用户名: 密码: 验证码:
担载型金催化剂上丙烯选择还原NO_x反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
担载型纳米金催化剂在很多反应中具有优异的低温催化活性,这使其成为多相催化领域的研究热点之一。金催化剂的这一性质也使得其在发动机冷启动时尾气的净化中具有应用潜力。因此,研究金催化剂在富氧气氛下催化烃类选择还原NO_x是一个很有意义的课题。本文考察了可还原性复合氧化物担载的纳米金催化剂在催化丙烯选择还原NO_x反应中的性能,并将金催化剂的结构与其活性相关联,取得了一些有意义的结果。
     1.采用沉积-沉淀方法制备的Au/CeO_2/Al_2O_3催化剂在丙烯选择还原NO反应中表现出优异的低温催化活性。在250℃下,当使用0.1%NO/0.1%C_3H_6/5%O_2/He为原料气,空速为30,000h~(-1)的条件下,NO被选择还原为N_2的转化率达到46%,且NO转化为N_2O的转化率可以忽略。此催化性能优于在同等条件下公认的具最佳低温活性的Pt/Al_2O_3催化剂,Pt/Al_2O_3催化剂在此温度下NO转化为N_2O的转化率高达30%。在反应气氛中加入2%水蒸气可使催化活性进一步提高,而加入20 ppm SO_2,低温催化活性有所降低,但H_2O和SO_2的同时加入却可提高催化活性并拓宽了催化反应温度区间。在300℃,反应气组成为0.1%NO/0.1%C_3H_6/5%O2/2%H_2O/20 ppm SO_2/He,空速为30,000 h~(-1)的条件下,NO选择还原为N_2的转化率达到50%,且NO转化为N_2O的转化率可以忽略。
     2.采用多种技术对Au/CeO_2/Al_2O_3催化剂进行了表征和催化反应机制研究:(a)TPD研究结果表明,NO和过量的O_2共吸附于催化剂表面形成NO_y(y≥2)吸附物种。SO_2的加入抑制了催化剂表面NO_y(y≥2)吸附物种的形成,从而降低了其催化活性。而H2_O和SO_2的同时加入可能通过增加催化剂表面酸性中心的数目,且抑制了丙烯的完全燃烧,从而提高催化活性并拓宽了催化反应温度区间。(b)XRD、HRTEM、H_2-TPR和XPS表征结果表明:经过400℃的高温焙烧,金的存在形式为金属态,粒径大小在3-5 nm之间。CeO_2的加入不仅可以提供反应所需的活性氧,而且还起到了稳定金粒子的作用。纳米金粒子与高度分散的CeO_2之间存在的强相互作用促进了CeO_2的还原,这可能对Au/CeO_2/Al2O_3催化剂的低温催化活性起着重要的作用。(c)Au/CeO_2/Al_2O_3催化剂上原位DRIFTS研究结果表明,在NO和O_2共存条件下,有NO_y(y≥2)物种检出;在C_3H_6和O_2共存条件下,有甲酸盐和乙酸盐物种检出;在反应气氛下出现-NCO和-CN物种。推测Au/CeO_2/Al_2O_3上丙烯选择还原NO反应的可能机理为:在氧气作用下,C_3H_6和NO首先经历部分氧化,分别形成包括甲酸盐、乙酸盐在内的C_xH_yO_z和NO_y(y≥2)等表面吸附物种,然后C_xH_yO_z物种再与NO_y物种形成含-NCO,-CN等基团的C_aH_bO_cN_d中间体,此类中间体再与NO_2或(NO+O_2)反应生成最终产物N_2,H_2O和CO_2/CO。
     3.匀相沉积沉淀方法制备的Au/Fe_2O_3/Al_2O_3催化剂在丙烯选择还原NO反应中同样也表现出良好的低温催化活性,在300℃时,当使用0.1%NO/0.1%C_3H_6/5%O_2/He为原料气,空速为30,000 h~(-1)的条件下,NO被选择还原为N_2的转化率可达43%,且NO转化为N_2O的转化率可以忽略。反应气氛中添加2%水蒸气可使催化活性略有提高,而20ppm SO_2的加入使低温催化活性有所降低。采用XRD、HRTEM、H_2-TPR、XPS等技术对Au/Fe_2O_3/Al_2O_3催化剂进行了表征,我们得出了与Au/CeO_2/Al_2O_3催化剂相似的结论:400℃的高温焙烧使得金的存在形式为金属态,粒径大小在3-5 nm之间。纳米金粒子与高度分散的Fe_2O_3之间存在的强相互作用促进了Fe_2O_3的还原。Au和Fe_2O_3之间的协同作用可能是Au/Fe_2O_3/Al_2O_3催化剂在丙烯选择还原NO反应中具有较高的低温催化活的原因之一。
Supported gold catalysts have been the hot spot in heterogeneous catalysis due to their exceptionally high activities at low temperatures.Such a unique feature of gold gives it the potential to solve the cold-start emission problem of engines.Therefore,it is desirable to examine the catalytic activity of supported gold catalysts for NO_x reduction.In this work,the selective catalytic reduction(SCR) of NO_x by C_3H_6 in the excess of oxygen was investigated over Au/MO_x/Al_2O_3(M:Ce,Fe) catalysts.The correlation between the structure of catalysts and their catalytic behaviors was studied.The main results presented in the dissertation have been summarized as follows:
     1.Au/CeO_2/Al_2O_3 catalysts were prepared by deposition-precipitation method and exhibited good low-temperatures activity in C_3H_6-SCR of NO in the excess of oxygen.The conversion of NO to N_2 was 46%and the conversion to N_2O was negligible under the condition of 0.1%NO,0.1%C_3H_6,5%O_2 in He at 250℃and GHSV of 30,000 h~(-1).Such a catalytic performance is superior to that of Pt/Al_2O_3,on which a significant amount of N_2O (about 30%) was formed under the same conditions.It was also found that adding 2%water vapour to the feed stream enhanced the NO conversion while the presence of 20 ppm SO_2 decreased NO conversion at low temperatures.It was interesting that in the simultaneous presence of 2%water vapour and 20 ppm SO_2,the conversion of NO to N_2 was increased and the temperature window was widened.The conversion of NO to N_2 reached 50%and the conversion to N_2O was negligible under the condition of 0.1%NO,0.1%C_3H_6,5%O_2,2%H_2O, 20 ppm SO_2 in He at 300℃and GHSV of 30,000 h~(-1).
     2.The Au/CeO_2/Al_2O_3 catalysts were characterized by different methods:(a) TPD results demonstrated that surface NO_y(y≥2) species were formed from co-adsorption of NO and O_2. The presence of SO_2 inhibited the formation of surface NO_y(y≥2) species,which results in the loss of catalytic activity at low temperatures.The introduction of water vapour and SO_2 created more acid sites and suppressed the combustion of C_3H_6.Therefore,the conversion of NO to N_2 was increased and the temperature window was widened.(b) The results of XRD, HRTEM,H_2-TPR and XPS revealed that gold existed in the form of metallic gold by calcination at 400℃and the size of gold nanoparticles was in the range of 3-5 nm.CeO_2 can not only provide the active oxygen for the reaction,but also stabilize the gold particles against sintering.There was strong interaction between Au and CeO_2,which facilitated the reduction of CeO_2.The synergistic effect between Au and CeO_2 was probably responsible for the superior catalytic performance of the Au/CeO_2/Al_2O_3.(c) In situ reflectance Fourier infrared transform spectroscopy(DRIFTS) results showed that NO_y(y≥2) species were observed on the surface of Au/CeO_2/Al_2O_3 after exposure to the gas mixture of NO and O_2.Formate and acetate species were presented after exposure to the gas mixture of C_3H_6 and O_2.Cyanide (-CN) and isocyanate(-NCO) species were observed as important intermediates in C_3H_6-SCR reaction.A reaction mechanism of the C_3H_6-SCR of NO over Au/CeO_2/Al_2O_3 catalyst has been proposed:NO_y and C_xH_yO_z species are formed due to the oxidation of NO and partial oxidation of C_3H_6 in the presence of O_2,and then C_xH_yO_z species react with NO_y species to generate C_aH_bO_cN_d intermediates including -CN and -NCO species,and then the intermediates react with NO_2 or(NO+O_2) to produce N_2,H_2O and CO_2/CO.
     3.Au/Fe_2O_3/Al_2O_3 catalysts were prepared by the homogeneous deposition-precipitation method and exhibited good low-temperature activity in C_3H_6-SCR of NO in the excess of oxygen.The conversion of NO to N_2 was 43%and the conversion to N_2O was negligible under the condition of 0.1%NO,0.1%C_3H_6,5%O_2 in He at 300℃and GHSV of 30,000 h~(-1). The addition of 2%water vapor to the feed stream enhanced slightly the NO conversion, while the presence of 20 ppm SO_2 decreased NO conversion at low temperatures.The catalysts were characterized by XRD,TEM,H_2-TPR and XPS techniques.The results indicated that that gold existed in the form of metallic gold by calcination at 400℃and the size of gold nanoparticles was in the range of 3-5 nm.There was strong interaction between Au and Fe_2O_3,which facilitated the reduction of Fe_2O_3.The synergistic effect between Au and Fe_2O_3 was probably responsible for the good catalytic performance of the Au/Fe_2O_3/Al_2O_3 catalyst at low temperatures.
引文
[1]Elingstedt F,Arve K,Eranen K et al.Toward improved catalytic low-temperature NO_x removal in diesel-powered vehicles.Acc.Chem.Res.,2006,39(4):273-282.
    [2]Burch R.Knowledge and know-how in emission control for mobile application.Catal.Rev.Sci.Eng.,2004,46(3-4):271-334.
    [3]Shichi A,Katagi K,Satsuma A et al.Influence of intracrystalline diffusion on the selective catalytic reduction of NO by hydrocarbon over Cu-MFI zeolite.Appl.Catal.B,2000,24(2):97-105.
    [4]Resini C,Montanari T,Nappi L et al.Selective catalytic reduction of NO,by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity.J.Catal.,2003,214(2):179-190.
    [5]Saaid I M,Mohamed A R and Bhatia S.Comparative study of CuZSM-5 and FeZSM-5 in the SCR of NO_x with i-C_4H_(10).React.Kinet.Catal.Lett.,2002,75(2):359-365.
    [6]Vradman L,Herskowitz M,Capek L et al.Kinetic experiments and modeling of a complex DeNO_x system:decane selective catalytic reduction of NO_x in the gas phase and over an Fe-MFI type zeolite catalyst.Ind.Eng.Chem.Res.,2005,44(13):4523-4533.
    [7]Burch R and Watling T C.The effect of promoters on Pt/Al_2O_3 catalysts for the reduction of NO by C_3H_6 under lean-burn conditions.Appl.Catal.B,1997,11(2):207-216.
    [8]Konsolakis M and Yentekakis I M.Strong promotional effects of Li,K,Rb and Cs on the Pt-catalysed reduction of NO by propene.Appl.Catal.B,2001,29(2):103-113.
    [9]Dorado F,delucas-Consuegra A,Vernoux P et al.Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen.Appl.Catal.B,2007,74(1-2):43-51.
    [10]Gortes J M S,Gomez M J I and deLecea C S M.The selective reduction of NO_x with propene on Pt-beta catalyst:A transient study.Appl.Catal.B,2007,74(3-4):313-323.
    [11]Haruta M,Yamada N and Kobayashi T.Gold catalysts prepared by coprecipitation for low- temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989, 115(2): 301-309.
    
