用户名: 密码: 验证码:
生物质基二氧化硅的提取及在聚酯中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,对化石资源的依赖和消耗量不断增加,已经导致人类面临能源枯竭和环境污染等问题。因此,如何更有效利用化石资源、降低消耗速度成为决定人类生存和发展的重要课题。生物质是一种可以储存太阳能的可再生资源,它可以作为化石资源的补充和替代品,提取可再生的生物质材料代替化石资源原料,增加在高聚物中,可降低终端产品中高聚物的比例,从而间接地降低了石油、煤炭的消耗速度,为人类开发新能源、新资源争取时间创造条件。
     聚对苯二甲酸乙二醇酯(PET)作为石油化工的衍生品,是一种用途广泛、产量很大的重要聚合物材料,具有良好的机械物理性能、耐磨性、耐热性、耐化学药品性、绝缘性等特点,价格低廉,已广泛应用于涤纶纤维、薄膜及饮料包装和纺织服装生产等领域,因此需求量巨大。
     本论文首先以对苯二甲酸和乙二醇为原料,利用自行设计的连续式反应装置,采用直接酯化法制备PET,通过实验确定了反应条件与工艺流程,并针对PET的聚合特点对现有工艺条件进行了优化,制备出了大粘度、高分子量、高结晶度的PET聚合物。通过红外光谱分析,特性粘度和端羧基含量的测试表明,PET的特性粘度可以达到0.75dL g~(-1),分子量为21100g mol~(-1),端羧基含量为39.5mol t~(-1),各项指标均达到国家标准。通过对TGA,DSC和外观颜色的分析对PET结晶动力学和发色机理进行了讨论,为后续的改性工作提供了理论基础和实验条件。
     本论文以稻壳灰为原料,利用化肥生产中的副产品、浓度为4mol/L氟化铵为溶硅剂,在温度393K反应2小时,制备出氟硅酸溶液,再将反应生成的副产物氨水加入到氟硅酸溶液中生成二氧化硅沉淀和氟化铵溶液,反应过程所使用的化学试剂均可循环利用,降低了成本,减少对环境的污染。采用透射电镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)、元素分析仪等对产品进行测定分析表明,在此条件下得到的最终产品是无定形的球状SiO_2,直径50~60nm,产品产率可以达到94.6%,具有纯度高,粒径小,分布均匀等优良特性。本工艺摆脱了在传统工艺中存在高温溶硅能耗大、排放二氧化碳污染环境、高品位硅砂资源缺乏的弊端,极大地降低了生产成本和投资成本,为二氧化硅的生产提供了可再生、高品位的原料,有利于大规模的生产。
     在本工艺的基础上,以稻壳为原料,完善了酸催化水解制备糖酸液、原位缩聚炭化制备胶体碳、再利用氟化铵制备SiO_2和木质素,所得到的纳米SiO_2和木质素产品纯度高,粒径小,尺寸分布均匀,最佳工艺条件的原料利用率达到了90%以上。整个实验流程优化、简化了稻壳综合利用的实验方法,实现了稻壳综合利用。
     通过原位聚合法制备了PET/SiO_2纳米复合材料和PET/木质素复合材料。SEM结果显示,SiO_2纳米粒子和木质素在复合材料中表现出了良好的分散性。木质素的加入使PET产生交联结构,形成弹性体,在出料时制备出多孔材料,起到交联剂和填充剂的作用。DSC,TGA结果表明,SiO_2纳米粒子的添加对PET的热稳定性和结晶速率均有明显的提高作用。这种原位聚合的方法可以进一步推广到木质素等有机材料,也可以通过改变高分子体系来扩展无机纳米粒子的应用领域。这极大的扩展了稻壳综合利用的研究工作。
     最后,在温和的水环境中,以稻壳灰为硅源,采用十六醇进行原位修饰改性提取出来SiO_2,并通过不同的热处理方式对其表面性质进行调控,制备出具有不同疏水性能的SiO_2粒子。并通过原位聚合法制备了十六醇修饰PET/SiO_2纳米复合材料。根据实验结果,我们提出了一个简单的模型,直观的表现十六醇对SiO_2的修饰,以及在PET基体中的分散机理。十六醇的加入通过形成有机硅结构降低纳米SiO_2的表面能和表面张力,减小了粒子之间的相互作用,导致其在复合材料中更好的相容性。SEM结果也显示,在PET和十六醇修饰过SiO_2纳米粒子之间无明显的相分离现象产生。PET,十六醇和SiO_2之间的相互作用是不产生相分离的主要原因。DSC,TGA结果表明,十六醇修饰过SiO_2纳米粒子的添加对PET的热稳定性和结晶速率均有明显的提高作用。这种原位修饰、原位聚合的方法可以进一步推广到其他无机纳米粒子的表面修饰,修饰剂也可以通过改变醇碳链的长短来改变无机物的表面浸润性,通过改变高分子体系来扩展无机纳米粒子的应用领域。整个实验流程优化、简化了制备纳米SiO_2、表面修饰改性、制备复合材料的方法。将修饰后的SiO_2粉末跟高分子材料复合,二氧化硅粉体较改性前,在高分子中实现了良好的分散,这极大的扩展了稻壳综合利用研究工作的应用技术研究。
With the rapid development of world economy, a large number of fossilresources are consumed, which led to a series of problems such as energy depletionand environmental pollution.Therefore, how to use fossil resources more efficiently,reduce the rate of consumption becomes an important issue for human beings’survival and development.Biomass, as a kind of renewable resourcescan store solarenergy and be used as a complement and substitute for fossil resources. We canextract renewable biomass materials instead of fossil resources raw materials, increaseaccession to polymer and reduce the ratio of the polymer in products, thus can reducethe rate of consumption of oil and coal indirectly, and create the conditions for humanto develop new energy and new resources.
     Poly (ethylene terephthalate)(PET) as a petrochemical derivative, is aversatile production of polymer materials, which has good mechanical and physicalproperties, wear resistance, heat resistance, chemical resistance, insulation and lowprice, has been widely used in the field of polyester fiber, film, beverage packaging,textile and garment production, so the demand is huge.
     In this dissertation, PET was prepared by direct esterification with terephthalicacid and ethylene glycol using self-designed continuous reactor. The optimumreaction conditions and technological process were determined by experiment. Theresults showed that the productions had large viscosity, high molecular weight anddegree of crystallinity. By the tests of infrared spectroscopy, intrinsic viscosity andcontent of carboxyl end group showed that the intrinsic viscosity of PET could reachup to0.75dL g~(-1), the molecular weight was21100g mol~(-1), the carboxyl end groupcontent was39.5mol t~(-1). The indicators were meet national standards. Crystallizationkinetics and the mechanism of hair color of PET were discussed by the tests of TGA,DSC, and the color, which provided a theoretical basis and experimental conditionsfor the follow-up of modified work.
     In this thesis, silica was extracted from the rice husk ash with ammoniumfluoride which was the by-product in fertilizer production as dissolved silicon agent by a recyclable method. It was found that silica could be synthesized at reactiontemperature of393K for2h, with NH4F concentration of4mol/L. All the chemicalreagents used in the reaction process were recycled to reduce costs and environmentalpollution. Transmission electron microscopy (TEM), X-ray diffraction (XRD),infrared spectroscopy (FTIR), elemental analysis and other analysis results showedthat the final product SiO_2is spherical with the diameter of50to60nm, the yield ofproduct could reach up to94.6%. The final product has fine features of high purity,small particle size and uniform distribution. Compared with the traditional process,the process got rid of the drawbacks of high energy consumption, high carbon dioxideemissions and the lack of high grade silica sand, which greatly reduced the cost ofproduction and investment. Therefore, it was more suitable for large-scale production.
     On the basis of this process, the rice husk as raw material, improve theacid-catalyzed hydrolysis of the sugar acid, in situ polycondensation charringpreparation of colloidal carbon, and then the use of ammonium fluoride preparation ofsilica and lignin. The nano-SiO_2and lignin products were high purity, small particlesize and size distribution, the utilization of raw materials was more than90%. Thewhole experimental process had optimized and simplified the methodof the comprehensive utilization of rice husk.
