dioxide Nanotubes Prepared by Hydrothermal Process and Post-calcination [J]. Applied Catalysis A: General,2010,378(2):169-174.
    [114]Cao G X, Li Y G, Zhang Q H, et al. Enhanced Visible Light-Driven Photocatalytic Performance of La-Doped TiO2-xFx [J]. Journal of the American ceramic society,2010,93(1): 25-27.
    [115]Li K Y, Liu T, Zhou B J, et al. Transient photovoltaic and surface photoacoustic characteristics of mesoporous crystalline La-Doped TiO2 nanoparticles [J]. Acta physico-chimica sinica,2010,26(2):403-408.
    [116]Vaclav S, Snejana B, Nataliya M. Preparation and Photocatalytic Activity of Rare Earth Doped TiO2 Nanoparticles [J]. Materials Chemistry and Physics,2009,114(1):217-226.
    [117]Liu C, Tang X H, Mo C H, et al. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium [J]. J. Solid State Chem.,2008,181(3):913-919.
    [118]Suryanaratana C, Norton Grant M. X-ray Diffraction:A Practical Approach [M]. New York: Plenum Press,1998.
    [119]Tvander M, Mattson A, Osterlund L. A Comparative Study of the photocatalytic Oxidation of Propane on Anatase, Rutile, and Mixed-Phase Anatase-Rutile TiO2 Nanoparticles:Role of Surface Intermediates [J]. Journal of Catalysi,2007,251(1):131-144.
    [120]张宁,许明霞,陈超等.拉曼光谱对碘掺杂二氧化钛的晶相与表面结构[J].南昌大学学报(理科版),2008,32(2):130-133.
    [121]周武艺,曹庆云,唐绍裘等.硫掺杂纳米TiO2的掺杂机理及可见光化活性的研究[J].无机材料学报,2006,21(4):776-782.
    [122]Li F B, Li X Z, Hou M F, et al. Enhanced photocatalytic activity of Ce3+-Ti02 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Appl.Catal.A:Gen.,2005.285(1-2):181-189.
    [123]Zhang S C, Zheng Z J, Wang J H, et al. Heterogeneous Photocatalytic Decomposition of Benzene on Lanthanum-Doped TiO2 Film at Ambient Temperature [J]. Chemosphere,2006, 65(11):2282-2288.
    [124]Ando T, Wakamatsu T, Masuda K, et al. Photocatalytic Behavior of Heavy La-Doped TiO2 Films Deposited by Pulsed Laser Deposition Using Non-Sintered Target [J]. Applied Surface Science,2009,255(24):9688-9690.
    [125]Long R, Dai Y, Huang B B. Structural and Electronic Properties of Iodine-Doped Anatase and Rutile TiO2 [J]. Computational Materials Science,2009,45(2):223-228.
    [126]He Z Q, Xu X, Song S, et al. A visible light-driven titanium dioxide Photocatalyst codoped with lanthanum and iodine:An application in the degradation of oxalic acid [J]. Journal of Physical Chemistry C,2008,112(42):16431-16437.
    [127]Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review [J]. Journal of Hazardous Materials,2009,170(2-3): 520-529.
    [128]Li L, Zhuang H S, Bu D. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with lanthanum and iodine [J]. Applied Surface Science,2011,257(21): 9221-9225.
    [129]Rajkumar D, Byung J S, Jong G K. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds [J]. Dyes and Pigments,2007,72(1):1-7.
    [130]Yahya S A, Musa I E, Amjad H E, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon [J]. Dyes and Pigments, 2008,77(1):16-23.
    [131]Ozer G, Safa O, Adnan O. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite [J]. Applied Surface Science,2010,256(17): 5439-5443.
    [132]Zeynep E, Filiz Nuran A. Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies [J]. Desalination,2006,194(1-3):1-10.
    [133]Maria S, Robina F, Zahid Mehmood K, et al. Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor [J]. Ultrasonics Sonochemistry,2011,18(1): 190-196.
    [134]Kansal S K, Singh M. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts [J]. Journal of Hazardous Materials,2007,141(3):581-590.
    [135]Cristian L, Juanita F, Jaime B, et al. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions [J]. Catalysis Today,2002,76(2-4):235-246.
    [136]Ali H G, Gehad R E, Ahmed B Z. Kinetics of the oxidative decolorization of Reactive Blue-19 by acidic bromate in homogeneous and heterogeneous media [J]. Dyes and Pigments, 2007,73(1):90-97.
