用户名: 密码: 验证码:
等离子体协同光催化剂处理微污染水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国经济的高速发展,产生了大量对环境有害的废水,饮用水源受到严重污染,并呈不断发展趋势,直接影响到社会生产和人民生活。深度水处理技术的开发和利用因而越来越受到广泛关注。
     等离子体污水处理技术作为一种深度水处理技术,是一种兼具高能电子辐射、臭氧氧化、紫外光分解等作用于一体的高级水处理氧化技术。半导体光催化降解技术作为一种新型的环境净化技术也越来越为人们所重视,将两种水处理高级氧化技术相结合,共同用于水处理,可以在充分利用等离子体激发的物理与化学效应的同时,利用催化剂有效降低活化能,既提高了污染物的去除效率,同时又提高了等离子体的能量利用率。
     本研究选用了多孔、大比表面积、吸附能力强的材料—蛭石作为载体材料。目前以蛭石为载体的相关报导很少。蛭石经不同浓度的硝酸和硫酸处理后,性能显著改善,具有良好的性能,吸附能力和比表面积显著增大。以半导体材料Ti02和ZnO为光催化剂,不同条件下酸处理改性的蛭石材料做为载体,制备了负载型光催化剂。考察了不同处理条件对晶粒尺寸和光催化剂性能的影响,并通过XRD及BET氮气吸附技术、扫描电镜等测试手段对所制备的催化剂样品进行了表征。结果表明二氧化钛催化剂样品的粒径为纳米级,酸处理的蛭石材料为介孔材料。其中,硝酸处理的效果明显优于硫酸,比表面积更大,吸附能力更强。并进而影响到负载于其上的催化剂,实验条件下,以硝酸处理的蛭石为载体的二氧化钛粒径更小。当水与浓硝酸的体积比为1/2时,处理效果最好。蛭石熔点高,热稳定性好,有利于光催化剂复合体的再生。采用以酞醇盐为原料的溶胶法制得的纳米二氧化钛-蛭石复合体,纳米二氧化钛的晶型为锐钛矿型。
     以亚甲基蓝为模拟污染物,分别采用紫外线光照、等离子体、等离子体放电与所制备的光催化剂结合,处理其溶液。通过比较处理效果发现,酸处理蛭石载体为光催化剂提供了高浓度的底物环境,加快了处理速度。等离子体与所制备的光催化剂相结合,协同处理的效果更好,速度更快。
Recently with the high-speed development of China economy, it has been developed continuously that a great lot of waste water appeared and the drinking water sources was very much polluted, which directly affected social production and the people's livelihood. Development and utilization of deep water treatment technology have more and more been widely attended.
     Wastewater treatment technology by plasma as a developing deep water treatment methods was an advanced oxidation process for wastewater treatment which was combined high-energy electron radiation, ozonation oxidation and UV-light induced photodegradation. As a new environment-purifying technique, method of semiconductor photocatalysed oxidation in degradation of organic contaminants was drawing more and more attention. It was obvious that physical and chemical effect excitation by plasma was made full use and activation energy with catalyst also effectively reduced when two methods above mentioned were used in wastewater treatment process at the same time. As a result, it promoted removal rates for the pollutants and reduced energy utilization ratio of plasma.
     In this study, vermiculite was used for carrier, which is a kind of porous materials possessing large specific surface area and stong absorbility. So far, research about the materials as supports was few. The material was treated by nitric acid or sulfuric acid with different concentration. It was found that the acid treatment could improve the performances of the material. Acid-treated vermiculite possessed better properties, namely were larger specific surface area and stonger absorbility. TiO2 and ZnO, which are semiconductor materials, have been used as photocatalysts and supported by acid-treated granular vermiculite. The effect of different treatment conditions on crystalline sizes and photocatalysis performance has been studied. The photocatalysts samples were investigated by used XRD, N2 adsorption analysis and scan electron microscopy. The result showed that prepared TiO2 catalysts samples were nanostructured particles and acid-treated vermiculite was mesoporous material. The treatment effect of nitric acid was superior to that of sulfuric acid. The optimal nitric acid concentration was 1:2 (v/v) condensed deionized water to nitric acid. The size of the crystal of TiO2 is influenced on support for the composite catalysts. TiO2 on the nitric acid treated vermiculite was smaller than that on the sulfuric acid treated vermiculite. The composite was easy to be reused because of high melt point and thermal stability of carrier. The nano TiO2 was prepared with sol method by the precursor, which was obtained by substituting partly isopropyl alcohol with Cl- in titanium chloride{[Ti(Ⅳ)(OR)nClm] (n=2-3, m=4-n)}. Its phase is anatase.