    [12] Gluhoi A C, Bogdanchikova N and Nieuwenhuys B E. Alkali (earth)-doped Au/Al_20_3 catalysts for the total oxidation of propene. J. Catal., 2005, 232(1):96-101.
    
    [13] Andreeva D, Idakiev V, Tabakova T et al. Low-temperature water-gas shift reaction over Au/α-Fe_2O_3. J. Catal., 1996,158(1): 354-355.
    
    [14] Sakurai H, Ueda A, Kobayashi T et al. Low-temperature water-gas shift reaction over gold deposited on TiO_2. Chem. Commun., 1997, 3:271-272.
    
    [15] Salama T M, Ohnishi R, Shido T et al. Highly selective Catalytic Reduction of NO by H_2 over Au~0 and Au( I) Impregnated in NaY Zeolite Catalysts. J. Catal., 1996,162(2):169-178.
    
    [16] Salama T M, Ohnishi R and Ichikawa M. Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts. Chem. Commun., 1997, 1:105-106.
    
    [17] Ueda A, Oshima T and Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides.Appl. Catal. B, 1997,12(2-3): 81-93.
    
    [18] Ueda A and Haruta M. Reduction of nitrogen monoxide with propene over Au/Al_2O_3 mixed mechanically with Mn_2O_3. Appl. Catal. B, 1998,18(1-2): 115-121.
    
    [19] Ueda A and Haruta M. Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull., 1999, 32(1):3-ll.
    
    [20] Niakolas D., Andronikou Ch, Papadopoulou Ch et al. Influence of metal oxides on the catalytic behavior of Au/Al_2O_3 for the selective reduction of NO, by hydrocarbons. Catal. Today, 2006,112 (1-4):184-187.
    [1]Taylor K C.Nitric oxide catalysis in automotive exhaust systems.Catal.Rev.Sci.Eng.,1993,35(4):457-481.
    [2]Armor J N.Environmental catalysis.Appl.Catal.B,1992,1(4):221-256.
    [3]Manney G L,Froidevaux L,Waters J W et al.Chemical depletion of ozone in the arctic lower stratosphere during winter 1992-93.Nature,1994,20:429-434.
    [4]http://www.dieselnet.com/standards/eu/hd.html,2005.
    [5]Nakatsuji T and Miyamoto A.Removal technology for nitrogen oxides and sulfur oxides from exhaust gases.Catal.Today,1991,10(1):21-31.
    [6]Iwamoto M,Furukawa H,Mine Y et al.Copper(Ⅱ) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide.J.Chem.Soc.Chem.Commun.,1986,16:1272-1273.
    [7]Amirnazmi A,Benson J E and Boudart M.Oxygen inhibition in the decomposition of NO on metal oxides and platinum.J.Catal.,1973,30(1):55-56.
    [8]Amirnazmi A and Boudart M.Decomposition of nitric oxides on platinum.J.Catal.,1975,39(3):383-394.
    [9]Ogata A,Obuchi A,Mizuno K et al.Active sites and redox properties of supported palladium catalysts for nitric oxide direct decomposition. J. Catal., 1993, 144(2): 452-459.
    
    [10] Wang X Q, James J, Spivey H et al. NO decomposition over a Pd/MgO catalyst prepared from [Pd(acac)_2]. Appl. Catal. B, 2005, 56(4): 261-268.
    