    [137]Xia F, Ou E, Wang L, et al. Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight [J]. Dyes and Pigments,2008,76(1):76-81.
    [138]Marques S M, Tavares C J, Oliveira LF, et al. Photocatalytic degradation of C.I. Reactive Blue 19 with nitrogen-doped TiO2 catalysts thin films under UV/visible light [J]. Journal of Molecular Structure,2010,983(1-3):147-152.
    [139]Liu Y M, Hua L, Li S Q. Photocatalytic degradation of Reactive Brilliant Blue KN-R by TiO2/UV process [J]. Desalination,2010,258(1-3):48-53.
    [140]Fabiola M, Santiago E, Jaime G. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation [J]. Water research,2008, 60(42):585-594.
    [141]Richard C, Pierre B J, Aubry M. Oxidizing species involved in Photocatalytic transformations on zine oxide [J]. J. Photochem. Photobiol. A:Chem.,1991,60(2):235-243.
    [142]Ruya R O, John L F. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems [J].Environ. Sci. Technol,2001,35(15):3242-3246.
    [143]Calza P, Sakkas V A, Villioti A, et al. Multivatiate experimental design for the photocatalytic degradation of imipramine Derermination of the reaction pathway and identification of intermediate products [J]. Applied Catalysis B:Environmental,2008,186(84):379-388.
    [144]He Z Q, Lin L L, Song S, et al. Mineralization of C.I. Reactive Blue 19 by ozonation combined with sonolysis:Performance optimization and degradation mechanism [J]. Separation and Purification Technology,2008,62(2):376-381.
    [145]Jun W, Li R H, Zhang Z H, et al. Degradation of Hazardous Dyes in Wastewater using Nanometer Mixed Crystal TiO2 Powders under Visible Light Irradiation [J]. Water, Air,& Soil Pollution,2008,189(1-4):225-237.
    [146]Nakada N, Shinohara H, Murata A. Removal of slected pharmaceuticals and personal care products(PPCPs)and endocrine-disrupting chemicals(EDCs)during sand filtration and ozonation at a municipal sewage treatment plant [J]. Water research,2007,41(19):4373-4382.
    [147]Jara C, Fino D, Specchia V. Electrochemical removal of antibiotics from wastewaters [J]. Applied catalysis,2007,70(1-4):479-487.
    [148]Lange F, Cornelissen S, Kubac D. Degradation of macrolide antibiotics by ozone:A mechanistic case study with clarithromycin [J]. Hemosphere,2006,65(1):17-23.
    [149]Fatima T, Fabien M, Barbara L, et al. Occurrence and fate of antibiotics in the seine rivet in various hydrological conditions [J]. Science of the total environment,2008,393(1):84-95.
    [150]叶赛,张奎文,姚子伟,等.环渤海水域磺胺类药物的含量特征[J].大连海事学报,2007,3(2):71-74.
    [151]Radka A, Tina K, Klaus K. Assessmerit of degradation of 18 antibiotics in the closed bottle test [J]. Chemosphere,2004,72(3):505-512.
    [152]Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment:Implications for environmental discharge and wastewater recycling [J]. Water research,2007,41(18):416-4176.
    [153]刘庆堂,职爱民,邓瑞广,等.磺胺类药物在饲料和畜产品中的残留、危害与检测[J].饲料工业,2007,8(7):33-36.
    [154]Wojciech B, Jolanta S, Wladyslaw W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions [J]. Chemosphere,2006,69(5): 1295-1299.
    [155]Kehata K, NaghashkarN J, Eldin M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes:A review [J]. Ozone Science Enginee ring,2006, 28(6):353-414.
    [156]Virender K, Sharma, Santosh K, et al. Oxidation of sulfonamide antimicrobials by Ferrate (VI) [FeVIO42-] [J]. Environmental Science and Technology,2006,40 (23):7222-7227.
    [157]Virender K, Sharma. Oxidative transformations of environmental pharm aceuticals by Cl2, ClO2, O3 and Fe (VI):Kinetics assessment [J]. Chemosphere,2008,73(9):1379-1386.
    [158]Esplugas S, Bila D M, Krause, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Hazardous Materials,2007,149(3):631-642.
    [159]Paola C, Claudio M, Marco P, et al. Photocatalytic transformations of sulphonamides on titanium dioxide [J]. Applied Catalysis B-Environmental,2004,53(1):63-69.
