用户名: 密码: 验证码:
连续波光腔衰荡光谱装置的建立及其在非平衡等离子体HO_2和OH自由基定量测定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高气压低温等离子体属于非平衡体系,其中中性粒子、离子的温度较低,而电子温度可高达数十万度,从而可由电子碰撞产生大量活性物种,引发一系列在常规手段下难以进行的物理-化学过程。自由基一般被认为是引发各种化学反应过程的重要活性物种,因此对等离子体中自由基的浓度进行原位定量诊断就成为研究和改进等离子体工艺,探索等离子体中基元物理-化学过程的重要手段。由于等离子体中自由基具有很高的反应活性,因而浓度较低,这就需要采用灵敏度较高的诊断技术。光腔衰荡光谱技术是上世纪八十年代末兴起的一种全新的激光吸收光谱技术。与传统的吸收光谱技术相比,光腔衰荡光谱技术具有极长吸收程和对光源光强波动不敏感两大优点,因此具有极高的探测灵敏度,特别适合痕量物质的检测。
     本论文将光腔衰荡光谱技术与介质阻挡放电技术相结合,对介质阻挡放电等离子体产生的自由基进行光腔衰荡光谱原位定量测量,主要取得以下结果:
     1.建立了国内首台连续波光腔衰荡光谱装置。在谐振腔长42 cm,放电电极长度10 cm,高反镜的反射率99.994%的条件下,所建光腔衰荡光谱装置的最小检测灵敏度为3×10~(-8)m~(-1),相应的HO_2自由基的最小探测数密度为1×10~(11) molecules cm~(-3),表明本设备的主要性能指标达到国际先进水平。
     2.利用连续波光腔衰荡光谱技术,首次对HCHO/O_2/H_2O/N_2低温等离子体中的HO_2自由基的数密度进行了定量研究。以HO_2基电子态((?)~2A")的H-OO伸缩振动的第一泛频谱带为研究对象,一定实验条件下(U_P=6.5 kV,f_(a.c.)=5 kHz,1900 ppm HCHO,3.5%H_2O,P_(total)=30 Torr),HCHO/O_2/H_2O/N_2 DBD放电过程中产生的HO_2自由基的数密度最初随体系中O_2含量的增加而增加,当氧气含量为20%时,HO_2的数密度到达最大值(1.3×10~(13)molecules cm~(-3)),此后随O_2含量的增加而缓慢下降。考察了HO_2数密度随放电气压和电压变化规律时,亦均出现极值现象。
     采用“时间窗”方法,研究了半个放电周期内HO_2数密度的时间演变行为。一定实验条件下(U_P=4.5 kV,f_(a.c.)=5 kHz,1900 ppm HCHO,20%O_2,3.5%H_2O,P_(total)= 30 Tort),放电电压.电流波形图显示放电为丝状放电模式,将时间窗的时间尺度设为2μs,研究结果显示,以放电电流的第一个脉冲对应的时间为基准点,HO_2的数密度在5μs内迅速增大至极值,而后逐渐减小。
     3.首次利用连续波光腔衰荡光谱技术,对常压介质阻挡放电中的OH自由基的数密度进行了定量研究。利用OH基电子态(X~2Π_i)v'=2←v"=0泛频谱带,求得OH电子基态振动基态不同转动能级(P_1(7.5)e、P_2(6.5)f、P_1(6.5)f、P_1(6.5)e、P_2(5.5)f和P_1(5.5)e)上的粒子数分布,通过玻尔兹曼图解法对OH的转动温度进行了计算并考察了OH的转动温度随放电电压的变化情况。结果表明:在一定放电条件下(1 atm,6700 ppm H_2O/He,放电频率f_(a.c.)=70 kHz),当外加电压从6 kV升高至10.4 kV时,转动温度从312±10 K近线性增长至363±10 K,相应的OH的总的数密度由(2.1±0.1)×10~(13)molecule cm~(-3)增加至(3.7±0.1)×10~(13) molecule cm~(-3)。当体系中加入少量的N_2或O_2时,OH的数密度分别在3%(N_2)和1%(O_2)出现极值。
In non-equilibrium plasmas, the electrons may be much hotter (with temperatures in the range of tens of thousands up to a hundred thousand Kelvin) than the ions and neutrals, whose translational temperatures are essentially equal and typically range from room temperature to a few times the room temperature. Non-equilibrium plasmas thus represent environments where very energetic chemical processes can occur (via the plasma electrons) at low ambient temperatures. The generation of chemically reactive free radicals by electron impact dissociation in molecular plasmas is an important precursor for plasma chemical reactions. Therefore, measurements of the radical number density are needed to characterize experiments and study physico-chemical processes. However, determining the radical concentration is a challenging problem in the atmosphere or in laboratory experiments because of its short lifetime and low concentration. In order to improve the detection sensitivity, various ultra-sensiive techniques have been developed. The technique of cavity ring-down spectroscopy (CRDS) has been developed in 1980s. The advantage of CRDS over normal absorption spectroscopy results from, firstly, the intrinsic insensitivity to light source intensity fluctuations and, secondly, the extremely long effective path lengths. In the past decades, the CRD technique has been especially powerful in gas-phase spectroscopy for absolute concentration measurements of trace gas.
     The present work reports the determination of OH and HO_2 radicals in dielectric barrier discharge plasmas via continuous wave cavity ring-down spectroscopy. The main results presented in the dissertation have been summarized as followings:
     1. An apparatus of continuous wave cavity ring-down spectroscopy (cw-CRDS) has beenconstructed for the fisrt time in China. The minimum measurable absorption coefficient for our setup is about 3×10~(-8) cm~(-1) in DBD plasmas, corresponding to an HO_2 radical number density of- 1×10~(11) molecules cm~(-3), which shows that the main technological characteristics of this instrument have reached the international level.
     2. HO_2 radical number density in non-equilibrium plasmas has been experimentally determined for the first time via cw-CRDS. HO_2 radicals were observed in discharges of HCHO/O_2/H_2O/N_2 mixtures around 6625.7 cm~(-1) in the first H-OO stretching overtone, (2, 0, 0) - (0, 0, 0), of its ground electronic state (?)~2A". At certain discharge conditions (a.c. frequency of 5 kHz, peak-to-peak voltage of 6.5 kV, 1900 ppm HCHO, 3.5% H_2O in N_2, P_(total)= 30 Torr), HO_2 concentration rises as oxygen concentration increases initially but declined with its further increase. The effects of water concentration, the discharge voltage and the discharge gas pressure on the concentration of HO_2 radicals have been investigated.
     The temporary evolution of HO_2 concentration within a half period of the sine wave applied voltage (U_P = 4.5 kV,f_(a.c.) = 5 kHz, 1900 ppm HCHO, 20% O_2, 3.5% H_2O in N_2, P_(total) = 30 Torr) has been studied using the method of "time window". The result shows that the concentration of HO_2 radical increases rapidly during the first 5μs following the first discharge current pulse. After its peak value, HO_2 concentration decreases slowly.
     3. The hydroxyl radical, generated in atmospheric DBD plasmas, has been determined via cw-CRDS for the first time. The P-branches of OH X~2Π_i (v' = 2←v" = 0) bands were used for its number density measurements. P_1(7.5)e, P_1(6.5)e, P_1(6.5)f and P_1(5.5)e lines of X~2Π_(3/2) transition together with P_2(6.5)f and P_2(5.5)f lines of X~2Π_(1/2) transition were used to measure the OH rotational temperature (T_R). At certain experimental conditions (a.c. frequency of 70 kHz, 6700 ppm H_2O in He, 1 atm.), when the peak-to-peak discharge voltage varied from 6 kV to 10.4 kV, the determined OH radical concentration increased from (2.1±0.1)×10~(13) molecules cm~(-3) to (3.7±0.1)×10~(13) molecules cm~(-3). The plasma gas temperature, derived from the Boltzmann plots of OH rotational population distributions, ranged from 312±10 K to 363±10 K, when the discharge voltage was raised in the above range. The influences of O_2 and N_2 addition on the production of OH radicals have been also investigated.
引文
[1] Tonks L, Langmuir I. Oscillations in ionized gases. Phys. Rev. 1929, 33 (2): 195-210.
    
    [2] Gherardi N, Gouda G, Gat E et al. Transition from glow silent discharge to micro-discharges innitrogen gas. Plasma sources Sci. Technol. 2000, 9 (3): 340-346.
    
    [3] Massines F, Rabehi A, Decomps P et al. Experimental and theoretical study of a glowdischarge at atmospheric pressure controlled by a dielectric barrier. J. Appl. Phys. 1998, 83(6): 2950-2957.
    
    [4] Duan Y X, Wang C J, Susan T S et al. Development of alternative plasma sources for cavityring-down measurements of mercury. Anal. Chem. 2005,77 (15): 4883-4889.
    
    [5] Klages C P, Eichler M, Thyer R. Atmospheric pressure PA-CVD of solicon- and carbon-basedcoatings using dielectric barrier discharges. New Diamond Front C Tec 2003, 13 (4):175-189.
    