     PET/SiO_2nanocomposites and PET/lignin composites were prepared via in situpolymerization. Composites containing SiO_2nanoparticles and lignin showed a gooddispersion from SEM results. Lignin and PET can produce cross-linked structure toform the elastomer. Porous materials were prepared when the material comes out.Lignin played the role of crosslinking agents and fillers in the material. DSC, TGAresults showed that the addition of SiO_2nanoparticles obviously increased thermalstability and crystallization rate of PET. In situ polymerization method can be furtherextended to lignin and other organic materials. The method can also be extend theapplications of inorganic nanoparticles by changing the polymer system. This greatlyextended the comprehensive utilization of rice husk.
     Finally, the SiO_2extracted from rice husk ash were modified in situ byhexadecanol under moderate water. SiO_2particles were prepared withdifferent hydrophobic properties by different heat treatment methods.PET/SiO_2nanocomposites were prepared by in situ polymerization. According to theexperimental results, we proposed a simple model, SiO_2were modified byhexadecanol and the mechanism of dispersion in the PET matrix was studied. The hexadecanol could reduce the surface energy and surface tension of SiO_2nanoparticles through the formation of organic silicon structure, which reduced theinteraction between the particles, resulting in better compatibility in thecomposite. SEM results also showed that there was no phase separation phenomenonbetween PET and modified SiO_2nanoparticles. The interaction between PET,hexadecanol and SiO_2was not the main reason for disappear of phaseseparation. DSC, TGA results showed that adding of SiO_2nanoparticles modified byhexadecanol significant increased thermal stability and crystallization rate ofPET. This method of modification and polymerization in situ could be furtherextended to surface modification of other inorganic nanoparticles, the surfacewettability of inorganic could be changed by changing the alcohol carbon chain lengthof modifiers. Application of inorganic nanoparticles could be expanded by changingthe polymer system. The entire experimental process optimized the preparation ofnano-SiO_2, surface modification and preparation of composite materials. ModifiedSiO_2composites with polymer materials showed good dispersion compared to theunmodified SiO_2, which greatly extended the application of technology research forcomprehensive utilization of rice husk.
引文
[1] Mahendrasingam A., Martin C., Fuller W., Blundell D.J., Oldman R.J.,MacKerron D.H., Harvie J.L., Riekel C. Observation of a transient structure priorto strain-induced crystallization in poly(ethylene terephthalate)[J]. Polymer2000,41(3):1217-1221.
    [2] Keum J.K., Kim J., Lee S.M., Song H.H., Son YK., Choi J.L, Im S.S.Crystallization and transient mesophase structure in cold-drawn PET-fibers [J].Macromolecules2003,36(26):9873-9878.
    [3] Ivanov D.A., Pop T., Yoon D.Y, Jonas A.M. Direct observation ofcrystal-amorphous interphase in lamellar semicrystalline poly(ethyleneterephthalate)[J]. Macromolecules2002,35(26):9813-9818.
    [4] Sauer T.H., Wendorff J.H., Zimmermann H.J. Thermotropicrigid-chaincopolymers: X-ray investigations of the structure [J]. J Polym Sci Part B: PolymPhys1987,25(12):2471-2485.
    [5] Sun T., Zhang A., Li F.M., Porter R.S. Crystal lattice deformation and themesophase in poly(ethylene terephthalate) uniaxially drawn by solid-statecoextrusion[J]. Polymer1988,29(12):2115-2120.
    [6] Wakelyn N.T. Observations from an X-ray diffraction study of poly(ethyleneterephthalate) film and fiber [J]. JAppl Polym Sci1983,28(11):3599-3602.
    [7] Wang B., Wang Z.F., Zhang M., Liu W.H., Wang S.J. Effect of temperature onthe freevolume in glassy poly(ethylene terephthalate)[J]. Macromolecules2002,35(10):3993-3996.
    [8] Zhao J., Wang J.J., Li C.X., Fan Q.R. Study of the amorphous phase insemicrystalline poly(ethylene terephthalate) via physical aging [J].Macromolecules2002,35(8):3097-3103.
    [9] Wiley J., Sons, etal. Ullmann’s Encyclopaedia of Industrial Chemistry[M].Weinheim, Germany,1996
    [10] Stolterfoht N, Hellhammer R, etal. Time evolution of ion guiding throughnanocapillaries in a PET polymer [J]. Nucl Instrum Methods Phys Res Sect B,2004,225:169-177.
    [11] Nagase, Hisato. Polyester resin composition containing organic modified layeredsilicate [P]. US20070015859, January2007.
    [12] Kim, Sung Dug. High flow polyester composition, method of manufacture, anduses thereof [P]. US20070049702, March2007.
    [13] Lu H, Wang HL, etal. Hybrid poly(ethylene terephthalate)/silica nanocompositesprepared by in-situ polymerization[J]. Polymer Composites,2007,28(1):42-46.
    [14] Wu T, Ke Y. Preparation of silica-PS composite particles and their application inPET [J]. Eur Polym J,2006,42(2):274-285.
    [15] Chang J, Kim S J, etal. Poly(ethylene terephthalate) nanocomposites by in situinterlayer polymerization: the thermo-mechanical properties and morphology ofthe hybrid fibers [J]. Polymer,2004,45:919–926。
    [16] Koidis C, Logothetidis S, etal. Thin film and interface properties during ZnOdeposition onto high-barrier hybrid/PET flexible substrates [J]. Micron,2009,40:130–134.
    [17]施利毅,丁鹏等.纳米阻燃聚对苯二甲酸乙二醇酯工程塑料及其制备方法[P].CN101280097,2008-10-08.
    [18]褚艳红,郭欢欢等.功能化纳米碳酸钙母料的制备与表征[J].化工矿物与加工,2008,(3):17-22.
    [19]郭涛,王炼石等.镧化物改性超细碳酸钙对PET非等温结晶行为的影响[J].高分子材料科学与工程,2005,21(03):173-176.
    [20] Her K Y, Kim D H, Lim S. Preparation of PET nanocomposites: Dispersion ofnanoparticles and thermal properties [J]. International Journal Of PrecisionEngineering And Manufacturing,2008,9(4):71-73.
    [21] Lorenzo M L D, Errico M E, etal. Thermal and morphological characterization ofpoly(ethylene terephthalate)/calcium carbonate nanocomposites [J]. J Mater Sci,2002,37:2351–2358.
    [22] Habrard F, Ouisse T, Stéphan O. Conjugated Polymer/Molten Salt BlendOptimization [J]. J Phys Chem B,2006,110(31):15049–15051.
    [23] Iida H., Kometani K., Yanagi M. Polyethylene terephthalate mouldingcomposites [P]. US4284540,1981.
    [24]杨光福,柯扬船,刘维康.PET/Si02:纳米复合材料的光学性能和结晶成核行为[J].高分子材料科学与工程2007,23(4):94-97.
    [25] Ke Y C., Wu T.B., Xia YF. The nucleation, crystallization and dispersionbehavior of PET-monodisperse Si02composites [J]. Polymer2007,48(11):3324-3336.
    [26]Yang H.C., Bhimaraj P., Yang L., Siegel R.W., Schadler L. S., Crystal growth inalumina/poly(ethylene terephthalate) nanocomposite films [J]. J. Polym Sci Part B:Polym Phys2007,45(7):747-757.
    [27]刘青喜,周兴平,解孝林,王春生,李承东.原位插层聚合制备PVC/蒙脱土纳米复合材料[J].聚氯乙烯,2002,2:11-13.
    [28] Brindley G W, Brown G. Structure of clay minerals and their X-rayindentification [M]. London: Mineralogical Society Monograph No.5,1980.
    [29] Usuki A, et al. Synthesis of nylon6-clay hybrid[J]. J Mater Res,1993,8(5):1179.
    [30] Vaia R A, et al. Synthesis and properties of two-dimensional nanostructures bydirect intercalation of polymer melts in layered silicates[J]. Chem Mater,1993,5:1694.
    [31] Vaia R A, et al. New polymer electrolyte nanocomposites: Melt intercalation ofpoly(ethylene oxide) in mica-type silicates[J]. Adu Mater.,1995,7(2):154.
    [32] Messersmith P. B, Giannelis E. P., Synthesis and characterization of layeredsilicate-expony nanocomposites[J]. Chem. Mater.,1994,6(10):1719.
    [33]Ruiz-Hitzky E., et al., Nanocomposite materials with controlled ion mobility [J].Adv Mater.1995,7(2):180.
    [34] Eli Ruckenstein, Yumin Yuant[J].Polymer,1997,38(15):3855.