    [160]Doll T E, Frimmel F H. Kinetic study of photocatalytic degradation of carbamazepine, cloflbricacid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction path ways [J]. Water Research,2004,38(4):955-964.
    [161]Bajpai A K, Rajpoot M, Mishra D D. Studies on the correlation between structure and adsorption of sulfonamide compounds [J]. Colloids and surfaces:Physieochemieal and Engineering Aspeets,2000,168(1):193-205.
    [162]Boreen A L, ArnoldX A, Mcneill K. Photochemical fate of sulfa drugs in the aquatic environment:sulfa drugs containing five-Membered heterocyclic groups [J]. Environ Sci Technol, 2004,38(14):3933-3940.
    [163]Anne L B, William A A, Kristopher M. Tripletsensitized photodegradation of sulfa drugs containing sixmembered heterocyclic groups identification of an SO2 extrusion photoproduct [J]. Environmental Science and Technology,2005,39(10):3630-3638.
    [164]尹平河,梁凤颜,赵玲.TiO2/EP光催化降解水体中微污染磺胺嘧啶的研究[J].环境工程学报,2010, 4(8):1704-1708.
    [165]Mendez-Arriaga F, Maldonado M I, Gimenez J, et al. Abatement of ibuprofen by solar photocatalysis process:Enhancement and scaleup [J]. Catalysis Today,2009,144(1/2):112-116.
    [166]鲁金凤,张勇,王静超,等.高级氧化技术降解水中药物及个人护理品的研究进展[J].工业水处理,2011,31(3):1-5.
    [167]Jesus M, Silvia C, Damia B. Identification and determination of metabolites and degradation products of sulfonamide antibiotics [J]. Trac Trends in Analytical Chemistry,2008,27(11): 1008-1022.
    [168]Wei C H, Tang X H, Liang J R, et al. Preparation, characterization and photocatalytic activities of boronand cerium-codoped TiO2 [J]. Journal of Environmental Sciences,2007,19 (3): 90-96.
    [169]Xu J J, Ao Y H, Fu D G, et al. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity [J]. Journal of Colloid and Interface Science.2008,328 (2):447-451.
    [170]Huang L H., Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light [J]. Applied Surface Science,2007,253(17):7029-7035.
    [171]Robert D, Malato S. Solar photocatalysis:a clean process for water detoxification [J]. Sci. Total Environ.2002,291(1-3):85-97.
    [172]Xu A W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles [J]. J. Catal.,2002,207(2):151-157.
    [173]Jing L Q, Qu Y C, Wang B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity [J]. Solar Energy Materials and Solar Cells,2006,90(12):1773-1787.
    [174]Nasser M, Aydin H, Mohammad A, et al. Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts [J]. Desalination,2011,271(1-3):187-192.
    [175]Xia H L., Zhuang H S, Zhang T, et al. Visible-Light-Activated nanocomposite photocatalyst of Fe2O3/SnO2 [J]. Materials Letters,2008,62(6-7):1126-1128.
    [176]Dorraji M S S, Aber S, Hosseini M G, et al. Preparation of ZnO, ZnFe2O4 and ZnO-SnO2 nanocrystals and investigation of their photocatalytic activity [J]. International journal of nanotechnology,2009,6(10-11):984-996.
    [177]Li Z J, Shen W Z, Wang Z G, et al. Direct formation of SiO2/SnO2 composite nanoparticles with high surface area and high thermal stability by sol-gel-hydrothermal process [J]. Journal of sol-gel science and technology,2009,49(2):196-201.
    [178]Zhang L, Wang W Z, Shang M, et al. Bi2WO6/Fe3O4 micros pheres:Preparation, growth mechanism and application in water treatment [J]. Journal of Hazardous Materials,2009,172(2-3): 1193-1197.
    [179]Lin C F, Wu C H, Onn Z N. Degradation of 4-Chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems [J]. Journal of Hazardous Materials,2008,154(1-3):1033-1039.
    [180]Wang J, Lv Y H, Zhang L Q, et al. Sonocatalytic Degradation of Organic Dyes and Comparison of Catalytic Activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 Composites under Ultrasonic Irradiation [J]. Ultrasonics Sonochemistry,2010,17(4):642-648.
    [181]Ge L, Xu M, Fang H. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4-TiO2 thin films under visible-light irradiation [J]. J Mol Catal A:Chem,2006,258(1-2): 68-76.