     The solution of methylene blue as simulative contaminant was treated by UV light, plasma, plasma and prepared photocatalysts, respectively. Compared the results of treatment, it was found that the substrate was concentrated by adsorption of the support in composite and rate of oxide became fast. It was best when plasma and prepared photocatalysts were used in treatment process at same time. Effect of removal was best and the rate of removal was fastest.
引文
[1]Glaze W H., Drinking-water treatment with ozone, Environ. Sci. Technol.1987, 21 (3),224-230
    [2]Adewuyi Y.G., Sonochemistry:environmental science and engineering application, Ind. Eng.Chem. Res.,2001,40,4681-4715
    [3]Hashimoto S., Miyata T., Kawakami W., Radiatio-induced decomposition of phenol in flow system, Radiat. Phys. Chem.,1980,16(1):59-62
    [4]雷乐成,汪大翚,水处理高级氧化技术,北京:化学工业出版社,2002
    [5]Fujishima A., Rao T.N., Tryk D.A., Titanium dioxide photocatalysis. J Photochem Photobiol. C:Photochem Rev.,2000,1,1-21
    [6]Gogate P.R., Pandit A.B., A review of imperative technologies for wastewater treatemntal Ⅱ:hybrid methods. J. Photochem. Photobiol. A.,2004,165,165-175
    [7]Staehelin J., Hoigne J., Decompositin of ozone in water:rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol.,1982,16(10), 676-681
    [8]Tomiyasu H., Fukutomi H., Gordon G, Kinetics and mechanisms of ozone decomposition in basic aqueous solutions, Inorg. Chem.,1985,24:2964-2985
    [9]Nemes A., Fabian I., Gordon G, Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution, Ozone Sci. Eng.,2000,22(3), 287-304
    [10]Brian M. et al. Ozone applicatin to color destruction of industrial wastewater-Partl:experimental. American dye-stuff Reporter,1998,87(8), 18-22
    [11]Malik M.A., Ghaffar A., Malik S.A., Water purification by electrical discharges. Plasma Sources Sci. Technol.,2001,10,82-91
    [12]Lukes P., Locke B., Plasmachemical oxidation of processes in a hybrid gas-liquid electrical discharge reactor. J. Phys. D:Appl. Phys.,2005,38,4074-4081
    [13]Arslan-Alaton I., Gurses I., Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent, J. Photochem. Photobiol. A.,2004, 165,165-175
    [14]Luck F. A review of industrial catalytic wet air oxidation processes, Catalysis Today.1996,27 (1-2),195-202
    [15]Kolazkowske S.T., Plucinski P., Beltran F.J., et al. Wet air oxidation:a review of process technologies and aspects in reactor design, Chemical Engineering Journal.1999,73 (2),143-160
    [16]Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature.1972,238 (7),37-38
    [17]刘俊新,丛丽,王宝贞,生物膜与活性污泥结合工艺脱氮除磷研究,中国给水排水,2000,16(12),1-5
    [18]Banerjee S., Howard P. H., Rosenberg A. M., et al, Development of a general kinetic model for biodegradeation and its application to chlorophenols and related compounds, Environ. Sci. Technol.,1984,18 (6),416-422
    [19]杜丽平,闻建平,朱智勇,等,复合诱变菌处理氨氮废水,上海环境科学,2002,21(1),1516
    [20]Chang B., Chen K., Yuan S., Dechlorination of 2,4,6-TCP by an anaerobic mixed culture, Chemosphere,1995,31(8),3808-3811
    [21]Steffensen W.S., Alexander M., Role of competition for inorganic nutrients in the biodegration of mixtures of substrates, Appl. Environ. Microbiol.1995,61(8), 2859-2862
    [22]Satoshi, S., Mchihiko I.., Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol, J. Fermentation andBioengineering,1998,86(1),90-96