    [6] Chang M B, Yang S C. NO/NOx removal with C_2H_2 as additive via dielectric barrierdischarges. AICHEJ. 2001,47 (5): 1226-1233.
    
    [7] Dorai R, Kushner M J. A model for plasma modification of polypropylene using atmosphericbarrier discharges. J. Phys. D: Appl. Phys. 2003, 36 (6): 666-685.
    
    [8] Becker K H, Kogelschatz U, Schoenbach K H et al. Non-equilibrium air plasmas atatmospheric pressure. IOP Institute of Physics Publishing, 2005.
    
    [9]赵华侨.等离子体化学与工艺.中国科技大学出版社,1993.
    
    [10] Kitayama J, Kuzumoto M. Theoretical and experimental study on ozone generationcharacteristics of an oxygen-fed ozone generator in silent discharge. J. Phys. D: Appl. Phys.1997, 30 (17): 2453-2461.
    
    [11] Behnke J F, Lange H, Michel P. The cleaning process of metallic surfaces in barrierdischarges. Proc. 5~(th), Int, Symp. On High pressure low temperature plasma chemistry(HAKONE V) Janca J et al. Milovy/Czech Rep. 1996, 138-142.
    
    [12] Schmidt-Szalowski K, Rzanek-Boroch Z, Sentek et al. Thin film deposition fromhexamethyldisiloxane and hexamethyl-disilazane under dielectric barrier discharge (DBD)conditions. Plasmas and Polymers 2000, 5 (3-4): 173-176
    
    [13] Sonnenfeld A, Tun T M, Zajickova M et al. Deposition process based organosiliconprecursors in dielectric barrier discharges at atmospheric pressure. Plasma Poly. 2001, 6 (4):237-241.
    
    [14] Khacef A, Cormier J M, Pouvesle J M. NO_x remediation in oxygen-rich exhaust gas usingatmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrierdischarge. J. Phys. D: Appl. Phys. 2002,35 (13): 1491-1498.
    
    [15] Storch D G, Kushner M J, Destruction mechanisms for formaldehyde in atmospheric pressurelow temperature plasmas. J. Appl. Phys. 1993, 73 (1): 51-55.
    
    [16] Forner S N, Hudson R L. Mass Spectrometry of the HO_2 Free Radical. J.Chem. Phys. 1962,36 (10): 2681-2688.
    
    [17] Korbeinichev O P. Composition distortion in MBMS sampling. Combustion and Flame. 1995,103 (3): 171-174.
    
    [18] Hsu W L, Tung D M. Application of molecular beam mass spectroscopy to chemical vapordeposition studies. Rev. Sci. Instrum. 1992, 63 (9): 4138-4140.
    
    [19] Wang W C, Belyaev A K, Xu Y et al. Observations of H_3~- and D_3~- from dielectric barrierdischarge plasmas. Chem. Phys. Lett. 2003, 377 (5-6): 512-518.
    
    [20] Wang W G, Xu Y, Yang X F et al. Determination of atomic hydrogen in non-thermalhydrogen plasmas by means of molecular beam threshold ionization mass spectroscopy.Rapid Communication in Mass Spectroscopy, 2005,19 (9): 1159-1166.
    
    [21] Wang W G, Xu Y, Zhu A M et al, Observations of long-lived H_2~- and D_2~- ions fromnon-thermal plasmas, J. Phys. B: At. Mol. Opt. Phys. 2007,40 (5): 921-933.
    
    [22] Wang W G, Xu Y, Geng Z C et al Determination of atomic hydrogen density in non-thermalhydrogen plasmas via emiision actinometry. J. Phys. D: Appl. Phys.2007, 40 (14):4185-4189.
    
    [23] Taniguchi M, Hirose M, Hamasaki T. Novel effects of magnetic field on the silane glowdischarge. Appl. Phys. Lett. 1980, 37 (9): 787-788.
    
    [24] Laux C O, Gessman R J, Kruger C H et al. Rotational temperature measurements in air andnitrogen plasmas using the first negative system of N_2~- ion. JQSRT, 2001, 68 (4): 473-482.
    
    [25] Poenariu V, Wertheimer M R, Bartnikas R. Spectroscopic diagnostics of atmosphericpressure helium dielectric barrier discharges in divergent fields. Plasma Proc. Poly. 2006, 3(1): 17-29.
    
    [26] Coburn J W, Chen M. Optical emission spectroscopy of reactive plasmas: a method forcorrelating emission intensities to reactive particle density. J. Appl. Phys. 1980, 51 (6):3134-3136.
    
    [27] Geng Z C, Xu Y, Yang X F et al. Atomic hydrogen determination in medium-pressuremicrowave discharge in hydrogen plasmas via emission actinometry. Plasma Sources Sci.Technol. 2005, 14(1): 76-82.
    
    [28] Gottscho R A, Davis G P, Burton R H. Spatially resolved laser-induced fluorescence andoptical emission spectroscopy of carbon tetrachloride glow discharges. Plasma Chem.Plasma Proc. 1983,3(2): 193-218.
    
    [29] Moore C A, Davis G P, Gottscho R A. Sensitive, Nonintrusive, In-Situ Measurement ofTemporally and Spatially Resolved Plasma Electric Fields. Phys. Rev. Lett. 1984, 52 (7):538-542.
    
    [30] Harris P J, Kushner M J. Detection of CF_2 radicals in a plasma etching reactor bylaser-induced fluorescence spectroscopy. Appl. Phys. Lett. 1982,40 (9): 779-781.
    
    [31] Donnelly V M, Flamm D L, Collins G. Laser diagnostics of plasma etching: measurement ofCl_2~+ in a chlorine discharge. J. Vac. Sci. Technol. 1982,21 (3): 817-823.
    
    [32] Ershov A, Borysow J. Dynamics of OH (X~2 Π, v = 0) in high-energy atmospheric pressureelectric pulsed discharge. J. Phys. D: Appl. Phys. 1995,28 (1): 68-74.
    
    [33] Sankaranarayanan R, Pashaie B, Dhali S K, Laser-induced fluorescence of OH radicals in adielectric barrier discharge. Appl. Phys. Lett. 2000,77 (19): 2970-2972.
    
    [34] Wolfgang Demtroder. Laser spectroscopy: Basic Concepts and Instrumentation (ThirdEdition). Verlag Berlin Heidelberg New York: Springer, 2003.
    
    [35] Jackson D A. The Spherical Fabry-Perot Interferometer as an Instrument of High ResolvingPower for use with External or with Internal Atomic Beams. Proc. of Royal Soc. London, Ser.A, 1961,263:289-308.
    
    [36] Kastler A. Transmission d'une impulsion lumineuse par un interfkromhtre de Fabry-Perot.Nouv. Rev. Optique (Paris). 1974, 5 (1): 133-139.
    
    [37] Herbelin J M, McKay J A, M A. Sensitive measurement of photon lifetime and truereflectances in an optical cavity by a phase-shift method. Appl. Opt. 1980, 19 (1), 144-147.
    
    [38] Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decaytime. Appl. Opt. 1984,23 (8), 1238-1245.
    
    [39] Crawford T M. Error sources in the ring down optical cavity decay time mirror reflectometer.Proceedings of the Society of Photo-Optical Instrumentation Engineers. 1985, 540: 295-302.
    
    [40] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorptionmeasurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59 (12): 2544-2551.
    
    [41] O'Keefe A, Scherer J J, Cooksy A L et al. Cavity ring down dye laser spectroscopy ofjet-cooled metal clusters: Cu_2 and Cu_3. Chem. Phys. Lett. 1990, 172 (3-4): 214-217.
    
    [42] Romanini D, Lehmann K K. Ring-down cavity absorption spectroscopy of the very weakHCN overtone bands with six, seven, and eight stretching quanta, J Chem. Phys. 1993, 99 (9):6287-6301.
    
    [43] Romanini D, Lehmann K K. Calculation of the Herman-Wallis effect in Π-Σ vibrationalovertone transitions in a linear molecule: Comparison with HCN experimental results, JChem. Phys. 1996, 105 (1): 68-80.
    
    [44] Mejer G, Boogaarte MGH, Wodtke A M. Coherent cavity ring down spectroscopy. Chem.Phys. Lett. 1994,217(1-2): 112-116.
    
    [45] Engeln R, van den Berg E, Meijer G. Cavity ring down spectrocopy with a free-electron laser.Chem. Phys. Lett. 1997, 269 (3-4): 293-297.
    
    [46] Zalicki P, Ma Y, Zare R N, Measurement of the methyl radical concentration profile in ahot-filament reactor, Appl. Phys. Lett. 1995, 67 (1): 144-146.
    
    [47] Scherer J J. Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS), Chem. Phys.Lett. 1995, 245 (2-3): 273-280.
    
    [48] Scherer J J, Paui J B, Collier J P et al. Cavity ringdown laser absorption spectroscopy andtime-of-flight mass spectroscopy of jet-cooled silver silicides Cavity ringdown laserabsorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled silver silicides. JChem. Phys. 1995,103 (1): 113-120.
    