    [35] Zhou Y, Xia Y. In situ strength distribution of carbon fibers in unidirectionalmetal-matrix composites-wires [J]. Compos Sci Technol,2001,61(14):2017-2023.
    [36] HE F A, ZHANG L M. New polyethylene nanocomposites prepared by in-situpolymerization method using nickel a-diimine catalyst supported onorgano-modified ZnAl layered double hydroxide [J]. Compos Sci Technol,2007,67:3226-3232.
    [37] Spearing S M, Gregory J R. Nanoindentation of neat and in situ polymers inpolymer–matrix composites [J]. Compos Sci Technol,2005,65:595-607.
    [38] X Fan, L Lin, Messersmith P B. Surface-initiated polymerization from TiO2nanoparticle surfaces through a biomimetic initiator: A new route towardpolymer–matrix nanocomposites [J]. Compos Sci Technol,2006,66(9):1198-1204.
    [39] Zerbino, R.; Giaccio, G.; Isaia, G. C., Concrete incorporating rice-husk ashwithout processing [J]. Constr Build Mater,2011,25(1):371-378.
    [40] Horsakulthai, V.; Phiuvanna, S.; Kaenbud, W., Investigation on the corrosionresistance of bagasse-rice husk-wood ash blended cement concrete by impressedvoltage[J]. Constr Build Mater,2011,25(1):54-60.
    [41] Lu Qiang, Yang Xu-lai, Zhu Xi-feng. Analysis on chemical and physicalproperties of bio-oil pyrolyzed from rice husk [J]. Journal of Analytical andApplied Pyrolysis,2008,82:191–198.
    [42] Ting Li, TaoWang. Preparation of silica aerogel from rice hull ash by drying atatmospheric pressure[J]. Materials Chemistry and Physics,2008,112(2):398-401
    [43]蒋晶洁,纪明艳,王玉民等.稻壳灰开发利用的研究[J].哈尔滨师范大学自然学报,1995,11(1):50-51.
    [44] Chandrasekhars, K.G. Satyanarayana, P.N. Pramada. Review processing,properties and applications of reactive silica from rice husk[J]. Journal ofMaterials Science,2003,38:3159–3168.
    [45] Ikarm N, A khter M, X-ray diffraction analysis of silicon prepared from rice huskash[J].Journal of materials science,1988,23:2379-2381.
    [46]郑典模,朱升干,稻壳制备超细二氧化硅新工艺[J].南昌大学学报,2009,31(2):117-120.
    [47]刘恒权,孙时知,于欣伟,由稻壳发电剩余物—稻壳灰生产白炭黑研究[J].无机盐工业,2009,32(5):41-43.
    [48]刘成梅,张彦军,李俶等,响应面分析法优化稻壳灰制备纳米级白炭黑工艺[J].南昌大学学报(理科版),2009,33(5):438-444.
    [49]王君,王凤旵,陈明强等,从稻壳裂解残渣中提取二氧化硅的研究[J].非金属矿,2008,31(3):37-39.
    [50] Byung-Dae Park, Seung Gon Wi, Kwang Ho Lee, et al. Characterization ofanatomical features and silica distribution in rice husk using microscopic andmicro-analytical techniques [J].Biomass and Bioenergy,2003,25:319-327.
    [51] Mehta P K, Rice Husk Ash-A Unique Suppliementary Cementing Material[J].Advances in Concrete Technology, MSL9226(R),1992.
    [52] Mehta P. K., Rice Husk Ash as Mineral Admixture in Concrete [J]. Proc. Intl.Conf. on Durability of Concrete, Chalmers University of Technology,1989.
    [53]欧阳东,六组介混凝土配比设计用强度弃式[J].混凝土,1997,3:38-44.
    [54]欧阳东,陈楷,低温焚烧稻壳灰的显微结构及其化学活性[J].硅酸盐学报,2003,31(11):1121-1124.
    [55] Mehta P K, Rice husk ash-A unique supplementary cementing material[J]. Ady.Coner. Tech. Athen. Greeee,1992:407-431.
    [56]欧阳东,陈楷,稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微学报,2003,22(5):390-394.
    [57]陈玉维,孙鹏章,稻壳灰的结构和组成的扫瞄透视分析-稻壳灰研究之三[J].黑龙江粮食科技,1996:17-19.
    [58]杜连起,稻壳灰在油脂精炼中的应用[J].粮食与油脂,1995,2:47-48
    [59]欧阳东,陈楷.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微镜学报,2003,22(5):390-394.
    [60]范春辉,张颖,张颖超,李晶, Benny Chefetz,红外光谱法研究低温焚烧稻壳灰对Cr()的吸附机理[J].光谱学与光谱分析,2010,30(9):2345-2349.
    [61]张松梅,李立清,谷壳灰吸附水中汞的实验探讨[J].江苏环境科技,1999,12(4)4-5.
    [62]李立清,利用谷壳灰吸附水中Hg(П)[J].污染防治技术,1998,11(2)97-99.
    [63]黄显慈,国外食用油脂脱色的新概念和新方法[J].中国油脂,2003,28(9):64.
    [64] Ang Y Y, Rice hull ash structure and bleaching performance by ashing at varioustimes and temperatures [J]. J. Am. Oil Chem. Soc.,2001,(6):657-660.
    [65] Salma Omara, Badei Girgisb, Fakhriya Tahaa. Carbonaceous materials from seedhulls for bleaching of vegetable oils[J]. Food Research International,2003,36:11-17.
    [66] Christidis G E, Scott P W, Dunham A C, Acid activation and bleaching capacityof bentonites from the islands of milos and chios, aegean, Greece[J].AppliedClay Science,1997,12:329-347.
    [67]李玥,陈正行,董梅,稻壳灰制取大豆油精炼中脱色剂的研究[J].中国油脂,2004,29(3)30-32.
    [68]纪俊敏,酸化稻壳灰吸附剂制备及脱色性能的研究[J].中国油脂,2007,32(8),70-72.
    [69]谢杰,陈天虎,庆承松,宋浩,稻壳发电残余物稻壳灰对有机物的吸附作用[J].农业工程学报,2010,26(5):283-287.
    [70]汪德进,稻壳灰/TiO2复合吸附剂的制备与性能表征[J].中国卫生检验报告,2008,18(4):639-640.
    [71] Zhao Pengfei, Guo Xin, Zheng Chuguang, Removal of elemental mercury byiodine-modified rice husk ash sorbents[J]. Journal of Environmental Sciences,2010,22:1629-1636.
    [72] Foo K Y, Hameed B H, Utilization of rice husk ash as novel adsorbent: Ajudicious recycling of the colloidal agricultural waste[J]. Advances in Colloidand Interface Science,2009,152:39-47.
    [73]Apichat Imyim, Eakachai Prapalimrungsi, Humic acids removal from water byaminopropyl functionalized rice husk ash[J]. Journal of Hazardous Materials,2010,184:775-781.
    [74]Lee Chung Lau, Keat Teong Lee, Abdul Rahman Mohamed, Rice husk ashsorbent doped with copper for simultaneous removal of SO2and NO:Optimization study[J]. Journal of Hazardous Materials,2010,183:738-745.
    [75]Lakshmi Uma R, Srivastava Vimal Chandra, Mall Indra Deo, Lataye Dilip H,Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristicsfor Indigo Carmine dye[J]. Journal of Environmental Management,2009,90:710-720.
    [76]Farook Adam, Joo-Hann Chua, The adsorption of palmytic acid on rice husk ashchemically modified with Al(III) ion using the sol–gel technique[J]. Journal ofColloid and Interface Science,2004,280:55-61.
    [77] Tarun Kumar Naiya, Ashim Kumar Bhattacharya, Sailendranath Mandal, SudipKumar Das, The sorption of lead (II) ions on rice husk ash[J]. Journal ofHazardous Materials,2009,163:1254-1264.
    [78] Irvan Dahlan, Keat Teong Lee, Azlina Harun Kamaruddin, Abdul RahmanMohamed, Sorption of SO2and NO from simulated flue gas over rice husk ash(RHA)/CaO/CeO2sorbent: Evaluation of deactivation kinetic parameters[J].Journal of Hazardous Materials,2010, doi.org/10.1016/j.jhazmat.2010.10.053
    [79] Qingge Feng, Qingyu Lin, Fuzhong Gong, Shuichi Sugita, Masami Shoya,Adsorption of lead and mercury by rice husk ash[J]. Journal of Colloid andInterface Science,2004,278:1-8.