    [23]陈俊,程树培,王洪丽,等,基因工程菌在精对苯二甲酸废水处理中的应用,工业用水与废水,2006,37(1),3235
    [24]刘洋,陈双基,刘建国,生物强化技术在废水处理中的应用,环境污水治理技术与设备,2002,3(5),3640
    [25]周颖,许振良,陈桂娥,等,强化MBR处理含酚毒性废水及膜过滤特性的研究,膜科学与技术,2009,29(3),99102
    [26]Satoh H., Okabe S., Yamaguchi Y, K., et al. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode, Water Res.,2003,37,2206-2216
    [27]Head M. A., Oleszkiewicz J. A., Bioaugmentation for nitrification at cold temperatures, Water Res.,2004,38,523-530
    [28]Quan X.C., Shi H.C., Liu H., et al. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation. Process Biochem,2004,39(11),1701-1707
    [29]Pikaev A., Shubin V, Radiation treatment of liquid wastes, Radiat. Phys. Chem., 1984,24(1),77-97
    [30]Kurucz C., The Miami electron research facility:a large scale wastewater treatment application, Radiat. Phys. Chem.,1995,45(2),299-308
    [31]Zhang S.J., Yu H.Q., Zhao Y, Kinetic modeling of the radiolytic degradation of acid orange 7 in aqueous solutions [J]. Water Res.,2005,39,839-846
    [32]Song W.H., Zheng Z., Rami A.S., et al., Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation, Radiation Physics and Chemistry,2002,65 (4-5),559-563
    [33]Cooper W.J., Nicckelsen M.G., Green R.V., et al., The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation, Radiatin Physics and Chemistry,2002,65 (4-5),571-577
    [34]Henglein A., Sonochemistry:historical developments and modern aspects, Ultrasonics,1987,25(1),6-16
    [35]孙杏凡,等离子体及其应用,北京:高等教育出版社,1983,1-138
    [36]陈银生,张新胜,常胜等,脉冲放电等离子体降解废水中有机物的作用机理探索,环境科学学报,2005,25(1),113-116
    [37]Willberg D.M., Lang P.S., Kratel A., et al., Degradation of 4-chlorophenol, 3,4-dichloroaniline and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor, Environ. Sci. Tech.1996,30,2526-2534
    [38]许正,夏连胜,赵君科,液中放电应用于TNT废水的降解,环境污染与防治,1999,21(6),20-22
    [39]Sunao Katsuki, Keiichi Tanaka, Taisuke Fudamoto, et al. Shock wave due to pulsed streamer discharges in water,2004, IEEE,607-610
    [40]Zhang C.H., Namihira T., Kiyan T., et al., Investigation of shockwave produced by large volume pulsed discharge under water,2005, IEEE,1377-1380
    [41]Hoeben W.F., Veldhuizen E.M.V, Rutgers W.R. et al., Gas phase corona discharges for oxidation of phenol in aqueous solution, J. Phys. D:Appl. Phys. 1999,32, L133-L137
    [42]Hoeben W.F., Veldhuizen E.M.V, Rutgers W.R., et al., The degradeation of aqueous phenol soluteions by pulsed positive corona discharges, Plasma Sources Sci. Technol.2000,9,361-369
    [43]李杰,李楠,李国锋,等,气相脉冲放电针-板反应器降解水中有机物,河 北大学学报(自然科学版),2007,27,646-649
    [44]李胜利,李劲,王泽文,等,用高压脉冲放电等离子体处理印染废水的研究,中国环境科学,1996,16,73-76
    [45]李胜利,李劲,王泽文,等,脉冲放电对印染废水脱色效果的实验研究,环境科学,1996,17,13-16
    [46]叶齐政,张家聪,张越非,等,水中气泡放电的电极结构研究,高电压技术,2003,39,16-18
    [47]叶齐政,齐军,顾温国,等,EHD喷雾电晕放电现象研究,高压电器,2000,36,13-15
    [48]叶齐政,齐军,顾温国,等,气液混合体直流放电的初步研究,高电压技术,2001,27,26-28
    [49]杨彬,高压脉冲放电降解染料废水的研究,[硕士学位论文],浙江,浙江大学,2004
    [50]尤特金著,于家珊译,液电效应,北京:科学出版社,1962
    [51]Clements J.S., Sato M., Davis R.H., Preliminary investingation of prebreakdown phenolmena and chemicall reactions using a pulsed high-voltage discharge in water, IEEE Trans. Indust. Appl.1987, IA-23,224-235
    [52]卞文娟,液电等离子体,[博士学位论文],浙江,浙江大学,2005
    [53]肖如泉,王黎明,倪梅娟,等,高压放电的原理和演示,北京:中国水利水电出版社,2004
    [54]Masuda, S. et al. Control of NOx by positive and negative pulsed corona discharge, IEEE/IAS Annu. Conf.,1986,1173-1183