    [49] Romanini D, Kachanov A A, Sadeghi N et al. Cw cavity ringdown spectroscopy, Chem. Phys.Lett. 1997,264 (3-4): 316-319.
    
    [50] Paldus B A, Harb C C, Richman B A, XXVIth FACSS Conference, paper #291,24-29,October 1999, Vancouver, BC, Canda. Federation of Analytical Chemsitry and SpectroscopySocieties. P. 41-45.
    
    [51] Paldus B A, Harb C C, Spence T G et al. Cavity-locked ring-down spectroscopy, J. Appl.Phys. 1998, 83 (8): 3991-3997.
    
    [52]戴东旭,孙福革,康路等.高重复频率实时采集的光腔衰荡光谱.化学物理学报.1997, 10(6):481-485.
    
    [53]赵宏太,柳晓军,王谨等.用光腔衰荡测定腔镜及镜片的反射率.光电子激光.2001,12 (1):71-73.
    
    [54]李利平,刘涛,李刚等.超高精细度光学腔中低损耗的测量.物理学报.2004,53(5): 1401-1405.
    
    [55]陈丽敏,万景瑜.用CEAS方法精确测量10μm波段高反射镜的反射率.华北电力大学 学报.2004,31(1):106-108.
    
    [56]裴世鑫,高晓明,崔芬萍等.基于扫描激光的腔增强吸收光谱技术.光学与光电技术. 2004,2(6):30-33.
    
    [57]龚元,李斌成.宽谱连续波复合衰荡光腔技术测量高反射率.中国激光.2007,34(6): 857-860.
    
    [58]谭中奇,龙兴武.连续波腔衰荡技术原理推导及实验研究.应用激光.2006,26(6): 452-456.
    
    [59]谭中奇,龙兴武.模式失配对连续波腔衰荡技术测量的影响.中国激光.2007,34(7): 962-966.
    
    [1]杜祥琬.高技术要览-激光卷.北京:中国科学出版社,2003.
    
    [2] Wolfgang Demtroder. Laser spectroscopy: Basic Concepts and Instrumentation (Third Edition). Verlag Berlin Heidelberg New York: Springer, 2003.
    
    [3]吕百达.激光光学-光束描述、传输变换与光腔技术物理(第三版).北京:高等教育出 版社,2003.
    
    [4]周炳琨,高以智,陈倜嵘.激光原理(第四版).北京:国防工业出版社,2000.
    
    [5] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorptionmeasurements using pulsed laser sources. Rev. Sci. Instrum. 1988,59 (12): 2544 - 2551.
    
    [6] Meijer G, Boogaarts M G H, Jongma R T et al. Coherent cavity ring down spectroscopy. Chem.Phys. Lett. 1994,217 (1-2): 112-116.
    
    [7] Zalicki P, Zare R N. Cavity ring-down spectroscopy for quantitative absorption measurements.J. Chem. Phys. 1995,102 (7): 2708-2717.
    
    [8] O'Keefe A, Scherer J J, Paul J B. Cw Integrated cavity output spectroscopy. Chem. Phys. Lett.1999, 307 (5-6): 343-349.
    
    [9] Scherer J J, Voelkel D, Rakestraw D et al. Infrared cavity ringdown laser absorptionspectroscopy (IR-CRLAS). Chem, Phys. Lett. 1995,245 (2-3): 273-280.
    
    [10] Lehmann K, Romanini D. The superposition principle and cavity ring-down spectroscopy. J.Chem. Phys. 1996,105 (23): 10263-10277.
    
    [11] Hodges J, Looney J, van Zee R. Response of a ring-down cavity to an arbitrary excitation. J.Chem. Phys. 1996,105 (23): 10278-10288.
    
    [12] Schulz K. J, Simpson W R. Frequency-matched cavity ring-down spectroscopy. Chem. Phys.Lett. 1998,297 (5-6): 523-529.
    
    [13] Hahn J W, Yoo Y S, Lee J Y et a/. Cavity ringdown spectroscopy with a continuous-wavelaser: calculation of coupling efficiency and a new spectrometer design. Appl. Opt. 1999, 38(9): 1859-1866.
    
    [14] He Y B, Hippler M, Quack M. High-resolution cavity ring-down absorption spectroscopy ofnitrous oxide and chloroform using a near-infrared cw diode laser. Chem. Phys. Lett. 1998,289 (5-6): 527-534.
    
    [15] Curran R, Crook T, Zook J. Measurement of optical absorption in very thin low-loss SiO_2films. Materials Research Society Symposia Proceedings. 1988, 105: 175-180.
    
    [16] Lehmann K. Ring-down cavity spectroscopy cell using continuous wave excitation for tracespecies detection. U.S. Patent No: 5528040. 1996.
    
    [17] Romanini D, Kachanov A A, Sadeghi N et al. Cw cavity ringdown spectroscopy, Chem. Phys.Lett. 1997,264 (3-4): 316-319.
    
    [18] Paul J B, Lapson L, Anderson J G. Ultrasensitive absorption spectroscopy with a high-finessse optical cavity and off-axis alignment. Appl. Opt. 2001, 40 (27): 4904-4910.
    
    [1]http://www.newfocus.com
    
    [2]孙爱晶.光隔离器的结构类型研究.西安邮电学院学报.2003.8(3):27-30.
    
    [3]曹跃祖.声光效应原理及应用.物理与工程.2000,10(5):46-52.
    
    [4]坚如.线性集成电路应用指南,北京:电子工业出版社,1994.
    
    [5]张金涛,刘士奎,余有龙.基于Labview的GPIB总线的研究.哈尔滨师范大学自然科学学 报.2005,21(1):10-13.
    
    [6]侯国屏,王坤,叶齐鑫等.Labview7.1编程与虚拟仪器设计.北京:清华大学出版社, 2005.
    
    [1] Newman L. Measurement methods for peroxy radicals in the atmosphere. In Measurementchallenges in atmospheric chemistry. Adv. Chem. Ser. No. 232, Washington, DC:American Chemical Society, 1993.
    
    [2] Ding H X, Zhu A M, Yang X F et al. Removal of formaldehyde from gas streams viapacked-bed dielectric barrier discharge plasmas. J. Phys. D: Appl. Phys. 2005, 38 (23):4160-4167.
    
    [3] Malik L A, Ghaffar A, Malik S A. Water purity by electric discharges. Plasma Sources Sci.Technol. 2001, 10(1): 82-91.
    
    [4] Wennberg P O. Atmospheric chemistry-radicals follow the sun. Nature. 2006, 442 (7099):145-146.
    
    [5] Pitz W J, Westbrook C K. Chemical kinetics of the high pressure oxidation of n-butane andits relation to engine knock. Combust. Flame. 1986, 63 (1-2): 113-133.
    
    [6] Hochanadel C J, Ghormley J A, Ogren P J. Absorption spectrum and reaction kinetics of theHO_2 radical in the gas phase. J Chem. Phys. 1972, 56 (9): 4426-4432.
    
    [7] Hunziker H E, Wendt H R. Near infrared absorption spectrum of HO_2. J. Chem. Phys. 1974,60 (11): 4622-4623.
    
    [8] Burkholder J B, Hammer P D, Howard C J. Fourier transform spectroscopy of the v_2 and v_3bands of HO_2. J. Mole. Spectrosc. 1992, 151 (2): 493-512.
    
    [9] Yardley B. The microwave spectrum of HO_2 near 65 GHz. J. Chem. Phys. 1975, 63 (10): 4212-4216.
    
    [10] Fink E H, Ramsay D A. High-resolution of the (?)A'- (?)~2A " transition of HO_2: Analysis ofthe 000-000 band. J. Mole. Spectrosc. 1997, 185 (2): 304-324.
    
    [11] DeSain J D, Andrew D Ho, Taatjes C A. High-resolution diode laser absorptionspectroscopy of the O-H stretch overtone band (2,0,0) → (0,0,0) of the HO_2 radical. J.Mole. Spectrosc. 2003,219(1): 163-169.
    
    [12] Johnson T J, Wienhold F G, Burrows J P. Measurements of line strengths in the HO_2 v/overtone band at 1.5 /an using an InGaAsP laser. J. Phys. Chem. 1991,95 (17): 6499-6502.
    
    [13] Zahniser M S, McCurdy K E, Stanton A C. Quantitative spectroscopic studies of the HO2 radical: band strength measurements for the v_1and v_2 vibrational bands. J. Phys. Chem. 1989,93(3): 1065-1070.
    
    [14] Thebaud J, Fittschen C. Near infrared cw-CRDS coupled to laser photolysis: Spectroscopy and kinetics of the HO_2 radical. Appl. Phys. B. 2006, 85 (2-3): 383-389.
    
    [15] Storch D G, Kushner M J. Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. J. Appl. Phys. 1993, 73 (1): 51-55.
    
    [16]李步通,魏子章,潘清江.HO_2自由基电子激发态的理论研究.高等学校化学学报. 2006,27(11):2168-2170.
    