    [80]Vimal Chandra Srivastava, Indra Deo Mall, Indra Mani Mishra, Removal ofcadmium(II) and zinc(II) metal ions from binary aqueous solution by rice huskash[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,Pages312:172-184.
    [81] Lataye D H, Mishra I M, Mall I D, Pyridine sorption from aqueous solution byrice husk ash (RHA) and granular activated carbon (GAC): Parametric, kinetic,equilibrium and thermodynamic aspects[J]. Journal of Hazardous Materials,2008,154:858-870.
    [82]Vimal Chandra Srivastava, Indra Deo Mall, Indra Mani Mishra, Competitiveadsorption of cadmium(II) and nickel(II) metal ions from aqueous solution ontorice husk ash[J]. Chemical Engineering and Processing: Process Intensification,2009,48:370-379.
    [83] Pankaj Sharma, Ramnit Kaur, Chinnappan Baskar, Wook-Jin Chung, Removal ofmethylene blue from aqueous waste using rice husk and rice husk ash[J].Desalination,2010,259:249-257.
    [84] Nakbanpote W, Thiravetyan P, Kalambaheti C, Preconcentration of gold by ricehusk ash[J]. Minerals Engineering,2000,13:391-400.
    [85]欧阳东,用稻壳开发混凝土高活性掺合料[J],粮油食品科技,2003,(4):41-43.
    [86]姚惠源,谷物加工工艺学[M].北京:中国财经出版社,1997,7.
    [87] Zhang Hong xi, Zhao Xu, D ing Xuefeng, et al. A study on the consecutivepreparation of-xylose and pure superfine-silica from rice husk [J]. BioresourceTechnology,2010,101(4):1263-1267.
    [88] Kalapathy U, Proctor A, Shultz J. An improved method for production of silicafrom rice hull ash[J]. Bioresource technology,2002,(85):285-289.
    [89]丁开宇,张彦军,刘成梅,等.稻壳灰制备高纯度白炭黑联产水玻璃影响因素研究[J].中国粮油学报,2009,24(5):1-6.
    [90]刘厚凡,稻壳制备白炭黑新方法研究[J].无机盐工业,2007,(2):40-42.
    [91]徐星汉,利用稻壳灰制取水玻璃和活性炭[J].粮食与饲料工业,1988,(3),44-45.
    [92]蒋晶洁,纪明艳,王玉民,王艺,稻壳灰开发利用的研究[J].哈尔滨师范大学自然科学学报,1995,11(1):50-51.
    [93]徐星汉,邹宗柏,利用稻壳灰联产水玻璃和活性炭[J].化工时刊,1988,3,32-33.
    [94]卢芳仪,卢爱军,稻壳灰制高纯二氧化硅的研究[J].粮食与饲料工业,2001,(6).
    [95]卫延安,朱永义,朱春山,蔡春,吕春绪,提高稻壳灰制备活性炭、白炭黑质量的方法研究[J].郑州工程学院学报,2003,24(1):61-63.
    [96]陈正行,李玥,稻壳灰同时制备脱色剂和水玻璃的研究[J].林产化学与工业,2005,25:146-150.
    [97]刘娟,侯书恩,靳洪允,肖红艳,稻壳灰制水玻璃的正交试验研究[J].粮食与饲料工业,2008,12:6-7.
    [98]杨振明,稻壳灰制水玻璃[J].今日科技,1989,7:14.
    [99]徐星汉,用稻壳灰制备高模数水玻璃和活性炭的方法[P].中国专利,CN1039000A.
    [100]鞠馥阳,刘伟,用稻壳灰炭制取水玻璃及副产品活性炭的方法[P].中国专利,CN1229057.
    [101]李相彪,愈慧玲,由副产物硫酸生产白炭黑的工艺研究[J].广州化工,2009,37(9):212-214.
    [102]Della V P, Kühn I, Hotza D, Rice husk ash as an alternate source for active silicaproduction[J]. Materials Letters,2002,57:818-821.
    [103] Panpa W, Jinawath S, Synthesis of ZSM-5zeolite and silicalite from rice huskash[J]. Applied Catalysis B: Environmental,2009,90:389-394.
    [104]James Jose, Rao M S, Reaction product of lime and silica from rice huskash[J]. Cement and Concrete Research,1986,16:67-73.
    [105]Payá J, Monzó J, Borrachero M V, Mellado A, Ordo ez L M, Determination ofamorphous silica in rice husk ash by a rapid analytical method[J].Cement andConcrete Research,2001,31:227-231.
    [106]王象民,稻壳灰在硅橡胶中的应用[J].橡胶参考资料,2002,32(1):21-23.
    [107]邵洪东,关于稻壳炭用作橡胶补强材料的研究[J].世界橡胶工业,2002,29(1):12-16.
    [108]延国宁,马登民,以稻壳为原料制取氟硅酸钠[J].沈阳化工学院学报,1997,11(3):173-177.
    [109]吴鹰,稻壳制氟硅酸钠[J].适用技术市场,1994,(8):22.
    [110]许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,33(4):30-32.
    [111]王梅,李辽沙,金霞,李洪花.有盐体系中硅酸的聚合与纳米白炭黑的制备[J].有色冶金设计与研究,2007,28(23):255-258.
    [112]Chattopadhyay P, Gupta R B, Supercritical CO2-based formation of silicananoparticles using water-in-oil Microemulsions[J]. Ind. Eng. Chem. Res.2003,42:465-472.
    [113] Zhang Jianling, Liu Zhimin, Han Buxing,et al. A simple and inexpensive routeto synthesize porous silica microflowers by supercritical CO2[J]. Microporousand Mesoporous Materials,2005,87:10-14.
    [114] Cai X, Hong R Y, Wang L S, et al. Synthesis of silica powders by pressuredcarbonation[J]. Chemical Engineering Journal,2009,151:380-386.
    [115]胡庆福,李国庭,王金阁等.CO2沉淀法制取高补强白炭黑[J].非金属矿,2000,23(6):23-26.
    [116]王慧,舒琼,龙文露等.白炭黑制备新工艺研究[J].武汉工程大学学报,2009,31(1):29-31.
    [117]徐旺生,徐莹,彭迎慧等.均相沉淀法制备白炭黑[J].无机硅化合物,2008,(2):20-22.
    [118] Esparza J.MM.L. Ojeda, A. Campero,et al. Developmentandsorptioncharacterization of some model mesoporous and microporous silica adsorbents[J].Journal of Molecular Catalysis A: Chemical,2005,228:97-110.
    [119] Gurav Jyoti L, Rao Venkateswara A, Rao A Parvathy,etal. Physical propertiesof sodium silicate based silica aerogels prepared by single step sol–gel processdried at ambient pressure[J]. Journal of Alloys and Compounds,2009,476:397-402.
    [120] Tang Qi, Wang Tao, Preparation of silica aerogel from rice hull ash bysupercritical carbon dioxide drying[J]. J. of Supercritical Fluids,2005,35:91-94.
    [121] Zhu Jianjun, Xie Jimin, Lu Xiaomeng, Jiang Deli, Synthesis and charaterizationof superhydrophobic silica and silica/titania aerogels by sol-gel method atambient pressure[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,342:97-101.
    [122]Schmidt H K, Synthesis and Processing of Nano-Scale Materials ThroughChemistry[J]. Sci. Technol. Polym. Adv. Mater.(Proc.Int.Conf.Front.Polym.Adv.Mater.), fourth ed.,1997(Published1998)
    [123]Hench L L, West J K, Gel-silica hybrid optics[J]. Chem Rev,1990,90:33.
    [124]Chu X, Chung W I, Schmidt L D, Sintering of sol-gel-prepared submicrometerparticles studied by transmission electron microscopy[J]. J.Am.Ceram.Soc.,1993,76:2115-2118.
    [125]Zhang G.,Liu M..Preparation of nanostructure tin oxide using a sol-gel processbased on tin tetrachloride and ethylene glycol[J]. Mater.Sci.,1999,34:3213-3219.
    [126]Luca V.,Djajanti S.,Howe R.F..Structure and electronic properties of sol-gelTitanium oxides studied by X-ray absorption spectroscopy [J]. J. Phys.Chem. B,1998,102:10650-10657.