    [11] Hanneda M, Kintaichi Y, Nakamura I et al. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide. J. Catal., 2003, 218(2):405-410.
    
    [12] Yao Z W, Zhu A M, Chen J et al. Synthesis, characterization and activity of alumina-supported cobalt nitride for NO decomposition. J. Solid State Chem., 2007, 180(9): 2635-2640.
    
    [13] Zhang X, Waters A. B and Vannice M. A. NO decomposition and reduction by CH_4 over Sr/La_20_3. Appl. Catal. B, 1996, 7(3-4): 321-336.
    
    [14] Xie S, Rosynek M. P, Lunsford J. H. Catalytic reaction of NO over 0-7%Ba/MgO catalysts. J. Catal., 1999, 188(1): 24-31.
    
    [15]LiuZ.M, HaoJM, Fu L X et al. Study of Ag/La_(0.6)Ce_(0.4)Co0_3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen. Appl. Catal. B, 2003, 44(4): 355-370.
    
    [16] Haneda M, Kintaichi Y and Hamada H. Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl. Catal. B, 2003, 46(3): 473-482.
    
    [17] Haneda M, Kintaichi Y and Hamada H. Reaction mechanmism of NO decomposition over alkali metal-doped cobalt oxide catalysts. Appl. Catal. B, 2005, 55(3): 169-175.
    
    [18] Banas J, Tomasic V, Weselucha-Birczynska A et al. Structural sensitivity of NO decomposition over a V-0-W/Ti(Sn)0_2 catalyst. Catal. Today, 2007,119(1-4):199-203.
    
    [19] Ishihara T, Ando M, Sada K et al. Direct decompostion of NO into N_2 and 0_2 over La(Ba)Mn(In)O_3 perovskite oxide. J. Catal., 2003, 220(1): 104-114.
    
    [20] Moretti G, Ferraris G, Fierro G et al. Dimeric Cu(I) species in Cu-ZSM-5 catalysts:the active sites for the NO decomposition. J. Catal., 2005, 232(2):476-487.
    
    [21] Kuetova M Yu, Rasmussen S B, Kustov A. L et al. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalyst:Improved performance with hierarchical zeolites. Appl. Catal. B, 2006, 67(1-2): 60-67.
    
    [22] Shi Y, Pan H, Li Z et al. Low temperature decomposition of NO, over Fe-Mn/H-beta catalysts in the presence of oxygen. Catal. Commun., 2008, 9(6):1356-1359.
    
    [23] Busca G,Lietti L, Ramis G et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: a review. Appl. Catal. B, 1998, 18(1-2): 1-36.
    
    [24] Casagrande L, Lietti L, Nova I et al. SCR of NO by NH_3 over TiO_2-supported V_2O_5-MoO_3 catalysts:reactivity and redox behavior. Appl. Catal. B, 1999, 22(1): 63-77.
    [25] Lietti L, Forzatti P and Bregani F.Steady-state and transient reactivity study of Ti0_2-supported V_2O_5-WO_3 de-NO_x catalysts:relevance of the vanadium-tungsten interaction on the catalytic activity. Ind. Eng. Chem. Res., 1996, 35(11):3884-3892.
    
    [26] Smirniotis P G, Pena D A and Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH_3 by using Mn, Cr, and Cu oxides supported on hombikat TiO_2. Angew. Chem. Int. Ed. ,2001,40 (13): 2479-2482.
    
    [27] Sullivan J A and Doherty J A. NH_3 and urea in the selective catalytic reduction of NO_x over oxide-supported copper catalysts. Appl. Catal. B, 2005, 55(3): 185-194.
    
    [28] Seker E, Yasyerli N, Gulari E et al.NO_x reduction by urea under lean conditions over single step sol-gel Pt/alumina catalyst. Appl. Catal. B, 2002, 37(1): 27-35.
    
    [29] Par L T Gabrielsson. Urea-SCR in automotive applications. Top. Catal., 2004, 28(1-4): 177-184.
    
    [30] Park J H, Park H J, Baik J H et al. Hydrothermal stability of CuZSM-5 catalyst in reducing NO by NH_3 for the urea selective catalytic reduction process. J. Catal., 2006, 240(1):47-57.
    
    [31] Shimizu K and Satsuma A. Hydrogen assisted urea-SCR and NH3-SCR with silver-alumina as highly active and S0_2-tolerant de-NOx catalysis. Appl. Catal. B, 2007, 77(1-2): 202-205.
    
    [32] Madia G, Elsener M, Koebel M et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl. Catal. B, 2002, 39(2): 181-190.
    
    [33] Nakajima F. Air pollution control with catalysis. Catal. Today, 1991, 1(1): 1-20.
    
    [34] Held W, Koening A, Richter T et al. Catalytic N0_x reduction in net oxidizing exhaust gas. SAE Paper, 1990, 900469.
    
    [35] Iwamoto M. Removal of nitric oxide by catalytic decomposition. Nenryo Kyokaishi, 1990, 69(3): 159-164.
    
    [36] Iwamoto M, Yahiro H, Yu-u Y et al. Selective reduction of NO by lower hydrocarbons in the presence of O_2 and SO2 over copper ion-exchanged zeolites. Shokubai, 1990, 32(6): 430-433.
    
    [37] Shichi A, Katagi K, Satsuma A et al. Influence of intracrystalline diffusion on the selective catalytic reduction of NO by hydrocarbon over Cu-MFI zeolite. Appl. Catal. B, 2000, 24(2): 97-105.
    
    [38] Resini C, Montanari T, Nappi L et al. Selective catalytic reduction of NO_x by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity. J. Catal., 2003, 214(2): 179-190.
    
    [39] Krishna K and Makkee M. Coke formation over zeolites and Ce0_2-zeolites and its influence on selective catalytic reduction of NO_x. Appl. Catal. B, 2005, 59(1-2): 35-44.
    
    [40] Mosqueda-Jimenez B I, Jentys A, Seshan K et al. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite. Appl. Catal. B, 2003, 43(2): 105-115.
    
    [41] Shi C, Cheng M J, Qu Z P et al. Investigation on the catalytic roles of silver species in the selective catalytic reduction of N0_x with methane. Appl. Catal. B, 2004, 51(3): 171-181.
    
    [42] Saaid I M, Mohamed A R and Bhatia S. Comparative study of CuZSM-5 and FeZSM-5 in the SCR of NO, with i-C_4H_(10). React. Kinet. Catal. Lett. ,2002, 75(2): 359-365.
    
    [43] Wang X P, Yu S S, Yang H L et al. Selective catalytic reduction of NO by C_2H_2 over MoO_3/HZSM-5. Appl. Catal. B, 2007, 71(3-4): 246-253.
    
    [44] Vradman L.Herskowitz M,Capek L et al. Kinetic experiments and modeling of a complex DeNO, system:decane selective catalytic reduction of NO, in the gas phase and over an Fe-MFI type zeolite catalyst. Ind. Eng. Chem. Res., 2005, 44(13):4523-4533.
    
    [45] Burch R and Watling T. C. The effect of promoters on Pt/Al_2O_3 catalysts for the reduction of NO by C_3H_6 under lean-burn conditions. Appl. Catal. B, 1997,11(2):207-216.
    
    [46]Bethke K A and Kung H H. Supported Ag catalysts for the lean reduction of NO with C_3H_6. J. Catal., 1997, 172(1): 93-102.
    
    [47] Luo C K, Li J H, Zhu Y Q et al. The mechanism of SO_2 effect on NO reduction with propene over In_2O_3/Al_2O_3 catalyst. Catal. Today, 2007, 119(1-4): 48-51.
    