    [17] Jole J L, Hayer E F. Noempirical LCAO MO SCF and CI studies of the low lying electronicstate of the HOO radical. J. Chem. Phys. 1972, 57 (1): 360-363.
    
    [18] Webber M E, Kim S, Sanders S T et al. Diode laser measurements of NH_3 and CO_2 forcombustion and bioreactor applications. (Doctoral dissertation). United States: StanfordUniversity, 2001.
    
    [19] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospherictrace gas detection application to the nitrate radical (NO_3). Appl. Phys. B. 2002, 75 (2-3):173-182.
    
    [20] Eichwald O, Yousfi M A, Benabdessadok M D. Coupling of chemical kinetics, gasdynamics, and charged particle kinetics models for the analysis of NO reduction from fluegases. J. Appl. Phys. 1997, 82 (10): 4781-4794.
    
    [21] Baulch D L, Cobos C J, Cox R A et al. Evaluated kinetic data for combustion modeling. J.Phys. Chem. Ref. Data, 1992, 21 (3): 411-429.
    
    [22] Baulch D L, Cobos C J, Cox R A et al. Evaluated kinetic data for combustion modeling. J.Phys. Chem. Ref. Data. 1994, 23 (6): (Suppl. I) 847-1033.
    [23] Atkinson R, Baulch D L, Cox R A et al. Evaluated kinetic and photochemical data for atmospheric chemistry, organic species. J. Phys. Chem. Ref. Data. 1999 28 (2): (Suppl. VII) 191-393
    [24] Baulch D L Cox R A, Hampson R F et al. Evaluated kintic and photochemical data for atmospheric chemistry. J. Phys. Chem. Ref. Data. 1980,9 (2): 295-472.
    [25] Friedrichs G, Herbon J T, Davidson D F et al. Quantitative detection of HCO behind shock waves: the thermal decomposition of HCO. Phys. Chem. Chem. Phys. 2002, 4 (23): 5778-5788.
    [26] Tsang W and Hampson R F. Chemical kinetic data base for combustion chemistry, Part I, Methane and related compounds. J. Phys. Chem. Ref. Data. 1986,15 (3): 1087-1279.
    [27] Melton C E. Cross sections and interpretation of dissociative attachment reactions producing OH~-, O~- and H~- in H_2O.J Chem. Phys. 1972, 57 (10): 4218-4225.
    
    
    [1] Chang M B, Yang S C. NO/NOx removal with C_2H_2 as additive via dielectric barrierdischarges. AICHE J. 2001,47 (5): 1226-1233.
    
    [2] Akitsu T, Ohkawa H, Tsuji M et al. Plasma sterilization using glow discharge at atmosphericpressure. Surface and Coatings Technol. 2005, 193 (1-3): 29-34.
    
    [3] Ershov A, Borysow J. Dynamics of OH (X~2 Π, v= 0) in high-energy atmospheric pressureelectric pulsed discharge. J. Phys. D: Appl. Phys. 1995,28 (1): 68-74.
    
    [4] Sankaranarayanan R, Pashaie B, Dhali S K. Laser-induced fluorescence of OH radicals in adielectric barrier discharge. Appl. Phys. Lett. 2000,77 (19): 2970-2972.
    
    [5] Sun M, Wu Y, Li J et al. Diagnosis of OH radical by optical emission spectroscopy inatmospheric pressure unsaturated humid air corona discharge and its implication todesulphurization of flue gas. Plasma Chem. Plasma Proc. 2005,25 (1): 31-40.
    
    [6] Falkenstein Z. The influence of ultraviolet illumination on OH formation in dielectric barrierdischarges of Ar/O_2/H_2O: The Joshi effect. J. Appl. Phys. 81 (11): 7158-7162.
    
    [7] Killinger D K, Wang C C. Absorption measurements of OH using a cw tunable laser. Chem.Phys. Lett. 1977, 52 (1): 374-376.
    
    [8] Mount G H, Eisele F L. An intercomparison of tropospheric OH measurements at Frita peakobservatory, Colorado. Science. 1992, 256 : 1187-1190.
    
    [9] Bakalyar D M, James J V, Wang C C. Absorption technique for OH measurements andcalibration. Appl. Optics. 1982, 21 (16): 2901-2905.
    
    [10] Meijer G, Boogaarts M G H, Jongma R T et al. Coherent cavity ring down spectroscopy.Chem. Phys. Lett. 1994, 217 (1-2): 112-116.
    
    [11] Beek M C, Meulen J J. An intense pulsed electrical discharge source for OH molecular beams. Chem. Phys. Lett. 2001, 337 (4-6): 237-242.
    
    [12] Wang C, Mazzotti F J, Koirala S P et al. Measurements of OH radicals in a low-poweratmospheric inductively coupled plasma by cavity ringdown spectroscopy. Appl. Spectrosc.2004, 58 (6): 734-740.
    
    [13] Scherer J J, Voelkel D, Rakestraw D J. Infrared cavity ringdown laser absorptionspectroscopy (IR-CRLAS) in low pressure flames. Appl. Phys. B. 1997,64 (6): 699-705.
    
    [14] Peeters R, Berden G, Meijer G. Near-infrared cavity enhanced absorption spectroscopy ofhot water and OH in an oven and in flames. Appl. Phys. B. 2001, 73 (1): 65-70.
    
    [15]G赫兹堡.简单自由基的光谱和结构:分子光谱学导论科学出版社1989.
    
    [16] http://cfa-www.harvard.edu/hitran/
    
    [17] Webber M E. Diode laser measurements of NH_3 and CO_2 for combustion and dioreactor application (dissertation). United States: Stanford University. 2001.
    
    [18]徐克尊 高等原子分子物理学.北京:科学出版社,2000.
    
    [19] Claydon C R, Segal G A, Taylor H S. Theoretical interpretation of the optical and Electronscattering spectra of H_2O. J. Chem. Phys. 1971,54 (9): 3799-3816.
    
    [20] Gorfinkiel J D, Morgan L A, Tennyson J. Electron impact dissociative excitation of waterwithin the adiabatic nuclei approximation. J. Phys. B: Atomic Phys. Opt. Phys. 2002, 35 (3):543-555.
    
    [21] Harb T, Kedzierski W, McConkey J W. Production of ground state OH following electronimpact on H_2O. J. Chem. Phys. 2001,115 (12): 5507-5512.
    
    [22] Itikawa Y, Masson N. Cross sections for electron collsions with water molecules. J. Phys.Chem. Ref. Data. 2005, 34 (1): 1-22.
    
    [23] Behringer K, Fantz U. Spectroscopic diagnostics of glow discharge plasmas withnon-Maxwellian electron energy distributions. J. Phys. D: Appl. Phys. 1994, 27 (10):2128-2135.
    
    [24] Penetrante B M, Hsiao M C, Merritt B T. Pulsed corona and dielectric-barrier dischargeprocessing of NO in N_2. Appl. Phys. Lett. 1996, 68 (26): 3719-3721.
    
    [25] Bultel A, Letellier C, Bourdon A. Dynamical analysis of a helium glow discharge. Phys.Lett. 2004,323 (3-4): 267-277.
    
    [26] Eichwald O, Yousfi M A, Benabdessadok M D. Coupling of chemical kinetics, gasdynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. J. Appl. Phys. 1997, 82 (10): 4781-4794.
    
    [27] Atkinson R, Baulch D L, Cox R A et al. Evaluated kinetics and photo chemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x, HO_x, NO_x and SO_x species. Atmos. Chem. Phys. 2004,4 (6): 1461-1738.
    
    [28] Herron J T. Evaluated chemical kinetics data for reactions of N (~2D), N (~2P) and N2_ (~3Σ_u~+) inthe gas phase. J. Phys. Chem. Ref. Data. 1999,28 (5): 1453-1483.
    
    [29] Binns W R, Ahl J L. Excitation and quenching reactions in E-beam excited He/H_2O andHe/CH_3CN system. J. Chem. Phys. 1978, 68 (2): 538-546.
    
    [30] Collins C B, Lee F W. Measurement of the rate coefficients for the bimolecular andtermolecular de-excitation reactions of He (2~3S) with selected atomic and molecular species.J. Chem. Phys. 1979, 70(3): 1275-1285.
    
    [31] Bibino N K v, Fateev A A, Wiesemann K. On the influence of metastable reactions onrotational temperatures in dielectric barrier discharges in He-N_2 mixtures. J. Phys. D: Appl.Phys. 2001,34(12): 1819-1826.
    
    [32] German K R. Direct measurement of the radiative lifetimes of the A ~2Σ~+ (V' = 0) states ofOH and OD. J. Chem. Phys. 1975, 62 (7): 2584-2587.
    
    [33] Bailey A E, Heard D E, Henderson D A et al. Collisional quenching of OH (A ~2Σ~+, v'= 0)by H_2O between 211 and 294 K and the development of a unified model for quenching.Chem. Phys. Lett. 1999,302 (1-2): 132-138.
    