    [127]Ferroni L P, Cerrato G., Determination of amorphous interfaced phases inAl2O3/SiC nanocomposites by computer-aided high-resolution electronmicroscopy[J]. Nanotechnology,2001,49:2109-2113.
    [128] St ber W, Fink A, Bohn E, Controlled Growth of Monodisperse Silica Spheresin the Micron Size Range[J]. Journal of Colloid and Interface Science,1968,26:62-69.
    [129]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566.
    [130]申晓毅,翟玉春.超微二氧化硅粉体的制备及脱除羟基[J].硅酸盐通报,2006,26(3):542-546.
    [131]姚渊,李冬梅,桑文斌等.微乳液法制备二氧化硅包覆ZnS:Mn/CdS纳米晶[J].人工晶体学报,2006,35(2):400-403.
    [132]Wang H C, Wu C Y, Cheng C C, eta.l, Analys is of Parameters and Interactionbetween Parameters in Preparation of Uniform Silicon Dioxide NanoparticlesUsing Response Surface Methodology[J]. Materials and Interfaces,2006,45:8043-8048.
    [133]董丽新,纳米二氧化硅的制备与表征[M],河北:河北大学化学与环境学院,2005.
    [134]朱赛芬,吴周安,纳米材料的制备及在化工中的应用[J].上海化工,2001,8:22-25.
    [135]宋秀芹,马建峰,无机非金属材料的软化学合成[J].硅酸盐通报,1996,6:57-60.
    [136]朱振峰,李晖,朱敏,微乳液法制备无定形纳米二氧化硅[J].无机盐工业,2006,38(6):14-16.
    [137]骆锋,阮建明,万千.纳米二氧化硅粉体的微乳液制备及表征[J].粉末冶金材料科学与工程,2004,9(2):93-98.
    [138]沈风雷,赵婉雪,沈丽莉,等.微乳液法制备纳米二氧化硅颗粒研究[J].苏州大学学报(工科版),2008,28(3):34-36.
    [139]张明明,纳米球形二氧化硅的制备研究[M].江苏:南京理工大学材料学,2008.
    [140] A rriagada F J, Osseo-A sareK. Synthesis of nanosize silica in a nonionicwater-in-oil microemulsion: Effects of the water/surfactantmolar ratio and aammonia concentration[J]. Colloid and Interface Sci.1999,211(2):210-220.
    [141] Arriagada F J, Osseo-Asare K. Controlled hydrolysis of tetraethoxysilane in aanonionic water-in-oil microemulsion: Astatistical mode of silica nucleation[J].Colloids and Surfaces A,1999,154(3):311-326.
    [142]薛伟,张敬畅,王延吉,等.利用W/O微乳液制备具有规则介孔结构的单分散球形纳米SiO2[J].石油学报(石油加工),2005,21(4):37-43.
    [143]骆锋,阮建明,万千,微乳液法制备纳米二氧化硅粉末工艺的研究[J].硅酸盐通报,2004,5:48-52.
    [144]骆锋,阮建明,万千,微乳液法制备纳米二氧化硅基因传递复合载体[J].硅酸盐学报,2004,32(9):1098-1102.
    [145]Beck S.J.,Vartuli J.C.,Roth W.J. et al., A new family of mesoporous molecularsieves prepared with liquid crystal templates[J]. J Am Chem Soc,1992,114:10834-10843.
    [146]徐峰,吴金荣,白炭黑生产技术及应用技术[J].化学建材,1997,1:34-35.
    [147]气相法白炭黑的生产与应用[J].科技成果纵横,2003,4:48.
    [148]Walter H Waddell, et al著,薛广智译,涂学忠校,高性能白炭黑炭黑料中的应用[J].轮胎工业,1995,15:534-541.
    [149]宁凯军,王小萍,贾德民,白炭黑的特性及其在胎面胶中的应用[J].合成橡胶工业,2001,24(3):182-184.
    [150]杨本意,段先健,李仕华,王跃林,气相法白炭黑的应用技术[J].有机硅材料,2003,17(4):28-32.
    [151] A. Proctor, X-ray diffraction and scanning electron microscope studies ofprocessed rice hull silica[J]. J. Am. Oil Chem. Soc.67(1990)576–584.
    [152] A.Proctor, P.K. Clark, C.A. Parker, Rice hull ash adsorbent performance undercommercial soy oil bleaching conditions[J]. J. Am. Oil Chem. Soc.72(1995)459–462.
    [153] C.J. Brinker, G.W. Scherer, Applications. In: Sol–Gel Science: the Physics andChemistry of Sol–Gel Processing[J]. Academic Press, Inc., San Diego, CA, pp.(1990)839–880.
    [154]Xu B S, Tanaka S I, Formation and bonding of platinum nanoparticles controlledby high energy beam irradiation[J]. Scripta Mater.,2001,44(8/9):2051-2054.
    [155]Tsubokawa N, Kogure A, Sone Y. Grafting of polyesters from ultrafine inorganicparticles: copolymerization of epoxides with cyclic acid anhydrides initiated byCOOK groups introduced onto the surface[J]. J Polym Sci: PartA: Polym Chem,1993,28:1990-1997.
    [156] Tsubokawa N, Ishida H, Hashimoto K, Effect of initiating groups introducedonto ultrafine silica on the molecular weight polystyrene grafted onto thesurface[J]. Polym Bull,1993,31:456-461.
    [157] Tsubokawa N, Ishida H, Graft polymerization of methyl methacrylate fromsilica initiated by peroxide groups introduced onto the surface[J]. J Polym Sci:Part A: Polym Chem,1992,30:2241-2247.
    [158]Tesionowski T,Bula K, Janiszewski J, et al, The influence of filler modificationon its aggregation and dispersion behavior in silica/PBT composite[J]. Compositeinterface,2003,10(2/3):225-242.
    [159]Rong M Z, Zhang M Q, Pan S L, et al, Interfacial effects in polypropylene-silicananocomposites[J]. Journal of Applied Polymer Science,2004,92(3):1771-1781.
    [160]Che J F, Luan B Y, Yang X J, et al, Graft polymerization onto nanosized SiO2surface and its application to the modification of PBT[J]. Materials Letter,2005,59(13):1603-1609.
    [161] Hashemi O R, Raoufi F, Ganjali M R, Moghimi A, Aleksa M, Jovanovic V,Jason A. Flint, Manoj Varshney, Tim E. Morey, Donn M. Dennis, and Randolph S.Duran, Surface modification of silica core-shell anocapsules: biomedicalimplications[J]. Biomacromolecules,2006,7:945-949.
    [162] Ma W A, Liu F, Li K A, Chen W, Tong S Y, Preconcentration, separation anddetermination of trace Hg(II) in environmental samples withaminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel[J]. Anal.Chim. Acta416(2000)191-196.
    [163] Goswami A, Singh A K, Venkataramani B,8-Hydroxyquinoline anchored tosilica gel via new moderate size linker: synthesis and applications as a metal ioncollector for their flame atomic absorption spectrometric determination[J]. Talanta,2003,60:1141-1154.
    [164] Kinci C E, K klü U, Determination of vanadium, manganese, silver and lead bygraphite furnace atomic absorption spectrometry after preconcentration onsilica-gel modified with3-aminopropyltriethoxsilane[J]. Spectrochem. Acta B:Atomic Spectr.2000,55(9):1491-1495.
    [165] Espinola J G P, Oliverira S F, Lemus W E S, Souza A G, Airoldi C, Moreira J CA, Chemisorption of CuII and CoII chlorides and β-diketonates on silica gelfunctionslized with3-aminopropyltrimethoxysilane[J]. Colloids Surf. A:Physicochem. Eng. Aspects2000,166(1-3):45-50.
    [166] Airoldi C, Gushikem Y, Esp nola J G P, Adsorption of divalent cations on thesilica-gel surface modified with N-(2-aminoethyl-3-aminopropyl) groups[J].Colloids and Surface,1986,17(4):317-323.
    [167] Sahin T, Volkan M, Howard A G, Ataman O Y, Selective pre-concentration ofselenite from aqueous samples using mercapto-silica[J]. Talanta,2003,60(5):1003-1009.
    [168]蒋挺大.木质素[M].北京:化学工业出版社,2001年.
    [169]中野准三.木质素的化学—基础与应用[M].北京:轻工业出版社,1988年.