    [48] Zhang F X, Zhang S J,, Guan N J et al. NO SCR with propane and propene on Co-based alumina catalysts prepared by co-precipitation. Appl. Catal. B, 2007, 73(3-4): 209-219.
    
    [49] Li N, Wang A Q, Tang J W et al. NO reduction by CH_4 in the presence of excess O_2 over Co/sulfated zirconia catalysts. Appl. Catal. B, 2003, 43(2): 195-201.
    
    [50] Li N, Wang A Q, Zheng M Y et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane. J. Catal., 2004, 225(2): 307-315.
    
    [51] Li N, Wang A Q, Li L et al. NO reduction by CH_4 in the presence of excess O_2 over Pd/sulfated alumina catalysts. Appl. Catal. B, 2004, 50(1): 1-7.
    
    [52] Ueda A, Oshima T and Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B, 1997,12(2-3): 81-93.
    
    [53] Takahashi N, Shinjoh H, Iijima T et al. The new concept 3-way catalyst for automotive lean-burn enging: NOx storage and reduction catalyst. Catal. Today, 1996, 27: 63-69.
    
    [54] Murachi M, Okawara S, Kojima K et al.US. Patent 5746989, assigned to Toyota Jidosha Kabushiki Kaisha, 5 May 1998.
    
    [55] Sedlmair Ch, Seshan K, Jentys A et al. Studies on the deactivation NO, storage-reduction catalysts by sulfur dioxide. Catal. Today, 2002, 75(1-4):413-419.
    
    [56] Rohr F, Peter S, Lox E et al. On the mechanism of sulphur poisoning and regenerationof a commercial gasoline NO_x-storage catalyst. Appl. Catal. B, 2005, 56(3): 201-212.
    
    [57] Burch R, Millington P J and Walker A P. Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen. Appl. Catal. B, 1994, 4(1): 65-94.
    [58] Burch R and Watling T. C. Adsorbate-assisted NO decomposition in NO reduction by C_3H_6 over Pt/Al_2O_3 catalysts under lean-burn conditions. Catal. Lett., 1996, 37(1-2):51-55.
    
    [59]Acke F and Skoglundh M. Differences in reaction mechanisms for the selective reduction of NO under oxygen excess over Pt based catalysts using propane or propene as the reducing agent. Appl. Catal. B, 1999, 22(1):L1-L3.
    
    [60] Wogerbauer A, Maciejewski M and Baiker A. Reduction of nitrogen oxides over unsupported iridium:effect of reducing agent. Appl. Catal. B, 2001, 34(1):11-27.
    
    [61] Cho B. K. Elucidation of lean-NO, reduction mechanism using kinetic isotope effect. J. Catal. ,1998,178(2): 395-407.
    
    [62] Burch R, Breen J P and Meunier F C. A review of the selective reduction of NO, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B,2002,39(4):283-303.
    
    [63] Valverde J L, de Lucas A, Dorado F et al. Influence of the operating parameters on the selective catalytic reduction of NO with hydrocarbons using Cu-ion-exchanged Titanium-Pillared Interlayer Clays(Ti-PILCs). Ind. Eng. Chem. Res. 2005, 44(9):2955-2965.
    
    [64] Haneda M, Bion N, Daturi M et al. In situ fourier transform infrared study of the selective reduction of NO with propene over Ga_2O_3-Al_2O_3. J. Catal., 2002, 206(1): 114-124.
    
    [65] Sault A G,Madix R J and Campbell C T. Adsorption of oxygen and hydrogen on Auz(110)-(1×2).Surf. Sci., 1986,169(2-3):347-356.
    
    [66] Haruta M, KobayashiT, Sano H et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature for below 0℃. Chem. Lett., 1987, 2:405-408.
    
    [67] Haruta M, Yamada N and Kobayashi T. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989,115(2):301-309.
    
    [68] Wolf A and Schuth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A, 2002, 226(1-2):1-13.
    
    [69]Grisel R J H and Nieuwenhuys B E. Selective oxidation of CO over supported Au catalysts. J. Catal., 2001,199(1): 48-59.
    
    [70] Bamwenda G, Tsubota S, Nakajrnura T et al. The influence of the preparation method On the catalytic activity of Platinum and gold supported on TiO_2 for CO oxidation. Catal. Lett., 1997, 44(1-2):83 — 87.
    
    [71] Andreeva D, Tabakova T, Idakiev V et al.Au/Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation. Appl. Catal. A, 1998, 169(1):19-14.
    
    [72] Horvath D, Toth L and Guczil L. Gold nanoparticles:effect of treatment on structure and catalytic activityof Au/Fe_2O_3 prepared by co-precipitation. Catal. Lett., 2000, 67(2-4): 67-128.
    [73]王桂英,贾明君,于剑峰等.常温常湿条件下Au/Fe_2O_3催化剂上CO氧化反应的稳定性,催化学报,2000,21(6):569-5731.
    [74]Haruta M.Size-and supported-dependeney in the catalysis of gold.Catal.Today,1997,36(1):153-166.
    [75]Kang Y M and Wan B Z.Preparation of gold in Y type zeolite for carbon monoxide oxidation.Appl.Catal.A,1995,128(1):53-60.
    [76]Kang Y M and Wan B Z.Gold and iron supported on Y-type zeolite for carbon monoxide oxidation.Catal.Today,1997,35(4):379-392.
    [77]Guillemot D,Polisset-Thofin M and Fraissard J.Preparation of nanometer gold particles on NaHY.Catal.Lett.,1996,41(3-4):143-148.
    [78]Okumura M,Tanaka K,Ueda A et al.The reaetivities of dimethyl gold(111)β diketone on the suface of TiO_2-a novel preparation method for Au catalysts.Solid State Ionies,1997,95(1-2):143-149
    [79]Okumura M,Tanaka K,Tsubota S et al.Chemieal vapor deposition of gold on Al_2O_3,SiO_2and TiO_2 for oxidation of CO and of H_2.Catal.Lett.,1998,51(1-2):53-58.
    [80]Okumura M,Tsubota S and Haruta M.Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H_2.J.Mol.Catal.A,2003,199(1-2):73-84.
    [81]Boccuzzi F and Chiorino A.FTIR Study of CO Oxidation on Au/TiO_2 at 90 K and room temperature.An insight into the nature of the reaction centers.J.Phys.Chem.B,2000,104(23):5414-5416.
    [82]Tabakova T,Boccuzzi F,Manzoli M et al.Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts.Appl.Catal.B,2004,49(2):73-84.
    [83]Mavrikakis Sh K,Meyer R,Naschitzti M et al.Making gold less noble.Catal.Lett.,2000,64:101-106.
    [84]Lopez N and Norskov J K.Catalytic CO oxidation by Au nanoparticle:a density functional study.J.Am.Chem.Soc.,2002,124(38):11262-11263.
    [85]Mills G,Gordon M S and Metiu H.Oxygen adsorption on Au particles and a rough Au(111)surface:the role of surface flatness,electron confinement,excess electrons,and band gap.J.Chem.Phys.,2003,118(9):4198-4205.
    [86]Venkov Tz,Klimev Hr,Centeno M A et al.State of gold on an Au/Al_2O_3 catalyst subjected to different pre-treatements:An FTIR study.Catal.Comm.,2006,7(5):308-313.
    [87]Avgouropoulos G,Manzoli M,Boccuzzi F et al.Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction.J.Catal.,256(2):237-247.
    [88]Shaikhutdinov Sh K,Meyer R,Naschitzki M et al.Size and support effects for CO adsorption on gold model catalysts.Catal.Lett.,2003,86(4):211-219.
    [89] Boccuzzi F, Chioino A, Manzoli M et al. FTIR Study of the Low-Temperature Water -Gas Shift Reaction on Au/Fe_2O_3 and Au/TiO_2 Catalysts. J. Catal., 1999,188(1): 176-185.
    