    [182]Cong Y, Zhang J, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (Ⅲ) [J]. J Phys Chem C,2007,111(28):10618-10623.
    [183]Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nature Mater,2006,5(10):782-786.
    [184]Zhang L L, Liu J Q, Tang C,et al. Palygorskite and SnO2-TiO2 for the photodegradation of phenol[J]. Applied Clay Science,2011,51(1-2):68-73.
    [185]El-Maghraby E M. Effect of Sn ratio on the photocatalytic degradation of methylene blue and soot of ink by TiO2-SnO2 nanostructured thin films [J]. Physica B:Condensed Matter,2010, 405(10):2385-2389.
    [186]Zhang L L, Lv F J, Zhang W G, et al. Photodegradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites [J]. Journal of Hazardous Materials,2009,171(1-3): 294-300.
    [187]Dvininov E, Ignat M, Barvinschi P, et al. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching [J]. Journal of Hazardous Materials,2010, 177(1-3):150-158.
    [188]Wang Z J, Li Z Y, Zhang H N, et al. Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers [J]. Catalysis Communications,2009,11(4):257-260.
    [189]Wu S D, Li C, Wei W, et al. Synthesis and Photocatalytic property of Ce-doped SnO2 [J]. Journal of Rare Earths,2010,28(1):168-170.
    [190]El-Maghraby E M, Nakamura Y, Rengakuji S. Composite TiO2-SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance [J]. Catalysis Communications, 2008,9(14):2357-2360.
    [191]Wang W, Asher S A. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for Photonic crystal applications [J]. J Am Chem Soc,2001,123(50):12528-12535.
    [192]Markovich G. Collier C P, Henrichs S E. et al. Architectonic quantum dot solids [J]. Acc Chem Res,1999,32(5):415-423.
    [193]Rosetti R, Hull R, Gibson J M, et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50 size range:Evolution from molecular to bulk semiconducting properties [J].J Chem Phys,1985,82(1):552-159.
    [194]Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids [J]. Opt Lett,1985,10(10):511-513.
    [195]Cozzoli P D, Comparelli R, Fanizza E, et al. Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles [J]. J Am Chem Soc,2004,126(12):3868-3879.
    [196]Wang Q Q, Lin B Z, Xu B H,et al. Preparation and Photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite [J]. Microporous and Mesoporous Materials,2010, 130(1-3):344-351.
    [197]Pan H B, Wang F, Huang J L, et al. Binding Characteristics of CoPc/Sn02 by In-situ Process and Photocatalytic Activity under Visible Light Irradiation [J]. Acta Physico-Chimica Sinica,2008, 24(6):992-996.
    [198]Zheng X J, Wei Yong-J, Wei L F, et al. Photocatalytic H2 production from acetic acid solution over CuO/SnO2 nanocomposites under UV irradiation [J]. International Journal of Hydrogen Energy,2010,35(21):11709-11718.
    [199]Li C, Wei W, Xia T C, et al. La-doped SnO2 synthesis and its electrochemical property [J]. Journal of Rare Earths,2010,28(1):161-163.
    [200]Chong F, Wang J b, Yang M G, et al. Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method [J]. Journal of Non-Crystalline Solids,2011, 357(3):1172-1176.
    [201]Xia H L, Zhuang H S, Zhang T, et al. Photocatalytic degradation of acid blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight [J]. Journal of environmental sciences,2007,19(9):1141-1145.
    [202]Yu J G, Xiong J F, Cheng B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders [J]. J. Solid State Chem,2005,178(6):1968-1972.
    [203]Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titania nanocomposites [J]. Journal of Molecular Catalysis A:Chemical,2008,287(1-2):151-158.
    [204]Wang C, Wang X M, Xu Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 Photocatalysts for methyl orange degradation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,168(1-2):47-52.
    [205]Cheng G. Chen J Y, Ke H Z. et al. Synthesis, characterization and photocatalysis of SnO2 nanorods with large aspect ratios [J]. Materials Letters,2011,65(21-22):3327-3329.
    [206]Shen Q H, Yang H, Xu Q,et al. In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis [J]. Materials Letters,2010,64(3):442-444.
    [207]Liu Z L, Deng J C, Deng J J, et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J]. Materials Science and Engineering:B,2008,150(2): 99-104.