    [170]Lapierre C, Pollet B, Ralet M C, Saulnier L. The phenolic fraction of maize bran:evidence for lignin–heteroxylan association [J]. Phytochemistry,2001,57(5):765-772.
    [171] Wallace G, Russell W R, Lomax J A, Jarvis M C, Lapierre C. Chesson A.Extraction of phenolic-carbohydrate complexes from graminaceous cell walls.Carbohydr. Res [J].1995,272:41-53.
    [172] Cazacu G, Pascu M C, Profire L, Kowarski A I, Mihaes M, Vasile C. Ligninrole in a complex polyolefin blend [J]. Ind. Crops Prod,2004b,20:261-273.
    [173] Cetin N S, Ozman N. Use of organosolv lignin in phenol–formaldehyderesins for particleboard production I. Organosolv lignin modified resins [J]. Int. J.Adhesion Adhes,2002,22:477-480.
    [174] Kim J, Mazza G. Mass transfer during pressurized low polarity waterextraction of phenolics and carbohydrates from flax shives [J]. Ind. Eng. Chem.Res,2007,46(22):7221-7230.
    [175]Ludwig A W, Stout C H. Plywood process and product wherein the adhesivecomprises a lignosulfonate–phenol–formaldehyde reaction products [P].U.S.Patent1972,3,658,638.
    [1] S.R. Kamath, A. Proctor, Silica gel from rice hull ash: preparation andcharacterization[J]. Cereal Chem.75(1998)484–487.
    [2] A. Proctor, X-ray diffraction and scanning electron microscope studies ofprocessed rice hull silica[J]. J. Am. Oil Chem. Soc.67(1990)576–584.
    [3] A.Proctor, P.K. Clark, C.A. Parker, Rice hull ash adsorbent performance undercommercial soy oil bleaching conditions[J]. J. Am. Oil Chem. Soc.72(1995)459–462.
    [4] C.J. Brinker, G.W. Scherer, Applications. In: Sol–Gel Science: the Physics andChemistry of Sol–Gel Processing[J]. Academic Press, Inc., San Diego, CA, pp.(1990)839–880.
    [5] X.L. Wu, S. Tong, X.N. Liu, X.M. Bao, S.S. Jiang, D. Feng, G.G. Siu, X-raydiffraction study of alternating nanocrystalline silicon/amorphous siliconmultilayers[J]. Appl. Phys. Lett.70(1997)838-840.
    [6] N. Awaji, S. Ohkubo, T. Nakanishi, T. Aoyama, Y. Sugita, K. Takasaki, S. Komiya,Thermal oxide growth at chemical vapor deposited SiO2/Si interface duringannealing evaluated by difference X-ray reflectivity[J]. Appl. Phys. Lett.71(1997)1954-1956.
    [7] P.R. Pinto, L.C. Mendes, M.L. Dias, C. Azuma, Synthesis of acrylic-modifiedsol-gel silica[J]. Colloid Polym Sci.284(2006)529-535.
    [8] J.R. Martínez, S. Palomares-Sánchez, G. Ortega-Zarzosa, F. Ruiz, Y. Chumakov,Rietveld refinement of amorphous SiO2prepared via sol-gel method[J]. Mater.Lett.60(2006)3526-3529.
    [9] W. Wang, X.A. Fu, J.A. Tang, L. Jiang, Preparation of submicron sphericalparticles of silica by the water-in-oil microemulsion method[J]. Colloid Surface A.81(1993)177-180.
    [10] H.D. Jang, Experimental study of synthesis of silica nanoparticles by abench-scale diffusion flame reactor[J]. Powder Technol.119(2001)102-108.
    [11] S. Komarneni, V.C. Menon, Hydrothermal and microwave-hydrothermalpreparation of silica gels[J]. Mater. Lett.27(1996)313-315.
    [12] A. Chakraverty, S. Kaleemullah, Conversion of rice husk into amorphous silicaand combustible gas[J]. Energy Consers Mgmt.32(1991)565–570.
    [13] T.C. Luan, T.C. Chou, Recovery of silica from the gasification of rice husk/coalin the presence of a pilot flame in a modified fluidized bed[J]. Ind. Eng. Chem.Res.29(1990)1922–1927.
    [14] O. Jullaphan, T. Witoon, M. Chareonpanich, Synthesis of mixed-phase uniformlyinfiltrated SBA-3-like in SBA-15bimodal mesoporous silica from rice husk ash[J].Mater. Lett.63(2009)1303-1306.
    [15] VP. Della, I. Kühn, D. Hotza, Rice husk ash as an alternate source for activesilica production[J]. Mater. Lett.57(2002)818-821.
    [16] T. Witoon, M. Chareonpanich, J. Limtrakul, Synthesis of bimodal porous silicafrom rice husk ash via sol–gel process using chitosan as template[J]. Mater. Lett.62(2008)1476-1479.
    [17] A.E. Ahmed, F. Adam, The benzylation of benzene using aluminium, gallium andiron incorporated silica from rice husk ash[J]. Microporous Mesoporous Mater.118(2009)35-43.
    [18] S. Huang, S. Jing, J.F. Wang, Z.W. Wang and Y. Jin, Silica white obtained fromrice husk in a fluidized bed[J]. Powder Technol.117(2001)232-238.
    [19] X. Cai, R.Y. Hong, L.S. Wang, X.Y. Wang, H.Z. Li, Y. Zheng and D.G. Wei,Synthesis of silica powders by pressured carbonation[J]. Chem. Eng. J.151(2009)380–386.
    [20] Paul C, Chieng, etal, Method of production of high purity fusible silica[P].US:5028407,1991.
    [21] U. Kalapathy, A. Proctor, J. Schultz, A simple method for production of puresilica from rice hull ash[J]. Biores. Technol.73(2000)257–262.
    [22] S.G. Lee, Y.S. Jang, S.S. Park, B.S. Kang, B.Y. Moon, H.C. Park, Synthesis offine sodium-free silica powder from sodium silicate using w/o emulsion[J]. Mater.Chem. Phys.100(2006)503–506.
    [23] D.H. Nagaraja, R.A. Venkateswara, Organic modification of TEOS based silicaaerogels using hexadecylltrimethoxysilane as a hydrophobic reagent[J], AppliedSurface Science253(2006)1566–1572.
    [24] D.A. Maria, Z.H. Luan, J. Klinowski,[J] J. Phys. Chem.100(1996)2178.
    [25] R.F.S. Lenza, W.L. Vasconcelos,[J]Mater. Res.4(2001)189.
    [26] Q.W. Chen, X.G. Li, Y.H. Zhang and Y.T. Qian, Ferroelectric properties of poroussilicon[J]. Adv. Mater.25(2002)134-137.
    [1] Wiley J, Sons, etal. Ullmann’s Encyclopaedia of Industrial Chemistry [M].Weinheim, Germany,1996
    [2] Stolterfoht N, Hellhammer R, etal. Time evolution of ion guiding throughnanocapillaries in a PET polymer [J]. Nucl Instrum Methods Phys Res Sect B,2004,225:169-177.
    [3] Nagase, Hisato. Polyester resin composition containing organic modified layeredsilicate [P]. US20070015859, January2007.
    [4] Kim, Sung Dug. High flow polyester composition, method of manufacture, anduses thereof [P]. US20070049702, March2007.
    [5] Lu H, Wang H L, etal. Hybrid poly(ethylene terephthalate)/silica nanocompositesprepared by in-situ polymerization [J]. Polymer Composites,2007,28(1):42-46.
    [6] Wu T, Ke Y. Preparation of silica-PS composite particles and their application inPET [J]. Eur Polym J,2006,42(2):274-285.
    [7] Chang J, Kim S J, etal. Poly(ethylene terephthalate) nanocomposites by in situinterlayer polymerization: the thermo-mechanical properties and morphology ofthe hybrid fibers [J]. Polymer,2004,45:919–926。
    [8] Koidis C, Logothetidis S, etal. Thin film and interface properties during ZnOdeposition onto high-barrier hybrid/PET flexible substrates [J]. Micron,2009,40:130–134.
    [9]施利毅,丁鹏等.纳米阻燃聚对苯二甲酸乙二醇酯工程塑料及其制备方法[P].CN101280097,2008-10-08.
    [10]褚艳红,郭欢欢等.功能化纳米碳酸钙母料的制备与表征[J].化工矿物与加工,2008,(3):17-22.