    [90] Bartram M E and Koel B E. The molecular adsorption of N0_2 and the formation of N203 on Au(111), Surf. Sci., 1989,213(1):137-156.
    
    [91] Qiu S, Ohnishi R, Shido T et al. Formation and interaction of carbonyls and nitrosyls on gold(I)in ZSM-5 zeolite catalytically active in NO reduction with CO. J. Phys. Chem., 1994,98(11): 2719-2721.
    
    [92] Salama T M, Ohnishi R, Shido T et al., Highly selective catalytic reduction of NO by H_2 over Au~0 and Au( I) impregnated in NaY zeolite catalysts. J. Catal., 1996,162(2): 169-178.
    
    [93] Epling W S, Hoflund G B and Weave J F. Surface characterization study of Au/ α -Fe_2O_3 and Au/Co_30_4 low-temperature CO oxidation catalysts. J. Phys. Chem., 1996,100(23):9929-9934.
    
    [94] Tripathi A K, Kamble V S and Gupta N M. Microcalorimetry, adsorption, and reaction studies of CO, 0_2, C0+0_2 over of Au/Fe_2O_3 , Fe_2O_3 and polycrystalline gold catalysts. J. Catal., 1999, 187(2):332-342.
    
    [95] Bond G C and Thompson D T. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33(2) :41-51.
    
    [96] Daniells S T, Overweg A R, Makkee M et al. The mechanism of low-temperature CO oxidation with Au/Fe_2O_3 catalysts :A combined Mossbauer, FT-IR, and TAP reactor study. J. Catal., 2005, 230(1): 52-65.
    
    [97] Dekkers W A P, Lippits M J and Nieuwenhuys B E. CO adsorption and oxidation on Au/TiO_2. Catal. Lett., 1998, 56:195-197.
    
    [98] Park E D and Lee J S. Effect of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal., 1999,186(1):1-11.
    
    [99] Chen M S and Goodman D W. The structure of catalytically active Au on titania. Science, 2004, 306(5694):252-255.
    
    [100] Moreau F, Bond G C and Taylor A 0. Gold on titania catalysts for the oxidation of carbon monoxide : control of pH during preparation with various gold contents. J. Catal., 2005, 231(1):105-114.
    
    [101] Costello C K, Kung M C and Oh H-S. Nature of the active site for CO oxidation on highly active Au/ y -Al_2O_3. Appl. Catal. A, 2002, 232 (1-2): 159-168.
    
    [102] Costello C K, Yang J H, Law H Y et al. On the potential role of hydroxyl grouos in CO oxidation over Au/Al_20_3. Appl. Catal. A, 2003, 243 (1): 15-24.
    
    [103] Ivanova S, Petit C and Pitchon V. A new preparation method for the formation of gold nanoparticles on an oxide support. Appl. Catal. A, 2004, 267(1-2):191-201.
    
    [104] Cunningham D A H, Vogel W, Kagayama H et al.The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)_2. J. Catal., 1998, 177(1): 1-10.
    
    [105] Cunningham D A H, Vogel W and Haruta M. Negative activition energires in CO oxidation over an icosahedral Au/Mg(0H)_2 catalyst, Catal. Lett., 1999, 63(1):43-47.
    
    [106] Venezia A. M, Pantaleo G, Longo A et al. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B, 2005, 109(7)-.2821-2827.
    
    [107] Lai S, Qiu Y and Wang S. Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene. J. Catal., 2006, 237(2):303-313.
    
    [108] Russo N, Fino D, Saracco G et al. Supported gold catalysts for CO oxidation. Catal. Today, 2006,117(1-3):214-219.
    
    [109] Bondzie V A,Parker S C and Campbell C T. Oxygen adsorption on well-defined gold particles on TiO_2(111). J. Vac. Sci. Technol. A, 1999,17:1717-1720.
    
    [110] Schubert M M, Hackenberg S, Veen A C et al. CO oxidation over supported gold catalysts- "inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal.,2001,197 (1): 113-122.
    
    [111] Park E D and Lee J S. Effect of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal., 1999,186(1):1-11.
    
    [112] Bond G C and Thompson D T. Gold-catalyed oxidation of carbon monoxide.Gold Bull., 2000, 33(2):41-45.
    
    [113] Oh H-S,Yang J H,Costello C K et al. Moisture effect on CO oxidation over Au/TiO_2 catalyst. J. Catal., 2001, 201(2):221-224.
    
    [114] Haruta M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull., 2004, 37(1):27-36.
    
    [115] Andreeva D, Idakiev V, Tabakova T et al. Low-temperature water-gas shift reaction over Au/ α -Fe_2O_3. J. Catal., 1996,158 (2): 354-355.
    
    [116] Andreeva D. Low-temperature water-gas shift over gold catalysts. Gold Bull., 2002, 35(3):82-88.
    
    [117] Fu Q, Weber A and Flytzani-Stephanopoulos M. Nanostructured Au-CeO_2 catalysts for low-temperature water gas shift reaction. Catal. Lett., 2001(1-3), 77:87-95.
    
    [118] Fu Q, Saltsburg H and Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301:935-938.
    
    [119] Fu Q, Deng W, Saltsburg H et al. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl. Catal. B, 2005, 56(1-2):57-68.
    
    [120] Tabakova T, Idaliev V,Andreeva D et al. Influence of microscopic properties of the supported on the catalytic activity of Au/ZnO, Au/Zr0_2, Au/Fe_20_3, Au/Fe_20_3-Zn0, Au/Fe_2O_3-ZrO_2 catalysts for the WGS reaction. Appl. Catal. A, 2000, 202(1):91-97.
    
    [121] Hayashi T, Tanaka K and Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO_2 catalysts in the presence of oxygen and hydrogen. J. Catal., 1998,178(2):566-575.
    [122] Sinha A K, Seelan S, Akita T et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes. Appl. Catal. A, 2003, 240(1-2): 243-252.
    
    [123] Yap N, Andres R P and Delgases W N. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H_2 and 0_2. J. Catal., 2004, 226(1): 156-170.
    
    [124] Stangland E E, Taylor B, Andres R P et al. Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H_2/O_2:Effect of support, neutralizing agent,and pretreatment. J. Phys.Chem. B, 2005,109(6): 2321-2330.
    
    [125] Shibata M, Kawata N, Masumoto T et al. Selective hydrogenation of unsaturated carbonyl compounds over an oxidized gold-ziroconnium alloy. J. Chem. Soc., Chem. Commun,, 1998 (1): 154-155.
    
    [126] Hutchings G J. Gold catalysis in chemical processing. Catal. Taday, 2002, 72(1-2): 11-17.
    
    [127] Bailie J E and Hutchings G C. Promotion by sulfur of gold catalysts for crotyl alcoholformation from crotonaldehyde hydrogenation. Chem. Commun., 1999, 21:2151-2152.
    
    [128] Okumura M, Akita T and Haruta M. Hydrogenation of 1, 3-butadiene and of crotonaldehyde over highly dispersed Au catalysts. Catal. Today, 2002, 74(3-4):265-269.
    