    [55]Mizuno A, et al. A method for the removal of sulfur dioxide from exhaust gas utilizeing pulsed streamer corona for electron energyization, IEEE Trans. On Ind. Appl.,1986,22(3),516-522
    [56]Dinelli Q et al. Industrial experiments on pulse corona simultaneous removal of NOX and SO2 from flue gas, IEEE Trans. On Ind. Appl.,1990,26(3):535-541
    [57]Suarasana I., Ghizdavub L., Ghizdavus I., et al., Experimental characterizeation of multi-point corona discharge devices for direct ozonization of liquids. J. Electrostatics,2002,54(2),207-214
    [58]Sano N., Kawashima T., Fujikawa J., et al., Decomposition organic compounds in water by direct contact of gas corona discharge:influence of discharge condition, Ind. Eng. Chem. Res.2002,41,5906-5911
    [59]Sano N., Yamamoto D., Kanki T., Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge, Ind. Eng. Chem. Res.2003,42,5423-5428
    [60]郭香会,李劲,脉冲放电等离子体处理硝基苯废水的实验研究,电力环境保护,2001,17(2),3738
    [61]郭香会,李劲,叶齐政,脉冲放电等离子体处理硝基苯废水的实验研究,高电压技术,2001,27(3),4244
    [62]何正浩,邵瑰玮,王万林,脉冲电晕放电处理焦化废水的研究,高电压技术,2003,29,2931
    [63]周爱姣,陶涛,李胜利,等离子体技术用于垃圾渗滤液预处理,中国给水排水,2003,19,5961
    [64]Samaranayake W.J.M., Miyahara Y, Namihira T., et al., Ozone generation in dry air using pulsed discharges with and without a solid dialectric layer, IEEE Trans. DEI,2001,8(4),687-697
    [65]鲍慈光,杨宗璐,张一玲,等,臭氧发生器用陶瓷电极材料的研制,云南大学学报,1999,21(4),282-284
    [66]刘维良,吴坚强,陈云霞,等,臭氧发生器用A1203陶瓷基板材料的改性研究,陶瓷学报,2001,22(2),73-77
    [67]邢福保,许鑫华,孔凡,EPDM-陶瓷高介电常数低损耗复合电介质薄膜,天津化工,1999(5),1-4
    [68]Jae-Duk Moon, Sang-Taek Geum, Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier, IEEE Trans. On Ind. Appl.1998,34 (6),1206
    [69]刘媚,刘力群,李振瑜,水处理用臭氧发生器新型电介质材料的研制,中国土木工程学会水工业分会给水深度处理研究会2006年年会论文集,97-102
    [70]Hickling A., Newns G.R., Glow-discharge electrolysis:Part V the contact glow discharge electrolysis of liquid ammonia [J]. J. Chem. Soc.,1961,5,186-190
    [71]Sengupta S.K., Singh R., Srivastva A.K., A study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis, J. Electrochemical Soc., 1998,145,2209-2213
    [72]Goheen S.C, Durham D.E., McCulloch M., The degradeation of organic dyes by corona discharge, Proceedings of the second internal symposium on chemical. oxidation:Technologies for the Nineties,1992,356
    [73]Gao J.Z., Liu Y.J., Yang W., et al., Oxidative degradation of phenol in aqueous induced by plasma from a direct glow discharge, Plasma Sources Sci. Technol. 2003,12,533-537
    [74]Gao J.Z., Pu L.M., Yang W., et al. Oxidative degradation of nitrophenols in aqueous solution induced by plasma with submersed glow discharge electrolysis, Plasma Processes and Polymers,2004,1,171-176
    [75]陆泉芳,俞洁,刘永军,等,接触辉光放电等离子体降解水体中对氯硝基苯,西北师范大学学报(自然科学版),2003,39(1),49-53
    [76]高锦章,陆泉芳,俞洁,等,接触辉光放电等离子体降解水体中硝基苯,甘肃科学学报,2003,15(1),30-34
    [77]Gao J.Z., Gai K., Lu Q.F., et al. Plasma induced degradation of aniling in aqueous solution, Plasma Sci. Technol.2002,4(2),1243-1251
    [78]Gao J.Z., Hu Z.A., Wang X.Y., et al. Degradation of a-naphthol by plasma in aqueous soluteion, Plasma Sci. Technol.2001,3(1),641-646
    [79]程文,吕静,徐大锦,等,滑动弧光等离子体技术在化工中应用研究进展,天然气化工,2007,32,64-69
    [80]Radu Burlica, Bruce R.Locke, et al. Pulsed plasma gliding-arc discharges with water spray, IEEE Transactions on Ind. Appl.2008,44,482-489