    [34] Bailey A E, Heard D E, Paul P H et al. Collisional quenching of OH (A ~2Σ~+, v' = 0) by N_2,O_2 and CO_2 between 211 and 294 K. Implications for atmospheric measurements of OH bylaser-induced fluorescence. J. Chem. Soc. Faraday Trans. 1997,93 (16): 2915-2920.
    
    [35] Becher K H, Haaks D. Measurement of natural lifetimes and quenching rate constents ofOH (A~2Σ~+ ,v'= 0, 1) and OD (A~2Σ~, v'= 0, 1) radicals. Z. Naturforsch A. 1973, 28: 249-256.
    
    [36] Kim J H, Choi Y H, Hwang Y S. Electron density and temperature measurement method byusing emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas.Phys. Plasmas. 2006, 13 (9): 093501-1-093501-6.
    
    [37]刘东平.介质阻挡放电制备类金刚石薄膜及沉积机制的研究: (博士学位论文)大连 理工大学,2000.
    
    [38] Pouvesle J M. Bouchoule A, Stevefelt J. Modeling of the charge transfer afterglow excited by intense electrical discharge in high pressure helium nitrogen mixtures. J. Chem. Phys. 1982, 77 (2): 817-825.
    
    [39] Stoffels E, Stoffels W W, Tachibana K. Electron attachment mass spectroscopy as a diagnostics for electronegative gases and plasmas. Rev. Sci. Instrum. 1998,69 (1): 116-122.
    
    [1] Drucker S, Van Zanten J L, Gagnon N D et al. Triplet excited states probed by cavityringdown spectroscopy. J. Mol. Structure. 2004, 692 (1-3): 1-16.
    
    [2] Baynard T, Lovejoy E R, Pettersson A et al. Design and application of a pulsed cavityring-down aerosol extinction spectrometer for field measurements. Aerosol Sci. Technol.2007,41 (4): 447-462.
    
    [3] Riziq A A, Erlick C, Dinar E et al. Optical properties of absorbing and non-absorbing aerosolsretrieved by cavity ring down (CRD) spectroscopy. Atmospheric Chem. Phys. 2007, 7 (6):1523-1536.
    
    [4] Richman B A, Kachanov A A, Paldus B A et al. Novel detection of aerosols: combined cavityring-down and fluorescence spectroscopy. Opt. Exp. 2005, 13 (9): 3376-3387.
    
    [5] Thompson J E, Nasajpour H D, Smith B W et al. Atmospheric aerosol measurements by cavityring-down turbidimetry. Aerosol Sci. Technol. 2003, 37 (3): 221-230.
    
    [6] Sappey A D, Hill E S, Settersten T et al. Fixed-frequency cavity ring-down diagnostic foratmospheric particulate matter. Opt. Lett. 1998,23 (12): 954-956.
    
    [7] Bulatov V, Fisher M, Schechter I. Aerosol analysis by cavity-ring-down laser spectroscopy.Anal. Chimica Acta. 2002,466 (1): 1-9.
    
    [8] Bulatov V, Khalmanov A, Schechter I. Study of the morphology of a laser-produced aerosolplume by cavity ringdown laser absorption spectroscopy. Anal. Bioanal. Chem. 2003, 375 (8):1282-1286.
    
    [9] Strawa AW, Castaneda R, Owano T et al. The measurement of aerosol optical properties usingcontinuous wave cavity ring-down techniques. J. Atmospheric Oceanic. Technol. 2003, 20(4): 454-465.
    
    [10] Scherer J J, Paul J B, Collier C P et al. Cavity ringdown laser-absorption spectroscopy andtime-of-flight mass-spectroscopy of jet cooled siliver silicides. J. Chem. Phys. 1995, 103 (1):113-120.
    
    [11] Scherer J J, Paul J B, Collier C P et al. Cavity ringdown laser absorption spectroscopy of the jet-cooled aluminum dimmer. Chem. Phys. Lett. 1995, 242(4-5): 395-400.
    
    [12] Bechtel K L, Zare R N, Kachanov A A et al. Moving beyond traditional UV-visible absorption detection: Cavity ring-down spectroscopy for HPLC. Anal. Chem. 2005, 77 (4): 1177-1182.
    
    [13] Booth J P, Cunge G, Biennier L et al. Ultraviolet cavity ring-down spectroscopy of freeradicals in etching plasmas. Chem. Phys. Lett. 2000, 317 (6): 631-636.
    
    [14] Kraus D, Saykally R J, Bondybey V E. Cavity-ringdown spectroscopy studies of the B~2 Σ~+ ←X~2 Σ~+ system of AlO. Chemphyschem. 2002,3 (4): 364-329.
    
    [15] Sukhorukov O, Staicu A, Diegel E et al. D_2 ← D_0 transition of the anthracene cation observedby cavity ring-down absorption spectroscopy in a supersonic jet. Chem. Phys. Lett. 2004, 386(4-6): 259-264.
    
    [16] Huneycutt A J, Casaes R N, McCall B J et al. Infrared cavity ringdown spectroscopy ofjet-cooled polycylic aromatic hydrocarbons. ChemPhysChem. 2004, 5 (3): 321-326.
    
    [17] Snyder K L, Zare R N. Cavity ring-down spectroscopy as a detector for liquidchromatography. Anal. Chem. 2003,75 (13): 3086-3091.
    
    [18] Naus H, Ubachs W. Experimental verification of Rayleigh scattering cross sections. Opt. Lett.2000,25 (5): 347-349.
    
    [19] Chapo C J, Paul J B, Provencal RA et al. Is arginine zwitterionic or neutral in the gas phase?Results from IR cavity ringdown spectroscopy. J. Am. Chem. Soc. 1998, 120 (49):12956-12957.
    
    [20] Pipino A C R, Woodward J T, Meuse C W et al. Surface-plasmon-resonance-enhanced cavityring-down detection. Ournal Chem. Phys. 2004,120 (3): 1585-1593.
    
    [21] Del Vitto A, Pacchioni G, Lim K H et al. Gold atoms and dimers on amorphous SiO2:Calculation of optical properties and cavity ring-down spectroscopy measurements. J. Phys.Chem. B. 2005, 109 (42): 19876-19884.
    
    [22] Hallock A J, Berman E S F, Zare R N. Direct monitoring of absorption in solution by cavityring-down spectroscopy. Anal. Chem. 2002,74 (7): 1741-1743.
    
    [23] Scherer J J, Paul J B, Collier C P et al. Cavity ringdown laser-absorption spectroscopy andtime-of-flight mass-spectroscopy of jet cooled gold silicides. J. Chem. Phys. 1995, 103 (21):9187-9192.
    
    [24] Antonietti J M, Michalski M, Heiz U et al. Optical absorption spectrum of gold atomsdeposited on SiO_2 from cavity ringdown spectroscopy. Phys. Rev. Lett. 2005, 94 (21): Art.No. 213402.
    
    [25] Fiedler S E, Hoheisel G, Ruth A A et al. Incoherent broad-band cavity-enhanced absorptionspectroscopy of azulene in a supersonic jet. Chem. Phys. Lett. 2003, 382 (3-4): 447-453.
    
    [26] Ruth A A, Kim E K, Hese A. The S_0 → S_1 cavity ring-down absorption spectrum ofjet-cooled azulene: dependence of internal conversion on the excess energy. Phys. Chem.Chem. Phys. 1999, 1 (22): 5121-5128.
    
    [27] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorptionspectroscopy. Chem. Phys. Lett. 2003,371 (34): 284-294.
    
    [28] Sharma R C, Huang H Y, Chuang W T et al. Continuum and discrete pulsed cavity ring downlaser absorption spectra of Br_2 vapor. Spectrochimica ACTA Part A-Molecular andBiomolecular Spectroscopy. 2005,61 (9): 2115-2120.
    
    [29] Wei P Y, Chang Y P, Lee Y S et al. Br_2 molecular elimination in 248 nm photolysis ofCHBr_2Cl by using cavity ring-down absorption spectroscopy. J. Chem. Phys. 2007, 126 (3):Art. No. 034311.
    
    [30] Wei P Y, Chang Y P, Lee W B et al. 248 nm photolysis of CH_2Br_2 by using cavity ring-downabsorption spectroscopy: Br_2 molecular elimination at room temperature. J. Chem. Phys.2006,125(13): Art. No. 133319.
    
    [31] Benard D J, Winker B K. Chemical generation of optical gain at 471 nm. J. Appl. Phys. 1991,69 (5): 2805-2809.
    
    [32] Greaves S J, Flynn E L, Futcher E L et al. Cavity ring-down spectroscopy of the torsionalmotions of l,4-bis(phenylethynyl)benzene. J. Phys. Chem. A. 2006, 110 (6): 2114-2121.
    
    [33] Wheeler M D, Newman S M, Ishiwata T et al. Cavity ring-down spectroscopy of theA~2Π_(3/2)-X~3 Π_(3/2) transition of BrO. Chem. Phys. Lett. 1998, 285 (5-6): 346-351.
    