    [129] Ueda A and Haruta M, Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull.,1999, 32(1):3-11.
    
    [130] Salama T M, Ohnishi R and Shido T. Ichikawa M. Highly selective catalytic reduction of NO by H_2 over Au" and Au ( I ) impregnated in NaY zeolite catalysts. J. Catal., 1996, 162(2): 169-178.
    
    [131] Salama T M, Ohnishi R and Ichikawa M. Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts. Chem. Commun., 1997,1:105-106.
    
    [132] Ueda A, Oshima T and Haruta M. Reduction of nitrogen monoxide weth propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B, 1997,12(2-3), 81-93.
    
    [133] Ueda A and Haruta M. Reduction of nitrogen monoxide with propene over Au/Al_2O_3 mixed mechanically with Mn_2O_3 Appl. Catal. B, 1998, 18(1-2):115-121.
    
    [134] Schubert M M, Plzak V, Garche J et al. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H_2-rich gas. Catal. Lett., 2001,76(3-4):143-150.
    [1]Ueda A,Oshima T and Haruta M.Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides.Appl.Catal.B,1997,12(2-3):81-93.
    [2]Ueda A,Oshima T and Haruta M.Nitric oxide reduction with hydrogen,carbon monoxide and hydrocarbons over gold catalysts.Gold Bull.,1999,32(1):3-11.
    [3]Galvagno S and Parravano G.Chemical reactivity of supported Gold Ⅳ.Reduction of NO by H_2.J.Catal.,1978,55,178-190.
    [4]Iwamoto M,Yahiro H,Shundo S et al.Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite.Appl.Catal.,1991,69(1):L15-L19.
    [5]Shi C,Cheng M J,Qu Z P et al.On the selectively catalytic reduction of NO_x with methane over Ag-ZSM-5 catalysts.Appl.Catal.B,2002,36(3):173-182.
    [6]Seijger GBF,Niekerk PV,Krishna K et al.Screening of silver and cerium exchanged zeolite catalysts for the lean burn reduction of NO_x with propene.Appl.Catal.B,2003,40(1):31-42.
    [7]Salama T M,Ohnishi R and Ichikawa M.Studies of the selective reduction of nitric oxide by carbon monoxide in the presence and absence of hydrogen over Au/NaY catalysts.J.Chem.Soc.,Faraday Trans.,1996,92(2):301-306.
    [8]Salama T M,Ohnishi R,Shido T et al.Highly selective Catalytic Reduction of NO by H_2 over Au~0 and Au(I) Impregnated in NaY Zeolite Catalysts.J.Catal.,1996,162(2):169-178.
    [9]Salama T M,Shido T,Ohnishi R et al.Low-temperature catalytic decomposition of NO over excess-loading gold in NaY zeolite.J.Chem.Soc.,Chem.Commun.,1994,24:2749-2750.
    [10]Salama T M,Ohnishi R and Ichikawa M.Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts.Chem.Commun.,1997,1(1):105-106.
    [11]Lin J,Chen J,Hsiao C Y et al.Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation.Appl.Catal.B,2002,36(1):19-29.
    [12]Lin J and Wan B Z.Effects of preparation conditions on gold/Y-type zeolite for CO oxidation.Appl.Catal.B,2003,41(1-2):83-95.
    [13]Chen J,Lin J,Kang Y M et al.Preparation of nano-gold in zeolites for CO oxidation:Effects of structures and number of ion exchange sites of zeolites. Appl. Catal. A, 2005, 291(1-2):162-169.
    
    [14] Yan J Y, Lei G D, Sachtler W M H et al. Deactivation of Cu/ZSM-5 catalysts for lean NOx reduction :characterization of changes of Cu state and zeolite support. J. Catal., 1996, 161(1): 43-54.
    
    [15] Li Z J, Flytzani-Stephanopoulos M. Effects of water vapor and sulfur dioxide on the performance of Ce-Ag-ZSM-5 for the SCR of NO with CH_4. Appl. Catal. B, 1999,22(1):35-47.
    
    [16] Costello C K, Kung M C, Oh H S et al. Nature of the active site for CO oxidation on highly active Au/γ-Al_2O_3. Appl. Catal. A, 2002,232(1-2): 159-168.
    [1] Kaspar J, Fornasiero P and Graziani M. Use of CeO_2-based oxides in the three-way catalysis. Catal. Today, 1999, 50(2): 285-298.
    
    [2] Rao G R, Fornasiero P, Monte R Di et al. Reduction of NO over partially reduced metal-loaded Ce0_2-Zr0_2 solid solutions. J. Catal., 1996, 162(1):1-9.
    
    [3] Noronha F B, Baldanza M A S, Monteiro R S et al. The nature of metal oxide on adsorptive and catalytic properties of Pd/MeO_x/Al_2O_3 catalysts. Appl. Catal. A, 2001, 210(1-2):275-286.
    
    [4] Mariadassou G D, Fajardie F, Tempere J et al. A general model for both three-way and deNO_x catalysis:dissociative or associative nitric oxide adsorption, and its assisted decomposition in the presence of a reductant Part I. Nitric oxide decomposition assisted by CO over reduced or oxidized rhodium species supported on ceria. J. Mo1. Catal. A, 2000,161(1-2):179-189.
    
    [5] Deng W L, Carpenter C, Nan Y et al. Comparison of the activity of Au/CeO_2 and Au/Fe_2O_3 catalysts for the CO oxidation and the water-gas shift reactions. Topic Catal., 2007, 44(1-2):199-208.
    
    [6] Karpenko A, Leppelt R, Plzak V et al. The role of cationic Au~(3+) and nonionic Au~0 species in the low-temperature water-gas shift reaction on Au/CeO_2 catalysts. J. Catal., 2007, 252(2):231-242.
    
    [7] Gluhoi A C, Bogdanchikova N, Nieuwenhuys B E. Alkali (earth)-doped AU/Al_2O_3 catalysts for the total oxidation of propene. J. Catal., 2005, 232(1):96-101.
    
    [8] Centeno M A, Paulis M, Montes M et al. Catalytic combustion of volatile organic compounds on Au/Ce0_2/Al_20_3 and Au/Al_2O_3 catalysts. Appl. Catal. A, 2002, 234(1-2): 65-78.
    
    [9] Centeno M A, Hadjiivanov K, Venkov Tz et al. Comparative study of Au/Al_20_3 and Au/CeO_2/Al_2O_3 catalysts. J. Mol. Catal. A, 2006,252(1-2):142-149.
    
    [10] Centeno M A, Malet P, Carrizosa I et al. Lanthanide doped V_2O_5/Al_2O_3 catalysts: structure-activity relationship in the SCR of NO,. J. Phys. Chem. B, 2000,104(14):3310-3319.
    
    [11] Martinez-Arias A, Soria J, Conesa J C et al. NO reaction at surface oxygen vacancies generated in cerium oxide. J. Chem. Soc. Faraday Trans., 1995, 91(11):1679-1687.
    
    [12] Nga N L T, Potvin C, Djega-Mariadassou G et al. Catalytic reduction of nitrogen monoxide by propene in the presence of excess oxygen over gold based ceria catalyst. Topic Catal., 2007, 42-43(1-4) :91-94.
    
    [13] Catalua RArcoya ASeoane X L et al. Proc. int. Symp. CAPoC 3,1994, 89.
    