    [208]Matei Ghimbeu C, Landschoot R C, Schoonman J, et al. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD) [J]. Journal of the European Ceramic Society,2007,27(1):207-213.
    [209]何开棘,邢锐,金会刚,等CuO/SnO2复合纳米粉体制备与光催化活性[J].辽宁科技大学学报,2011,34(2):133-136.
    [210]Huo Y N, Zhang X Y, Jin Y, et al. Highly Active La2O3/Ti1-xBxO2 Visible Light Photocatalysts Prepared under Supercritical Conditions [J]. Applied Catalysis B:Environmental, 2008,83(1-2):78-84.
    [211]Fu C, Wang J B, Yang M G, et al. Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method [J]. Journal of Non-Crystalline Solids,2011, 357(3):1172-1176.
    [212]El-Sharkawy E A, Soliman Afaf Y, Al-Amer Kawthr M. Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation [J]. Journal of Colloid and Interface Science,2007,310(2):498-508.
    [213]Zhao J, Wu T, Wu K,et al. Photoassisted degradation of dye pollutants.3.Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO2 particles [J]. Environ. Sci. Teehnol.,1998,32(16):2394-2400.
    [214]曾旭徐,高田,王宇晖,等.纳米TiO2光催化降解酸性红B的实验研究[J].环境科学与技术,2006,29(6):16-18.
    [215]Rajeev J, Meenakshi S. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide [J]. Journal of Hazardous Materials,2008,152(1):216-220.
    [216]Zheng X J, Wei Y J, Wei L F, et al. Photocatalytic H2 production from acetic acid solution over CuO/SnO2 nanocomposites under UV irradiation [J]. International journal of hydrogen energy,2010,35(3):11709-11718.
    [217]Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review [J]. Journal of Hazardous Materials,2009,170(2-3): 520-529.
    [218]Guillard C, Laehhed H, Houas A, et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. J. Photochem. Photobiol. A:Chem.,2003,158(1):27-36.
    [219]Vinodgopal K, Bedja I, Kamat P V. Nanostructured Semiconduetor Films for Photocatalysis Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye [J].Chem.Mater.,1996,8(8):2180-2187.
    [220]Bessekouad Y, Robert D, Weber J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J]. Catal. Today,2005,101(3-4):315-321.
    [221]程刚,周孝德,李艳,等.纳米ZnO2/TiO2复合半导体的La3+改性及其光催化活性[J].催化学报,2007,28(10):885-889.
    [222]Shah S I, Li W, Huang C P, et al. Study of Nd3+, Pd2+, Pt4+,and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles [J]. PNAS,2002,99(2):6482-6486.
    [223]Carrasqillo A J, Bruland G L, Mackay A A, et al. Sorption of Ciprofloxacin and Oxytetracycline Zwitterions soil and Soil Minerals:Influence of Compound Structure [J]. Envirn Sci Technol,2008,42(20):7634-7642.
    [224]Kummerer K. Significance of antibiotics in the environment [J]. Antimicrobial Chemot herapy,2003,52(9):527-532.
    [225]漆辉,马莎,张乙涵,等.抗生素残留在土壤环境中的行为及其生态毒性研究进展[J].安徽农业科学,20]1,39(18):10906-10908.
    [226]Kummerer K. Antibiotics in the Aquatic Environmen:A Review-Part Ⅰ [J]. Chemosphere, 2009,75(4):417-434.
    [227]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报,2006,1(1):265-270.
    [228]王慧珠,罗义,徐文青,等.四环素和金霉素对水生生物的生态毒性效应[J].农业环境科学学报,2008,27(4):1536-1539.
    [229]Sarmah A K, Meyer M T, Boxall A B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occu rrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment [J]. Chemosphere,2006,65 (5):725-759.
    [230]LiR P, Zhang Y, Huang Y P. Determination of Tetracycline Antibiotics in the Environmental Samples [J]. Progress in Chemistry,2008,20(12):2075-2082.
    [231]陆梅.高效液相色谱法测定水中的土霉素、金霉素、四环素残留[J].环境研究与监测2009,22(3):39-40.
    [232]杨春艳,熊艳,何超,等.分子印迹固相萃取-化学发光测定盐酸金霉素[J].应用化学,2007,24(3):274-276.
    [233]李红,高茹英,秦莉,等.堆肥中土霉素和金霉素的液相色谱荧光检测方法[J].安徽农业科学,2010,38(20):10839-10840.