    [34] Ninomiya Y, Hashimoto S, Kawasaki M et al. Cavity ring-down study of BrO radicals:Kinetics of the Br + O_3 reaction and rate of relaxation of vibrationally excited BrO bycollisions with N_2 and O_2. Int. Chem. Kinet. 2000, 32 (3): 125-130.
    
    [35] Xu S, Liu Y, Zhang C et al. The O-H Stretching Av = 3, 4, and 5 Vibrational Overtones andConformational Study of 2-Butanol. J. Phys. Chem. A. 2000, 104 (38): 8671-8676.
    
    [36] Benedikt J, Letourneur K G Y, Wisse M et al. Plasma chemistry during deposition of a-C : H.Diamond Relat. Mater. 2002, 11 (3-6): 989-993.
    
    [37] Bahrini C, Douin S, Rostas J et al. CRD and LIF spectra of the CaBr and Cal radicals. Chem.Phys. Lett. 2006,432 (1-3): 1-5.
    
    [38] Tokaryk D W, Adam A G, Slaney M E. Cavity ring down laser spectroscopy of the (?)~2Σ~+-(?)~2Σ~+ transition of CaCCH. Chem. Phys. Lett. 2007,433 (4-6): 264-267.
    
    [39] Booth J P, Cunge G, Biennier L et al. Ultraviolet cavity ring-down spectroscopy of freeradicals in etching plasmas. Chem. Phys. Lett. 2000, 317 (6): 631-636.
    
    [40] Hsu C Y, Huang H Y, Lin K C. Br_2 elimination in 248nm photolysis of CF_2Br_2 probed byusing cavity ring-down absorption spectroscopy. J. Chem. Phys. 2005, 123 (13): Art. No.134312.
    
    [41] Zalyubovsky S J, Wang D B, Miller T A et al. Observation of the A-X electronic transitionof the CF_3O_2 radical. Chem. Phys. Lett. 2001,335 (3-4): 298-304.
    
    [42] Ito F, Hirabayashi S. Infrared spectra of the CF_3I dimer: A concurrent application ofmatrix-isolation spectroscopy and cavity ring-down spectroscopy. J. Chem. Phys. 2006, 124(23): Art. No. 234509.
    
    [43] Pillier L, El Bakali A, Mercier X et al. Influence of C_2 and C_3 compounds of natural gas onNO formation: an experimental study based on LIF/CRDS coupling. Proceedings of theCombustion Institute. 2005,30: 1183-1191 Part 1.
    
    [44] Mercier X, Jamette P, Pauwels J F. Absolute CH concentration measurements by cavityring-down spectroscopy in an atmospheric diffusion flame. Chem. Phys. Lett. 1999, 305 (5-6):334-342.
    
    [45] Derzy I, Lozovsky V A, Cheskis S. Absolute CH concentration in flames measured bycavity ring-down spectroscopy. Chem. Phys. Lett. 1999, 306 (5-6): 319-324.
    
    [46] Moreau C, Therssen E, Desgroux P et al. Quantitative measurements of the CH radical insooting diffusion flames at atmospheric pressure. Appl. Phys. B-Lasers Opt. 2003, 76 (5):597-602.
    
    [47] Bohm T, Ditzian N, Peiter G et al. Absolute radical concentration measurements inlow-pressure H_2/O_2 flames during the combustion of graphite. Proceedings of theCombustion Institute. 2005, 30: 2131-2139 Part 2.
    
    [48] Romanzin C, Boye-Peronne S, Gauyacq D et al. CH radical production from 248 nmphotolysis or discharge-jet dissociation of CHBr_3 probed by cavity ring-down absorptionspectroscopy. J. Chem. Phys. 2006,125 (11): Art. No. 114312.
    
    [49] Luque J, Berg P A, Jeffries J B et al. Cavity ring-down absorption and laser-inducedfluorescence for quantitative measurements of CH radicals in low-pressure flames. Appl.Phys. B-Lasers Opt. 2004,78 (1): 93-102.
    
    [50] Evertsen R, Stolk R L, Ter Meulen J J. Investigations of Cavity Ring Down Spectroscopyapplied to the detection of CH in atmospheric flames. Combust. Sci. Technol. 1999, 149 (1-6):19-34.
    
    [51] Evertsen R, Stolk R L, Ter Meulen J J. Investigations of cavity ring down spectroscopyapplied to the detection of CH in atmospheric flames. Combust. Sci. Technol. 2000, 157:341-342.
    
    [52] Stock R L, Meulen J J. Laser diagnostics of CH in a diamond depositing flame. DiamondRelat. Mater. 1999, 8 (7): 1251-1255.
    
    [53] Engeln R, Letourneur KGY, Boogaarts M G H et al. Detection of CH in an expandingargon/acetylene plasma using cavity ring down absorption spectroscopy. Chem. Phys. Lett.1999, 310 (5-6): 405-410.
    
    [54] Thoman J W, McIlroy A. Absolute CH radical concentrations in rich low-pressuremethane-oxygen-argon flames via cavity ringdown spectroscopy of the A~2△-X~2Π transition. J.Phys. Chem. A. 2000, 104 (21): 4953-4961.
    
    [55] Lommatzsch U, Wahl E H, Owano T G. Spatial concentration and temperature distribution ofCH radicals formed in a diamond thin-film hot-filament reactor. Chem. Phys. Lett. 2000, 320(3-4): 339-344.
    
    [56] Mcllroy A. Direct measurement of CH_2 in flames by cavity ringdown laser absorptionspectroscopy. Chem. Phys. Lett. 1998, 296 (1-2): 151-158.
    
    [57] Evertsen, R, van Oijen J A, Hermanns R T E et al. Measurements of the absoluteconcentrations of HCO and ~1CH_2 in a premixed atmospheric flat flame by cavity ringdownspectroscopy. Combu. Flame. 2003, 135 (1-2): 57-64.
    
    [58] Schocker A, Kohse-Hoinghaus K, Brockhinke A. Quantitative determination of combustionintermediates with cavity ring-down spectroscopy: systematic study in propene flames nearthe soot-formation limit. Appl. Opt. 2005,44 (31): 6660-6672.
    
    [59] Wahl E H, Owano T G, Kruger C H et al. Measurement of absolute CH_3 concentration in ahot-filament reactor using cavity ring-down spectroscopy. Diamond Relat. Mater. 1996, 5(3-5): 373-377.
    
    [60] Wahl E H, Owano T G, Kruger C H et al. Spatially resolved measurements of absolute CH_3concentration in a hot-filament reactor. Diamond Relat. Mater. 1997, 6 (2-4): 476-480.
    
    [61] Wu S H, Dupre P, Miller T A. High-resolution IR cavity ring-down spectroscopy ofjet-cooled free radicals and other species. Phys. Chem. Chem. Phys. 2006, 8(14): 1682-1689.
    
    [62] Scherer J J, Aniolek K W, Cernansky N P et al. Determination of methyl radicalconcentrations in a methane air flame by infrared cavity ringdown laser absorptionspectroscopy.J. Chem. Phys. 1997, 107 (16): 6196-6203.
    
    [63] Lewis E K, Moehnke C J, Navea J G et al. Low temperature cell for cavity ring downabsorption studies. Rev. Sci. Instrum. 2006, 77 (7): Art. No. 073107.
    
    [64] Hippler M, Quack M. Cw cavity ring-down infrared absorption spectroscopy in pulsedsupersonic jets: nitrous oxide and methane. Chem. Phys. Lett. 1999, 314 (3-4): 273-281.
    
    [65] Englich F V, He Y, Orr B J. Continuous-wave stimulated Raman gain spectroscopy withcavity ringdown detection. Appl. Phys. B-Lasers Opt. 2006, 83 (1): 1-5.
    
    [66] Fawcett B L, Parkes A M, Shallcross D E et al. Trace detection of methane using continuouswave cavity ring-down spectroscopy at 1.65 μm. Phys. Chem. Chem. Phys. 2002, 4 (24):5960-5965.
    
    [67] Scherer J J, Voelkel D, Rakestraw D J. Infrared cavity ringdown laser absorptionspectroscopy (IR-CRLAS) in low pressure flames. Appl. Phys. B. 1997, 64 (6): 699-705.
    
    [68] Aniolek K W, Powers P E, Kulp T J et al. Cavity ringdown laser absorption spectroscopywith a 1 kHz mid-infrared periodically poled lithium niobate optical parametric generatoroptical parametric amplifier. Chem. Phys. Lett. 1999, 302 (5-6): 555-562.
    
    [69] Scherer J J, Voelkel D, Rakestraw D J. Infrared cavity rigndown laser-absorptionspectroscopy (IR-CRLAS). Chem. Phys. Lett. 1995,245 (2-3): 273-280.
    
    [70] Kleine D, Dahnke H, Urban W et al. Real-time detection of ~(13)CH_4 in ambient air by use ofmid-infrared cavity leak-out spectroscopy. Opt. Lett. 2000,25 (21): 1606-1608.
    
    [71] Dahnke H, Kleine D, Urban C et al. Isotopic ratio measurement of methane in ambient airusing mid-infrared cavity leak-out spectroscopy. Appl. Phys. B. 2001,72 (1): 121-125.
    