    [14] Pillai U R and Deevi S. Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide. Appl. Catal. A, 2006, 299:266-273.
    [15] Andreeva D, Ivanov I, Ilieva L et al. Glod catalysts supportd on ceria and ceria-alumina for water-gas shift reaction. Appl. Catal. A, 2006, 302(1):127-132.
    
    [16] Choudhary T V, Sivadinarayana C, Chusuei C. CO oxidation on supported nano-Au catalysts synthesized from a [Au_6(PPh_3)_6] (BF_4)_2 complex. J. Catal., 2002, 207(2):247-255.
    
    [17] Gupta N M and Tripathi A K. Microcalorimetry, adsorption, and reaction studies of CO, 0_2, and CO+O_2 over Fe_20_3, Au/Fe_20_3, and polycrystalline gold catalysts as a function of reduction treatment. J. Catal.,1999, 187(2):343-347.
    
    [18] lizuka Y, Tode T, Takao T et al. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal., 1999,187(1):50-58.
    
    [19] Centeno M A, Portales C, Carrizosa I et al. Gold supported Ce0_2/Al_20_3] catalysts for CO oxidation:influence of the ceria phase. Catal. Lett., 2005,102(3-4):289-297.
    
    [20] Pillai U. R and Deevi S. Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide. Appl. Catal. A, 2006, 299(1-4):266-273.
    
    [21] Grisel R J H and Nieuwenhuys B E. A comparative study of the oxidation of CO and CH_4 over Au/M0_x/Al_20_3 catalysts. Catal. Today, 2000, 64(1):69-81.
    
    [22] Gluhoi A C, Bogdanchikova N and Nieuwenhuys B E. The effect of different types of additives on the catalytic activity of Au/Al_20_3 in propene total oxidation: transition metal oxides and ceria. J. Catal., 2005,229(1):154-162.
    
    [23] Fu Q, Deng W, Saltsburg H et al. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl. Catal. B, 2005, 56(1-2):57-68.
    
    [24] Haruta M, Kobayashi T, Sano H et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature for below 0 ℃. Chem. Lett., 1987:405-408.
    
    [25] Park E D, Lee J S. Effect of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal., 1999, 186(1):1-11.
    
    [26] Grunwaldt G D, Kiener C, Wogerbauer C et al. Preparation of supported gold catalysts for low-temperature CO oxidation reaction via "size - controlled" gold colloids. J. Catal., 1999,181(2):223-232.
    
    [27] Ueda A, Oshima T and Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B, 1997, 12(2-3): 81-93.
    
    [28] Seker E and Gulari E. Single step sol-gel made gold on alumina catalyst for selective reduction of NO_x under oxidizing conditions:effect of gold precursor and reaction conditions. Appl. Catal. A,2002, 232(1-2):203-217.
    
    [29] Meunier F C and Ross J R H. Effect of ex situ treatments with S0_2 on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and NO2 by propene. Appl. Catal. B, 2000,24(1):23-32.
    [30] Luo C K, Li J H, Zhu Y Q et al. The mechanism of SO_2 effect on NO reduction with propene over In_20_3/Al_20_3 catalyst. Catal. Today, 2007,119(1-4): 48-51.
    
    [31] Li J H, Zhu Y Q, Ke R et al. Improvement of catalytic activity and sulfur-resistance of Ag/Ti0_2-Al_20_3 for NO reduction with propene under lean burn conditions. Appl. Catal. B, 2008, 80(3-4): 202-213.
    
    [32] Haneda M, Kintaichi Y and Hamada H. Effect of S0_2 on the catalytic activity of Ga_20_3 - Al_2O_3 for the selective reduction of NO with propene in the presence of oxygen.Appl. Catal. B, 2001,31(1): 251-94.
    
    [33] Burch R, Millington P J and Walker A P. Mechanism of the selection reduction of nitrogen monoxide on platinum-based catalysts in the present of excess oxygen. Appl. Catal. B, 1994, 4(1): 65-94.
    
    [34] Konsolakis M and Yentekakis I M. Strong promotional effects of Li,K, Rb and Cs on the Pt-catalysed reduction of NO by propene. Appl. Catal. B, 2001, 29:103-113.
    
    [35] Dorado F, delucas-Consuegra A, Vernoux P et al. Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl. Catal. B, 2007, 74(1-2):43-51.
    [1]Burch R,Breen J P,Meunier F C.A review of the selective reduction of NO_x with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts.Appl.Catal.B,2002,39(4):283-303.
    [2] Delahay G, Ensuque E, Coq B et al. Selective catalytic reduction of nitric oxide by n-Decane on Cu/sulfated-zirconia catalysts in oxygen rich atmosphere effect of sulfur and copper contents. J. Catal., 1998,175(1):7-15.
    
    [3] Burch R, Halpin E, Sullivan J A et al. A comparison of the selective catalytic reduction of NO, over Al_2O_3 and sulphated Al_2O_3 using CH_30H and C_3H_8 as reductants. Appl. Catal. B, 1998,17(1-2):115-129.
    
    [4] Yan J Y, Kung H H, Sachtler W M H et al. Synergistic effect in lean NO_x reduction by CH_4 over C0/Al_2O_3 and H-Zeolite catalysts. J. Catal., 1998,175(2):294-301.
    [5] Li J, Hao J, Fu L et al. Cooperation of Pt/Al_2O_3 and In/Al_2O_3 catalysts for NO reduction by propene in lean burn condition. Appl. Catal. A, 2004, 265(1):43-52.
    [6] Kung M C, Kung H H. Selective lean NO, reduction over metal oxides. Topic Catal., 2004, 28(1-4): 105-110.
    
    [7] Yokoyama C. and Misono M. Catalytic reduction of nitrogen oxides by propene in the presence of oxygen over cerium ion-exchanged zeolites II. mechanistic study of roles of oxygen and doped metals. J. Catal.,1994,150(1):9-17.
    
    [8] Haneda M, Kintaichi Y, Inaba M et al. Infrared study of catalytic reduction of nitrogen monoxide by propene over Ag/TiO_2 - ZrO_2. Catal. Today, 1998, 42(1-2):127-135.
    [9] Ueda A, Oshima T, Haruta M. Reduction of nitrogen monoxide weth propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B,1997,12(2-3): 81-93.
    
    [10] Misono M, Hirao Y and Yokoyama. Reduction of nitrogen oxides with hydrocarbons catalyzed by bifunctional catalysts. Catal. Today, 1997, 38(2):157-162.
    
    [11] Ueda A and Haruta M. Redution of nitrogen monoxide with propene over AU/Al_2O_3 mixed mechanically with Mn_2O_3. Appl. Catal. B, 1998,18(1-2): 115-121.
    
    [12] Niakolas D, Andronikou Ch, Papadopoulou Ch et al. Influence of metal oxides on the catalytic behavior of Au/Al_2O_3 for the selective reduction of NO, by hydrocarbons. Catal. Today, 2006,112(1-4):184-187.
    
    [13] Carrettin S, Concepci6n P, Corma A et al. Nanocrystalline CeO_2 increases the acativity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed, 2004,43:2538-2540.
    [14] Guzman J, Carrettin S, Corma A et al. CO oxidation catalyzed by supported gold:Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed, 2005,44:4778-4781.
    [15] Guzman J, Carrettin S, Corma A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc, 2005,127(10):3286-3287.
    
    [16] Trovarell A. Catalytic properties of ceria and Ce0_2-containing materials. Catal. Rev.-Sci. Eng., 1996, 38:439-520.
    [17] Yao H C and Yao Y F Yu. Ceria in automotive exhaust catalysts I. oxygen storage. J. Catal., 1984,86(2):254-265.
    