    [234]罗晓燕,林玉娜,刘莉治.SPE-HPLC法同时测定水产品中四种抗生素残留的研究[J].现代预防医学,2005,32(3):198-199.
    [235]Rozas O, Contreras D, Mondaca M.A, et al. Experimental design of Fenton and Photo-Fenton reactions for the treatment of ampicillin solutions [J]. Journal of hazardous materials, 2010,117(1-3):1025-1030.
    [236]肖明威,罗建中.光催化氧化法处理抗生素废水新技术研究[D].广州工业大学学位论文.
    [237]范山湖,沈勇,陈六平,等.Ti02固定床光催化氧化头孢拉啶[J].催化学报,2002,2(6):22-24.
    [238]赵纯,邓慧萍.疏水沸石负载纳米TiO2光催化去除水中土霉素[J].同济大学学报(自然科学版).2009,37(10):1360-1365.
    [239]Xekoukoulotakis N P, Xinidis N, Chroni M, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water:Factors affecting mineralization and antibiotic activity [J]. Catalysis today,2010,151(1-2):29-33.
    [240]Reyes C, Fernandez J, Freer J, et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis [J]. Photochemistry and Photobiology,2006,184(1-2):141-146.
    [241]高俊敏,郑泽根,王琰.TiO2/ZnO光催化降解四环素的研究[J].重庆环境科学,2003,25(1):17-19.
    [242]Lindner M. Photocatalytic degradation of organic compounds:acceleration the process efficiency [J]. Water Sci. Technol.,1997,35(5):8-10.
    [243]李青松,高乃云等.TiO2光催化降解水中内分泌干扰物17β-雌二醇[J].环境科学,2007,28(1):120-125.
    [244]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [245]Lin X P, Huang F Q, Wang W D, et al. A novel Photocatalyst BiSbO4 for degradation of methylene blue [J]. Appi. Catal. A:Gen.,2006,307(2):257-262.
    [246]Guillard C, Lachhed H, Houas A, et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their Photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. Photoehem. Photobiol. A:Chem.,2003,158(1):27-36.
    [247]Sioi M, Bolosis A, Kostopoulou E, et al. Photocatalytictreatment of colored wastewater from medicallaboratories:Photocatalytic oxidation of hematoxylin [J]. Photochem. Photobiol. A: Chem,2006,184(1-2):18-25.
    [248]Wolfrum E J, Ollis D F. Hydrogen peroxide in heterogeneous photocatalysis Aquatic and Surface Photochemistry [J]. Lewis Publishers,1994,261 (2):22-32.
    [249]Zhang Z Z, Wang X X, Long J L, et al. H2O2 promoting effect on photocatalytic degradation of organic pollutants in an aqueous solution without an external H2 supply [J]. Applied catalysis, A-general.2010.380(1-2):178-184.
    [250]Chatzitakis A, Berberidou C, Paspaltsis I. et al. Photocatalytic degradation and drug activity reduction of chloramphenicol [J]. Water research,2008,42(1-2):386-394.
    [251]Sauer T, Neto G C. Jose H J. et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor [J]. Photochem Photobiol A-Chem,2002,149 (1-3):147-154.
    [252]Dionysiou D D, Suidan M T, et al. Effect of hydrogen peroxide on the destruction of organic contaminants synergism and inhibition in a continuous-mode photocatalytic reactor [J]. Appl. Catal. B-Environ.2004,50(4):259-269.
    [253]Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere,2008,73(3):377-382.
    [254]Jiao S J, Zheng S R, Yin D Q. Aqueou soxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process [J]. Journal of Environmental Sciences, 2008,67(20):806-813.
    [255]Araki T, Kawai Y, Ohta I, et al. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic in an aqueous solution [J]. Chempharm Bull,2002,50(2):229-234.
    [256]Sanchez-Prado L, Llompart M, Lores M, et al. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction [J]. Chemosphere,2006,65(8):1338-1347.
    [257]Boreen A L, Arnold W A, McNeill K. Photodegradation of pharmaceuticals in the aquatic environment:A review [J]. Aquat Sci,2003,65(4):320-341.
    [258]Doerschuk A P, Bitler B A, McCornik. Reversible isomerizations in the tetracycline family [J]. Am Chem Soc.1955,77(12):4687.
    [259]李瑞萍,张艺,黄应平.环境样品中四环素类抗生素的检测技术[J].化学进展,2008,20(12):2075-2082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700