    [72] Enami S, Hashimoto S, Kawasaki M et al. Observation of adducts in the reaction of Cl atomswith XCH_2I (X = H, CH3, CL, Br, I) using cavity ring-down spectroscopy. J. Phys. Chem. A.2005,109(8): 1587-1593.
    
    [73] Hannon T E, Chah S W Zare R N. Evanescent-wave cavity ring-down investigation ofpolymer/solvent interactions. J. Phys. Chem. B. 2005,109 (15): 7435-7442.
    
    [74] Totschnig G, Baer D S, Wang J et al. Multiplexed continuous-wave diode-laser cavityringdown measurements of multiple species. Appl. Opt. 2000, 39 (12): 2009-2016.
    
    [75] Xu S C, Kay J J, Perry D S. Doppler-limited cw-infrared cavity ringdown spectroscopy of thev_1+v_3 OH+CH stretch combination bland of jet-cooled methanol. J. Mol. Spectroc. 2004, 225(2): 162-173.
    
    [76] Provencal R A, Paul J B, Roth K et al. Infrared cavity ringdown spectroscopy of methanolclusters: Single donor hydrogen bonding. J. Chem. Phys. 1999, 110 (9): 4258-4267.
    
    [77] Pushkarsky M B, Zalyubovsky S J, Miller T A. Detection and characterization of alkylperoxy radicals using cavity ringdown spectroscopy. J. Chem. Phys. 2000, 112 (24):10695-10698.
    
    [78] Romanini D, Kachanov A A, Stoeckel F. Cavity ringdown spectroscopy: Broad band absoluteabsorption measurements. Chem. Phys. Lett. 1997, 270 (5-6): 546-550.
    
    [79] He Y B, Orr B J. Ringdown and cavity-enhanced absorption spectroscopy using acontinuous-wave tunable diode laser and a rapidly swept optical cavity. Chem. Phys. Lett.2000,319(1-2): 131-137.
    
    [80] Duan Y X, Wang C J, Scherrer S T et al. Development of alternative plasma sources forcavity ring-down measurements of mercury. Anal. Chem. 2005,77 (15): 4883-4889.
    
    [81] Moule D C, Burling I R, Liu H et al. The cavity ringdown spectrum of the visible electronicsystem of thiophosgene: An estimation of the lifetime of the T_1((?)~3A_2) triplet state. J. Chem.Phys. 1999, 111 (11): 5027-5037.
    
    [82] Howie W H, Lane I C, Newman S M et al. The UV absorption of ClO - Part 1. The A~2Π-X~2 Πspectrum at wavelengths from 285-320 nm studied by cavity ring-down spectroscopy. Phys.Chem. Chem. Phys. 1999,1 (13): 3079-3085.
    
    [83] Zalicki P, Ma Y, Zare R N et al. Methy radical measurement by cavity ring-downspectroscopy. Chem. Phys. Lett. 1995, 234 (4-6): 269-274.
    
    [84] Zalicki P, Ma Y, Zare R N et al. Measurement of the methyl radical concentration profile in ahot-filament reactor. Appl. Phys. Lett. 1995, 67 (1): 144-146.
    
    [85] O'Keefe, Scherer J J, Cooksy A L et al. Cavity ring down dye laser spectroscopy ofjet-cooled metal clusters: Cu_2 and Cu_3. Chem. Phys. Lett. 1990, 172 (3-4): 214-218.
    
    [86] Scherer J J, Paul J B, Collier C P et al. Cavity ringdown laser-absorption spectroscopy andtime-of-flight mass-spectroscopy of jet cooled copper silicides. J. Chem. Phys. 1995, 102(13): 5190-5199.
    
    [87] Jongma R T, Boogaarts, M G H, Meijer G. Double-Resonance Spectroscopy on Triplet Statesof CO. J. Mol. Spectrosc. 1994, 165 (2): 303-314.
    
    [88] Chung C Y, Ogilvie J F, Lee Y P. Detection of vibration-rotational band 5-0 of ~(12)C~(15)O X ~1Σ~+with cavity ringdown absorption near 0.96 μm. J. Phys. Chem. A. 2005, 109 (35): 7854-7858.
    
    [89] Thorpe M J, Hudson D D, Moll K D et al. Cavity-ringdown molecular spectroscopy based onan optical frequency comb at 1.45-1.65 μm. Opt. Lett. 2007, 32 (3): 307-309.
    
    [90] Engel G S, Drisdell W S, Keutsch F N et al. Ultrasensitive near-infrared integrated cavityoutput spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits forabsorption measurements in passive optical cavities. Appl. Opt. 2006,45 (36): 9221-9229.
    
    [91] Pei S X, Cui F P, Gao X M et al. The detection of carbon monoxide by cavity enhancedabsorption spectroscopy with a DFB diode laser. Vibr. Spectrosc. 2006, 40 (2): 192-196.
    
    [92] Sneep M, Hannemann S, van Duijn E J et al. Deep-ultraviolet cavity ringdown spectroscopy.Opt. Lett. 2004, 9(12): 1378-1380.
    
    [93] Inbar E, Arie A. High-sensitivity CW Fabry-Perot enhanced spectroscopy of CO_2 and C_2H_2using a 1064 nm Nd : YAG laser. Appl. Phys. B. 1999,68 (1): 99-105.
    
    [94] Spence T G, Harb C C, Paldus B A et al. A laser-locked cavity ring-down spectrometeremploying an analog detection scheme. Rev. Sci. Instrum. 2000, 71 (2): 347-353.
    
    [95] Levenson M D, Paldus B A, Spence T G et al. Frequency-switched heterodyne cavityringdown spectroscopy. Opt. Lett. 2000,25 (12): 920-922.
    
    [96] O'Keefe A, Scherer J J, Paul J B. cw Integrated cavity output spectroscopy. Chem. Phys. Lett.1999, 307 (5-6): 343-349.
    
    [97] Majcherova Z, Macko P, Romanini D et al. High-sensitivity CW-cavity ringdownspectroscopy of ~(12)CO_2 near 1.5 μm. J. Mol. Spectrosc. 2005,230 (1): 1-21.
    
    [98] He Y B, Orr B J. Optical heterodyne signal generation and detection in cavity ringdownspectroscopy based on a rapidly swept cavity. Chem. Phys. Lett. 2001, 335 (3-4): 215-220.
    
    [99] Baxter G W, Payne M A. Austin B D W et al. Spectroscopic diagnostics of chemicalprocesses: applications of tunable optical parametric oscillators. Appl. Phys. B. 2000, 71 (5):651-663.
    
    [100] H He Y B, Orr B J. Continuous-wave cavity ringdown absorption spectroscopy with aswept-frequency laser: rapid spectral sensing of gas-phase molecules. Appl. Opt. 2005, 44(31): 6752-6761.
    
    [101] Pei S X, Gao X M, Cui F P et al. Cavity enhanced absorption spectroscopy of carbondioxide using a DFB diode laser and a swept optical cavity. Opt. Appl. 2004, 34 (4): 589-595.
    
    [102] Ramos C, Dagdigian P J. Detection of vapors of explosives and explosive-relatedcompounds by ultraviolet cavity ringdown spectroscopy. Appl. Opt. 2007,46 (4): 620-627.
    
    [103] Nakamichi S, Kawaguchi Y, Fukuda H et al. Buffer-gas pressure broadening for the (30~01)_Ⅲ← (000) band of CO_2 measured with continuous-wave cavity ring-down spectroscopy. Phys.Chem. Chem. Phys. 2006, 8 (3): 364-368.
    
    [104] Crosson E R, Ricci K N, Richman B A et al. Stable isotope ratios using cavity ring-downspectroscopy: Determination of C~(13)/C~(12) for carbon dioxide in human breath. Anal. Chem.2002, 74 (9): 2003-2007.
    
    [105] Kasyutich V L, Martin P A, Holdsworth R J. An off-axis cavity-enhanced absorptionspectrometer at 1605 nm for the ~(12)CO_2/~(13)CO_2 measurement. Appl. Phys. B-Lasers Opt. 2006,85 (2-3): 413-420.
    
    [106] Perevalov B V, Kassi S, Romanini D et al. Global effective Hamiltonians of ~(16)O~(13)C~(17)O and~(16)O~(13)C~(18)O improved from CW-CRDS observations in the 5900-7000 cm~(-1) region. J. Mol.Spectrosc. 2007, 241 (1): 90-100.
    
    [107] Pillsbury N R, Choo J, Laane J et al. Lowest n, π~* triplet state of 2-cyclopenten-1-one:Cavity ringdown absorption spectrum and ring-bending potential-energy function. J. Phys.Chem. A. 2003, 107 (49): 10648-10654.
    
    [108] Rennick C J, Smith J A, Ashfold M N R et al. Cavity ring-down spectroscopy measurementsof the concentrations of C_2(X~1Σ_g~+) radicals in a DC arc jet reactor used for chemical vapourdeposition of diamond films. Chem. Phys. Lett. 2004,383 (5-6): 518-522.
    