    [81]Ghezzar M.R., Abdelmalek F., Belhadj M., et al. Gliding arc plasma assisted photocatalytic degradeation of anthraxquinonic acid green 25 in soluteion with TiO2, J. Appl. Catal. B:Environmental 2007,72,304-313
    [82]李黎,微波等离子体强化内电解降解活性艳蓝KN-R溶液的工艺和研究[硕士学位论文];湖北,华中科技大学,2005
    [83]马腾才,低温等离子体物理进展,力学进展,1990,20,373-378
    [84]Grymonpre D.R., Finney W.C., Clark R.J., et al., Hybrid Gas-Liquid Electrical Discharge Research,2004,43(9),1975-1989
    [85]Chang J.S., Looy P.C., Urashima K., et al., Pulsed are discharge in water: Mechanism of current conduction and pressure wave formations. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report,2000,1, 105-108
    [86]Zastawny H.Z., Romat H., Leitner N.K., et al., Pulsed arc discharges for water treatment and disinfection, Electrostatics 2003-Proceedings of the Electrostatics Conference of the Institute of Physics,2004,178,325-330
    [87]Bystriskii V, Yankelevich Y, Wood T., et al., Pulsed discharge in the fluidized packed-bed reactor for toxic water remediation, Digest of Technical Papers-IEEE International Pulsed Power Conference,1999,1,464-467
    [88]孙明,赵小明,许德玄,水放电极雾化净水技术,高电压技术,2000,26(4),36-37
    [89]Fujishima A., Zhang X.T., Tryk D.A., TiO2 photocatalysis and related surface phenolmena, J. Surf. Sci. Rep.2008,63,515-582
    [90]司徒杰生,王光建,张登高,化工产品手册-无机化工产品北京:化学工业出版社,2003
    [91]刘福生,彭同江,金云母-蛭石间层矿物分晶层晶体化学式的计算及意义,岩石学报,2002,18,238-246
    [92]夏海江,鲁雪艳,迪里夏提·买买提,膨胀蛭石—综合性能超凡的高温隔热材料,西部探矿工程,2008,2,111-112
    [93]彭同江,万朴,潘兆橹,等,新疆尉犁蛭石矿中金云母-蛭石的间层结构研究[J],岩石矿物学杂志,1996,15(3),250-258
    [94]彭同江,新疆尉犁且干布拉克蛭石矿金云母-蛭石间层矿物的晶体化学研究[博士学位论文],北京:中国地质大学,1993
    [95]赵双盟,几种工业蛭石深加工技术的原理与试验研究,[硕士学位论文],四川,西南科技大学2006,
    [96]赵双盟,彭同江,孙红娟,蛭石的剥分研究现状及应用前景,矿产保护与利用,2006,3,21-25
    [97]Mackenzie, K., Temuujin, J., Jadambaa, Ts., et al., Characterization of acid activeated montmorillonite clay from Tuulant (Mongolia), Ceramics International,2004 (30),251-255
    [98]于少明,杨保俊,膨润土活化酸浸的研究,合肥工业大学学报(自然科学版),1998,21(1):40-44
    [99]万勇,于少明,膨润土微波辐照酸浸的研究,化工矿物与加工,2004(2):18-20
    [100]Barrios, M.S., Gonzales, L.V.F., Rodriguez, M.A.V., et al., Acid activation of a palygorskite with HC1:Development of physico-chemica, texture and surface properties, Applied Clay Science,1995(10):247-258
    [101]Aznar A.J., Gutierrezar E., Diaz P., et al., Silica fromsepiolite:Prearation, textural properties, and use as support to catalysts, Clay Minerals,1997 (6), 105-114
    [102]Harkonen, Matti. A, Porosity and surface area of acid-leached phlogopite:the effect of leaching condition and thermal treatment, Colloids and Surfaces, 1984(11),265-274
    [103]Temujin J., Okada K., Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching, Powder Technology, 2001 (2),259-262
    [104]唐凤翔,张济宇,高硅铝比高岭土制取白炭黑的工艺研究,福州大学学报(自然科学版),2001,29(2),109-111
    [105]Jadambaa J., Preparation of porous silica from verminculite by selective leaching, Applied Clay Science,2003 (22),187-195
    [106]Tsodikov M.V., Katsobashvili Y.R., Perederii M.A., et al., Pore structure of vermiculite that has been activated by two-stage acid etching, J. Russ. Chem. Bull.1984 (33),1237-1241
    [107]彭同江,刘福生,张宝述,等,金云母 蛭石间层矿物的酸浸取物与酸蚀机理研究,岩石矿物学杂志,2005,24,622628
    [108]Suquet H, Chevalier S, et al., Preparation of porous materials by chemical activation from Llano vermiculite, Clay Minerals,1991,26,49-60.