    [11]郭涛,王炼石等.镧化物改性超细碳酸钙对PET非等温结晶行为的影响[J].高分子材料科学与工程,2005,21(03):173-176.
    [12] Her K Y, Kim D H, Lim S. Preparation of PET nanocomposites: Dispersion ofnanoparticles and thermal properties [J]. International Journal Of PrecisionEngineering And Manufacturing,2008,9(4):71-73.
    [13] Lorenzo M L D, Errico M E, etal. Thermal and morphological characterization ofpoly(ethylene terephthalate)/calcium carbonate nanocomposites [J]. J Mater Sci,2002,37:2351–2358.
    [14]姚新生,陈英杰等.有机化合物波谱分析[M].北京:人民教育出版社,1981,10.
    [15]王宗明,何欣翔,孙殿卿.实用红外光谱学[M].北京:人民教育出版社,1978,06.
    [16]洪少良.有机物剖析技术基础[M].北京:化学工业出版社,1988,03
    [17]钟海庆.红外光谱法入门[M].北京:化学工业出版社,1984,04
    [18]周菊兴,董永祺.不饱和聚酯树脂生产及应用[M].北京:化学工业出版社,2000,04.
    [19]孙正霞.英国不饱和聚酯玻璃纤维增强模塑料剖析研究[J],热固性树脂,1999,(3):53.
    [20]闻获江.国外不饱和聚酯胶衣组分剖析[J],玻璃钢/复合材料,1991,(1):26.
    [21]石宁,丁文光.间苯二甲酸二缩水甘油酯的合成[J],热固性树脂,2000,(3):5.
    [22]周菊兴,董丙祥.红外光谱法鉴别不饱和聚酯的研究[J],热固性树脂,2003,(7):22.
    [23] Wang X S, Li X G, etal. Thermal decomposition of poly (trimethyleneterephthalate)[J], Polym Degrad Stab,2000,69(3):361-372.
    [24]王嫄,李光,江建明. PET-PCT共聚酯的制备及其热性能研究[J],合成纤维工业,2008,31(1):4-8.
    [25] Berkowitz S. Viscosity-molecular weight ralationships for poly(ethyleneterephthalate) in hexafluoroisopropanol-pentafluorophenol using SEC-LALLS,[J]. Appl. Polym. Sci.1984,(29):4353-4361.
    [26] Ravindranath K, Mashelkar R A. Finishing stages of PET synthesis: acomprehensive model, AIChE [J],1984,(30):415-423.
    [27] Goodings E P. Thermal degradation of PET, Soc. Chem. Ind.(London),Monogrsph No.[J],1961,(13):211-228.
    [28] Edge M, Allen, N S, etal. Indentification of luminescent species contributing tothe yellowing of poly(ethylene terephthalate), Polymer[J],1995,(36):227-234.
    [29] Edge M, Allen, N S, etal. Characterisation of the species responsible foryellowing in melt degraded aromatic polyesters-Ⅰ.Yellowing of poly(ethyleneterephthalate), Polym. Degrad. Stabil.[J],1996,(53):141-151.
    [30] Zimmermann H. Chemische Untersuchungen über faserbildende Polyester, überdie thermische Stabilisierung von Poly thylenterephthalat, FaserforschungTextiltechnik [J],1962(13):481-494.
    [31] Zimmermann H, Leibnitz E. Chemische Untersuchungen über faserbildendePolyester.Ⅱ. Modellversuche zum thermischen Abbau vonPoly thylenterephthalat, Faserforschung Textiltechnik [J],1965,(16):282-290.
    [32] Zimmermann H, Chu D D. Untersuchungen zur Kinetik desmetallionenkatalysiertenthermischen Abbaus von Poly thylenterephthalat,Faserforschung Textiltechnik [J],1973,(24):445-452.
    [33] Weingart F, Hirt P, etal. Titanium catalyst in the manufacture of poly(ethyleneterephthalate), Chem. Fibers Int.[J],1996,(46):96-97.
    [1] Titirici M.M., Antonietti M., Chemistry and materials options of sustainablecarbon materials made by hydrothermal carbonization[J]. Chem. Soc. Rev.,2010,39:103-116.
    [2] Hu B., Wang K., Wu L., Yu S., Antonietti M., Titirici M.M., Engineering CarbonMaterials from the Hydrothermal Carbonization Process of Biomass[J]. Adv.Mater.2009,22:813-828.
    [3] Zerbino, R., Giaccio, G., Isaia, G. C., Concrete incorporating rice-husk ash withoutprocessing [J]. Constr Build Mater,2011,25(1),371-378.
    [4] Horsakulthai, V.; Phiuvanna, S.; Kaenbud, W., Investigation on the corrosionresistance of bagasse-rice husk-wood ash blended cement concrete by impressedvoltage [J]. Constr Build Mater,2011,25(1),54-60.
    [5]Lu Q., Yang X., Zhu X., Analysis on chemical and physical properties of bio-oilpyrolyzed from rice husk [J]. Journal of Analytical and Applied Pyrolysis,2008,82:191–198
    [6]Ting Li, TaoWang. Preparation of silica aerogel from rice hull ash by drying atatmospheric pressure [J].Materials Chemistry and Physics,2008,112(2):398-401
    [7] Oleskowicz-Popiel, P., Lisiecki, P., etal. Ethanol production from maize silage aslignocellulosic biomass in anaerobically digested and wet-oxidized manure[J].Bioresour. Technol.2008,99:5327-5334.
    [8]Ruland W., Smarsly B., X-ray scattering of non-graphitic carbon: an improvedmethod of evaluation [J]. J Appl Crystallogr,2002,35:624-633.
    [9]Amaya, A., Medero, N., etal. Activated carbon briquettes from biomassmaterials[J]. Bioresource Technology.2007,98:1635-1641.
    [10]Goh, C.S., Tan, K.T., etal., Bio-ethanol from lignocellulose: Status, perspectivesand challenges in Malaysia[J]. Bioresour. Technol.2010.101:4834-4841.
    [11] Harmer, M.A., Fan, A., Liauw, A., Kumar, R.K., A new route to high yieldsugars from biomass: phosphoric-sulfuric acid[J]. Chem. Commun.2009.6610-6612.
    [12]Kumagai, S., Sasaki, J., Carbon/silica composite fabricated from rice huskbymeans of binderless hot-pressing [J]. Bioresour. Technol.2009,100:3308-3315.
    [13] Sevilla, M., Fuertes, A. B., The production of carbon materials by hydrothermalcarbonization of cellulose [J]. Carbon,2009,47:2281-2289.
    [14] Shie, J. L., Tsou, F.T., Lin, K.L., Chang, C.Y., Bioenergy and products fromthermal pyrolysis of rice straw using plasma torch [J]. Bioresour. Technol.2010,101:761-768.
    [15] Shin, Y., Wang, L., Bae, I., Arey, B.W., Exarhos, G.J., Hydrothermal Synthesesof Colloidal Carbon Spheres from Cyclodextrins [J]. J. Phys. Chem. C.2008,112:14236-14240.
    [16] Wang T., Tan S., Liang C., Preparation and characterization of activated carbonfrom wood via microwave-induced ZnCl2activation [J]. Carbon,2009,47:1867-1885.
    [17] Yuan, G., Jiang, Z., Aramata, A., Gao, Y., Electrochemical behavior ofactivated-carbon capacitor material loaded with nickel oxide [J]. Carbon,2005,43:2913–2917.
    [18]蒋晶洁,纪明艳,王玉民等.稻壳灰开发利用的研究[J].哈尔滨师范大学自然学报,1995,11(1):50-51.
    [19] Chandrasekhars., K. G. Satyanarayana, P. N. Pramada. Review processing,properties and applications of reactive silica from rice husk [J]. Journal ofMaterials Science,2003,38:3159–3168.
    [20] Ikarm N, A khter M, X-ray diffraction analysis of silicon prepared from rice huskash[J].Journal of materials science,1988,23:2379-2381.
    [21]郑典模,朱升干,稻壳制备超细二氧化硅新工艺[J].南昌大学学报,2009,31(2):117-120.
    [22]刘恒权,孙时知,于欣伟,由稻壳发电剩余物—稻壳灰生产白炭黑研究[J].无机盐工业,2009,32(5):41-43.