    [18] Andreeva D, Ivanov I, Ilieva L et al. Glod catalysts supportd on ceria and ceria-alumina for water-gas shift reaction. Appl. Catal. A, 2006, 302(1):127-132.
    
    [19] Avgouropoulos G, Manzoli M, Boccuzzi F et al.Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction. J. Catal., 2008, 256(2):237-247.
    
    [20] Rogemond E, Frety R, Perrichon V et al .Preparation of alumina-supported ceria. II. measurement of ceria surface area after impregnation with Platinum or Rhodium. J. Catal., 1997,169(1):120-131.
    
    [21] Noronha F. B, Baldanza M. A. S, Monteiro R. S et al. The nature of metal oxide in adsorptive and catalytic properties of Pd/MeO_x/Al_2O_3 catalysts. Appl. Catal. A, 2001, 210(1-2): 275-286.
    
    [22] Damyanova S and Bueno J M C. Effect of Ce0_2 loading on the surface and catalytic behaviors of Ce0_2-Al_20_3-surported Pt catalysts. Appl. Catal. A, 2003,253(1):135-150.
    
    [23] Andreeva D, Idakiev V, Tabakova T et al. Low-temperatuare water-gas shift reaction over Au/CeO_2 catalysts. Catal. Today,2002,72(1-2):51-57.
    
    [24] Shen Y N, Yang X Z, Wang Y Z et al. The states of gold species in Ce0_2 supported gold catalyst for formaldehyde oxidation. Appl. Catal. B, 2008, 79(2):142-148.
    
    [25] Karpenko A, Leppelt R, Cai J et al. Deactivation of a Au/CeO_2 catalyst during the low-temperature water-gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study. J. Catal., 2007, 250(1):139-150.
    
    [26] Shimizu K, Kawabata H, Satsuma A et al. Role of Acetate and Nitrates in the Selective Catalytic Reduction of NO by Propene over Alumina Catalyst as Investigated by FTIR, J.Phys. Chem. B, 1999, 103: 5240-5245.
    
    [27] Shimizu K, Shibata J, YoshidaH et al. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons:structure of active sites and reaction mechanism. Appl. Catal. B, 2001, 30(1-2):151-162.
    
    [28] Park P W and Boyer C L. Effect of SO_2 on the activity of Ag/ Y -Alumina Catalysts for NO_x reduction in lean conditions. Appl. Catal. B, 2005, 59(1-2):27-34.
    
    [29] Haneda M, Kintaichi Y and Hatnada H. Effect of S0_2 on the catalytic activity of Ga_20_3-Al_20_3 for the selective reduction of NO with propene in the presence of oxygen. Appl. Catal. B, 2001, 31(3):251-261.
    
    [30] Meunier F C and Ross J R H. Effect of ex situ treatments with S0_2 on the activity of a low loading silver-alumina catalyst for the selective reduction of NO and N0_2 by propene. Appl. Catal. B, 2000,24(1):23-32.
    
    [31] Venkov T, Hadjiivanov K and Klissurski D. IR spectroscopy study of NO adsorption and N0+0_2 co-adsorption on A1_2O_3, Phys. Chem. Chem. Phys., 2002, 4, 2443-2448.
    [32]Haneda M,Bion N,Daturi M et al.In situ Fourier Transforn Infrared study of the selective reduction of NO with propene over Ga_2O_3-Al_2O_3.J.Catal.,2002,206(1):114-124.
    [33]Meunier F C,Breen J P,Zuzaniuk V et al.Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts.J.Catal.,1999,187(2):493-505.
    [34]He H,Zhang Ch B,Yu Y B.A comparative study of Ag/Al_2O_3 and Cu/Al_2O_3 catalysts for the selective catalytic reduction of NO by C_3H_6.Catal.Today,2004,90(3-4):191-197.
    [35]柯锐,李俊华,郝吉明等.低温等离子体协同Ag/Al_2O_3选择性催化丙烯还原氮氧化物反应的原位红外光谱研究.催化学报,2005,26(11)951-955.
    [36]Zhu M L,Woo S I and Lee W S.In Situ FI-IR Studies on the Mechanism of Selective Catalytic Reduction of NOx by Propene over SnO_2/Al_2O_3 Catalyst.J.Phys.Chem.B,2006,110:26019-26023.
    [37]Sparks D E,Patterson P M,Jacobs G et al.Bi_2O_3/Al_2O_3 catalysts for the selective reduction of NO with hydrocarbons in lean conditions.Appl.Catal.B,2006,65(1-2):44-54.
    [38]Shimizu K,Kawabata H,Maeshima H et al.Intermediates in the selective redutio of NO by propene over Cu-Al_2O_3 catalysts:transient in-situ FTIR study.J.Phys.Chem.B,2000,104:2885-2893.
    [1]Wang D H,Hao Z P,Cheng D Y et al.Influence of pretreatment conditions on low-temperature CO oxidation over Au/MO_x/Al_2O_3 catalysts.J.Mol.Catal.A,200(1-2):229-238.
    [2]Lambrou P.S,Savva P.G,Fierro J.L G et al.The effect of Fe on the catalytic behavior of Model Pd-Rh/CeO_2-Al_2O_3 three-way catalyst.Appl.Catal.B,2007,76(3-4):375-385.
    [3]邹旭华.CO低温氧化负载型纳米金催化剂的制备及催化性能研究:(博士学位论文).北京:北京化工大学,2006.
    [4]Niakolas D,Andronikou Ch,Papadopoulou Ch et al.Influence of metal oxides on the catalytic behavior of Au/Al_2O_3 for the selective reduction of NO_x by hydrocarbons.Catal.Today,2006,112(1-4):184-187.
    [5]张万生.IrFe催化剂上一氧化碳选择氧化反应研究:(博士学位论文).大连:大连化学物理研究所,2008.
    [6]J.A.Dumecic,H.Topsoe,Mossbauer spectroscopy application to heterogeneous catalysis.Adv.in Catal.,1977,26:121-239.
    [7]李永希,夏元复,催化剂表面科学与穆谱堡尔谱学,科学出版社,1986.
    [8]Hobson M C and Campbell A D.Mossbauer effect spectra of a supported iron catalyst.J.Catal.,1967,8:294-298.
    [9]Yoshioko T,Koezuka J and Ikoma H.Mossbauer spectral observation on the supported iron catalyst.J.Catal.,1970,16(2):264-271.
    [10]Khoudiakov M,Gupta M C and Deevi S.Au/Fe_2O_3 nanocatalysts for CO oxidation:A comparative study of deposition-precipitation and coprecipitation techniques.Appl Catal A,2005,291(1-2):151-161.
    [11]Siberova B A A,Mul G,Makkee M et al.DRIFTS study of the water-gas shift reaction over Au/Fe_2O_3.J Catal.,2006,243(1):171-182.
    [12] Venugopal A and Scurrell M S. Low temperature reductive pretreatment of Au/Fe_2O_3 catalysts TPR/TPO studies and behaviour in the water-gas shift reaction. Appl Catal A, 2004, 258(2): 241-249.
    
    [13] Hua J M, Zheng Q, Zheng Y H et al. Influence of modifying additives on the catalytic activity and stability of Au/Fe_20_3-M0_x catalysts for the WGS reaction. Catal. Lett. ,2005,102(1-2): 99-108.
    
    [14] Hua J M, Wei K M, Zheng Q et al. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction. Appl Catal A, 2004, 259(1): 121-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700