    [109]Suquet H., Franck R., et al., Catalytic properties of two pre-cracking matrices:a leached vermiculite and a Al-pillared saponite, Applied Clay Science,1994 (8), 349-364.
    [110]孙奉玉,吴鸣,李文钊,等,二氧化钛的尺寸与光催化活性的关系,催化学报,1998,19(3),229-233
    [111]Morin S., Ayrault P., Gnep N.S., et al., Influence of the framework compositeon of commercial HFAU zeolites on their activety and selectivity in m-xylene transformation, Appl. Catalysis A:General,1998,166,281-292
    [112]Janssen A.H., Koster A.J., de Jong K.P., On the shape of the mesopores in zeolite Y:a three-dimensional transmission electron microscopy study combined with texture analysis, J. Physical Chemistry B,2002,106,11905-11909
    [113]Mills A., Wang J.S. Photobleaching of methylene blue sensitised by TiO2:an ambiguous system? J. Photochem. Photobiol. A-Chemistry.1999,127(1-3), 123-134
    [114]Houas A., Lachheb H., Ksibi M., et al., Photocatalytic degradation pathway of methylene blue in water, Appl, Catal. B-Environmental.2001,31(2),145-157
    [115]Gouvea C.AK., Wypych F., Moraes S.G, et al., Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO, Chemosphere,2000,40,433
    [116]Spanhel L., Anderson M.A., Semiconductor clusters in the sol-gel process: quantized aggregateion, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc,1991,113:2826-2833.
    [117]Dong Qian, Leif Gerward, J Z Jiang, Comment on "Catalysis and Temperature Dependence on the formation of ZnO nanoparticles and zinc acetate deriveatives prepared by the sol-gel route [J]. J. Phys Chem. B,2004,108:15434-15435
    [118]Tokumoto M. S, Pulcinelli S. H., Santilli C. V. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate deriveatives prepared by the sol-gel route, Phys Chem B,2003,107:568-574
    [119]何争光,脉冲电晕等离子体降解苯酚的研究,[博士学位论文],上海,上海交通大学
    [120]Agustina T.E., Ang H.M., Varcek V.K., A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, J. Photochem. Photobiol. C:Rev.,2005,6:264-273.
    [121]Hemandez-Alonso M.D., Coronado J.M., Maira A.J., et al., Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions, Appl. Catalysis B:Errviron.,2002,39:257-267.
    [122]Lukes P., Clupek M., Sunka P., et al., Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis, Res. Chem. Intermed.2005,31,285-294
    [123]Hao X.L., Zhou M.H., Zhang Y., et al., Enhanced degradation of organic pollutant 4-chlorophenol in water by non-thermal plasma processs with TiO2, J. Plasma Chem. Plasma Process.2006,26,455-468
    [124]黄碧纯,杨岳,张晓明,等,低温等离子体结合光催化剂TiO2去除甲苯,华南理工大学学报(自然科学版),2008,36(11),27-33
    [125]Sano N., Yamamoto T., Takemori I., et al., Degradation of phenol by simultaneous use of gas-phase corona discharge and catalyst supported mesoporous carbon gels, Ind Eng Chem Res.,2006,45,2897-2900

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700