    [23]刘成梅,张彦军,李俶等,响应面分析法优化稻壳灰制备纳米级白炭黑工艺[J].南昌大学学报(理科版),2009,33(5):438-444;
    [24]王君,王凤旵,陈明强等,从稻壳裂解残渣中提取二氧化硅的研究[J].非金属矿,2008,31(3):37-39.
    [25] Zhang, H., Zhao, X., etal. A study on the consecutive preparation of D-xyloseand pure superfine silica from rice husk[J]. Bioresour. Technol.2010,101:1263–1267.
    [26] Lili Wang, Yupeng Guo, Xiaoyu Ma, etal. A new route for preparation ofhydrochars from rice husk [J]. Bioresource Technology,2010,101:9807-9810.
    [27] Changjiu Ruan, Xingyou Tian, etal. Crystallization and Morphology of PET/SiO2nanocomposites [J]. Polymer Materials Science and Engineering,2007,23(4):159-162.
    [28] Na Wang, Shengru Qiao, YANG Bin, Study on the Dispersivity of Nano-SiO2inPET and Crystalline Properties of PET/Nanometer SiO2Composites[J].MaterialsReview,2006,5(20):200-205.
    [29] Lu Long, Effect of nano SiO2as a nucleating agent on the crystallization ofpolyethylene terephthalate[J].Synthetic Technology and Application,2006,6(21):9-12.
    [30] Bolin Liu, Ming Yang, Nucleation agents for polyethylene terephthalate[J].Speciality Petrochemicals,1999,6:37-40.
    [31] Yingchun Li, Guosheng Hu, etal. Crystallization Behavior of Nylon11/Montmorillonite Nanocomposites [J]. Polymer Materials Science and Engineering,2006,22(4):169-175.
    [32] Guangfu Yang, Yangchuan Ke, etal. Research on the optical properties andcrystallization behavior of PET/SiO2nanocomposites[J]. Polymer MaterialsScience and Engineering,2007,23(4):94-101.
    [33]Weihua Qiu, Hongyang Chen, FTIR Spectra Analysis of the reactive activity oflignin when modified by laccase[J]. Spectroscopy and Spectral Analysis,2008,28(7):1501-1505.
    [1] X. Gao, Y. Guo, Y. Tian, S. Li, S. Zhou, Z. Wang, Synthesis and characterizationof polyurethane/zinc borate nanocomposites, Colloids Surf. A: Physicochem. Eng.Aspects384(2011)2–8.
    [2] H. Ishida, S. Campbell, J. Blackwell, General approach to nanocompositepreparation, J. Chem. Mater.12(2000)1260–1267.
    [3] C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Silica nanoparticles filledpolypropylene: effects of particle surface treatment, matrix ductility and particlespecies on mechanical performance of the composites, Comp. Sci. Technol.65(2005)635–645.
    [4] M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, R. Walter, K. Friedrich,Structure–property relationships of irradiation grafted nano-inorganic particlefilled polypropylene composites, Polymer42(2001)167–183.
    [5] C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Tensile performanceimprovement of low nanoparticles filled-polypropylene composites, Comp. Sci.Technol.62(2002)1327–1340.
    [6] M.C. Kuo, C.M. Tsai, J.C. Huang, M. Chen, PEEK composites reinforced bynano-sized SiO2and Al2O3particulates, Mater. Chem. Phys.90(2005)185–195.
    [7] K. Zeng, Y. Bai, Improve the gas barrier property of PET film withmontmorillonite by in situ interlayer polymerization, Mater. Lett.59(2005)3348–3351.
    [8] Iler R.K., The Chemistry of Silica, Wiley, New York,1979.
    [9] Brinker C.J., Scherer G.W., Sol–Gel Science, Academic Press, Boston, MA,1990.
    [10] Chen S.L., Preparation of monosize silica spheres and their crystalline stack,Colloids Surf. A: Physicochem. Eng. Aspects142(1998)59–63.
    [11] M. Avella, S. Cosco, M.L.D. Lorenzo, E.D. Pace, M.E. Errico, G. Gentile,Nucleation activity of nanosized CaCO3on crystallization of isotacticpolypropylene, in dependence on crystal modification, particle shape, and coating,Eur. Polym. J.42(2006)1548–1557.
    [12] J. Kotek, I. Kelnar, J. Baldrian, M. Raab, Tensile behaviour of isotacticpolypropylene modified by specific nucleation and active fillers, Eur. Polym. J.40(2004)679–684.
    [13] Y. Li, Z.F. Zhao, Y.T. Richard Lau, Y. Lin, C.M. Chan, Preparation andcharacterization of coverage-controlled CaCO3nanoparticles, J. Colloid InterfaceSci.345(2010)168–173.
    [14] Hoon Cho, Wei Chen. Surface-modified silica colloid for diagnostic imaging [J].Journal o f Colloid and Interface Science[J].2003,258:435-437.
    [15]田明,张立群,耿海萍,等,二氧化硅制备、改性、应用进展[J].现代化工,1998(4):11-14.
    [16]解小玲,郭睿劼,贾虎生,刘旭光,许并社, KH-550改性纳米二氧化硅的研究[J].太原理工大学学报,2008,39(1):26-27.
    [17]David A, Edmond I Ko, Preparing catalytic materials by the sol-gol method,Industrial and engineering chemistry research[J].1995,34(2):421-433.
    [18]刘章超,李小兵,张华林等,纳米二氧化硅增强增韧环氧树脂的研究[J].胶体与聚合物,2000,18(4):15-17.
    [19]张辉,稻壳基无机纳米材料的提取及应用.长春:吉林大学化学学院,2003.
    [20] M. Fuji, T. Takei, T. Watanabe, M. Chikazawa, Wettability of fine silica powdersurfaces modified with several normal alcohols, Colloids Surf. A: Physicochem.Eng. Aspects154(1999)13–24.
    [21] C.W.P. Foo, J. Huang, D.L. Kaplan, Lessons from seashells: silica mineralizationvia protein templating, Trends Biotechnol.22(2004)577–585.
    [22] N. Kroger, S. Lorenz, E. Brunner, M. Sumper, Self-assembly of highlyphosphorylated silaffins and their function in biosilica morphogenesis, Science298(2002):584–586
    [23]贾红兵,金志刚,吉庆敏,不同硅烷偶联剂对纳米白碳黑填充胶料性能的影响[J].橡胶工业,1999,10:590-591.
    [24] Giesenberg T., Hein S.,Binnewies M., Kickelbick G., Synthesis andFunctionalization of a New Kind of Silica Particle[J]. Angew. Chem. Int. Ed.2004,43,5697-5700.
    [25] Anedda A., Carbonaro C.M., Clemente F., Corpino R., Ricci P.C., RamanInvestigation of Surface OH-Species in Porous Silica[J]. J Phys. Chem. B,2003,107:13661-13664.
    [26]Chuang I., Maciel G.E., A Detailed Model of Local Structure and SilanolHydrogen Bonding of Silica Gel Surfaces[J]. J Phys. Chem. B,1997,101:3052-3064.
    [27] J.F. Liu, C. Min, W.A. Ducker. AFM study of adsorption of cationic surfactantsand cationic polyelectrolytes at the silica–water interface[J]. Langmuir17(2001)4895–4903
    [28] J.P. He, H.M. Li, X.Y. Wang, Y. Gao, In situ preparation of poly(ethyleneterephthalate)–SiO2nanocomposites, Eur. Polym. J.42(2006)1128–1134.
    [29] T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Thermaldegradation and flammability properties of poly(propylene)/carbon nanotubecomposites, Macromol. Rapid. Commun.23(2002)761–765.
    [30] D. Bikiaris, V. Karavelidis, G. Karayannidis, A new approach to preparepoly(ethylene terephthalate)/silica nanocomposites with increased molecularweight and fully adjustable branching or crosslinking by SSP, Macromol.Rapid Commun.27(2006)1199–1205.
    [31] O. Aso, J.I. Eguiazábal, J. Nazábal, The influence of surface modification on thestructure and properties of a nanosilica filled thermoplastic elastomer, Compos.Sci. Technol.67(2007)2854–2863.
    [32] X. Gao, B. Zhou, Y. Guo, Y. Zhu, X. Chen, Y. Zheng, W. Gao, X. Ma, Z. Wang,Synthesis and characterization of well-dispersed polyurethane/CaCO3nanocomposites, Colloids Surf. A: Physicochem. Eng. Aspects371(2010)1–7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700