    [109] Labazan I, Krstulovic N, Milosevic S. Observation of C_2 radicals formed by laser ablation ofgraphite targets using cavity ring-down spectroscopy. J. Phys. D-Appl. Phys. 2003, 36 (20):2465-2470.
    
    [110] Mercier X, Therssen E, Pauwels J F et al. Measurements of absolute concentration profilesOf C_2 in non-sooting and sooting diffusion flames by coupling cavity ring-downspectroscopy and laser induced fluorescence. Proceedings of the Comvustion Institute. 2005,30: 1655-1663 Part 1.
    
    [111] John P, Rabeau J R, Wilson J I B. The cavity ring-down spectroscopy of C_2 in a microwaveplasma. Diamond Relat. Mater. 2002,11 (3-6): 608-611 Sp. Iss. SI.
    
    [112] Motylewski T, Linnartz H. Cavity ring down spectroscopy on radicals in a supersonic slitnozzle discharge. Rev. Sci. Instrum. 1999, 70 (2): 1305-1312.
    
    [113] Fahr A, Hassanzadeh P, Atkinson D B. Ultraviolet absorption spectrum and cross-sectionsof vinyl (C_2H_3) radical in the 225-238 nm region. J. Chem. Phys. 1998,236 (1-2): 43-49.
    
    [114] Pibel C D, Mellroy A, Taatjes C A et al. The vinyl radical ((?)~2A"←(?)~2A') spectrum between530 and 415 nm measured by cavity ring-down spectroscopy. J. Chem. Phys. 1999, 110 (4):1841-1843.
    
    [115] Tonokura K, Marui S, Koshi M. Absorption cross-section measurements of the vinyl radicalin the 440-460 nm region by cavity ring-down spectroscopy. Chem. Phys. Lett. 1999, 313(5-6): 771-776.
    
    [116] Gherman T, Kassi S, Campargue A et al. Overtone spectroscopy in the blue region bycavity-enhanced absorption spectroscopy with a mode-locked femtosecond laser: applicationto acetylene. Chem. Phys. Lett. 2004, 383 (3-4): 353-358.
    
    [117] Yoo Y S, Kim J W, Lee J Y et al. High-resolution cavity ringdown spectroscopy with aFabry-Perot etalon at the cavity output. Chem. Phys. Lett. 2000, 330: 528-534.
    
    [118] Romanini D, Kachanov A A, Sadeghi N et al. CW cavity ring down spectroscopy. Chem.Phys. Lett. 1997, 264: 316-322.
    
    [119] Hahn J W, Yoo Y S, Lee J Y et al. Cavity ringdown spectroscopy with a continuous-wavelaser: calculation of coupling efficiency and a new spectrometer design. Appl. Opt. 1999, 38(9): 1859-1866.
    
    [120] Thorpe M J, Moll K. D, Jones R J et al. Broadband cavity ringdown spectroscopy forsensitive and rapid molecular detection. Science. 2006, 311 (5767): 1595-1599.
    
    [121] Ye J, Hall J L. Cavity ringdown heterodyne spectroscopy: High sensitivity with microwattlight power. Phys. Rev. A. 2000,61: 061802
    
    [122] Parkes A M, Fawcett B L, Austin R E et al. Trace detection of volatile organic compoundsby diode laser cavity ring-down spectroscopy. Analyst. 2003, 128 (7): 960-965.
    
    [123] Wills J B Ashfold M N R, Orr-Ewing A J et al. Number density and temperature ofacetylene in hot-filament and arc-jet activated CH4/H2 gas mixtures measured using diodelaser cavity ring-down absorption spectroscopy. Diamond Relat. Mater. 2003, 12 (8):1346-1356.
    
    [124] Vogler D E, Sigrist M W. Near-infrared laser based cavity ringdown spectroscopy forapplications in petrochemical industry. Appl. Phys. B-Laser Opt. 2006,85 (2-3): 349-354.
    
    [125] Parkes A M, Lindley R E, Orr-Ewing A J. Combining preconcentration of air samples withcavity ring-down spectroscopy for detection of trace volatile organic compounds in theatmosphere. Anal. Chem. 2004, 76 (24): 7329-7335.
    
    [126] Wahl E H, Tan S M, Koulikov S et al. Ultra-sensitive ethylene post-harvest monitor basedon cavity ring-down spectroscopy. Opt. Exp. 2006,14 (4): 1673-1684.
    
    [127] Metsala M, Guss J, Vaittinen O et al. High repetition rate cavity ringdown spectroscopy ofvibrational overtones of H~(13)C~(13)CH at around 12200 cm~(-1). Chem. Phys. Lett. 2006, 424 (1-3):7-11.
    
    [128] Lewis E K, Reynolds D, Li X C et al. Phase shift cavity ring-down measurement of C-H (Av= 6) vibrational overtone absorptions. Chem. Phys. Lett. 2001, 334 (4-6): 357-364.
    
    [129] Lewis E K, Moehnke C J, Navea J G et al. Low temperature cell for cavity ring downabsorption studies. Rev. Sci. Instrum. 2006, 77 (7): Art. No. 073107.
    
    [130] Murtz M, Frech B, Urban W. High-resolution cavity leak-out absorption spectroscopy in the10-μm region. Appl. Phys. B. 1999,68 (2): 243-249.
    
    [131] Engeln R, vandenBerg E, Meijer G et al. Cavity ring down spectroscopy with a free-electronlaser. Chem. Phys. Lett. 1997, 269 (3-4): 293-297
    
    [132] Peeters R, Berden G, Olafsson A et al. Cavity enhanced absorption spectroscopy in the 10μm region using a waveguide CO_2 laser. Chem. Phys. Lett. 2001, 337 (4-6): 231-236.
    
    [133] Bucher C R, Lehmann K K, Plusquellic D F et al. Doppler-free nonlinear absorption inethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 2000, 39 (18):3154-3164.
    
    [134] Atkinson D B, Hudgens J W. Chemical kinetic studies using ultraviolet cavity ring-downspectroscopic detection: Self-reaction of ethyl and ethylperoxy radicals and the reactionO_2+C_2H_5→C_2H_5O_2. J. Phys. Chem. A. 1997,101 (21): 3901-3909.
    
    [135] Bahnev B, van der Sneppen L, Wiskerke A E et al. Miniaturized cavity ring-down detectionin a liquid flow cell. Anal. Chem. 2005,77 (4): 1188-1191.
    
    [136] Ito F, Ohmura H, Nakanaga T. Observation of the C-H stretching band of methyl iodidedimer by infrared cavity ring-down spectroscopy. Chem. Phys. Lett. 2006, 420 (1-3):157-161.
    
    [137] Ito F, Nakanaga T, Futami Y et al. Observation of methyl iodide clusters in gas phase byinfrared cavity ring-down spectroscopy. Chem. Phys. 2003,286 (2-3): 337-345.
    
    [138] Ito F. Methyl iodide clusters observed in gas phase by infrared cavity ring-downspectroscopy: The CH_3 bending mode at 8 urn. J. Chem. Phys. 2006, 124 (5): Art. No.054309.
    
    [139] Zhu L, Johnston G. Kinetics and Products of the Reaction of the Vinoxy Radical with O_2. J.Phys. Chem.l995,99(41): 15114-15119.
    
    [140] Rupper P, Sharp E N, Tarczay G et al. Investigation of ethyl peroxy radical conformers viacavity ringdown spectroscopy of the A -X electronic transition. J. Phys. Chem. A. 2007, 111(5): 832-840
    
    [141] Provencal R A, Casaes R N, Roth K et al. Hydrogen bonding in alcohol clusters: Acomparative study by infrared cavity ringdown laser absorption spectroscopy. J. Phys. Chem.A. 2000, 104 (7): 1423-1429.
    
    [142] Zalyubovsky S J, Glover B G, Miller T A. Cavity ringdown spectroscopy of the A -Xelectronic transition of the CH_3CO_2 radical. J. Phys. Chem. A. 2003, 107 (39): 7704-7712.
    
    [143] Havey D K, Feierabend K J, Takahashi K et al. Experimental and theoretical investigationof vibrational overtones of glycolic acid and its hydrogen bonding interactions with water. J.Phys. Chem. A. 2006,110 (20): 6439-6446.
    
    [144] Zhu L, Ding C F. Temperature dependence of the near UV absorption spectra and photolysisproducts of ethyl nitrate. Chem. Phys. Lett. 1997,26 (1-2): 177-184.
    
    [145] McCall B J, Casaes R N, Adamkovics M et al. A re-examination of the 4051 angstrom bandof C_3 using cavity ringdown spectroscopy of a supersonic plasma. Chem. Phys. Lett. 2003,374 (5-6): 583-586.
    
    [146] Achkasova E, Araki M, Denisov A et al. Gas phase electronic spectrum of propadienylideneC_3H_2. J. Mol. Spectrosc. 2006, 237 (1): 70-75.
    
    [147] Birza P, Chirokolava A, Araki M et al. Rotationally resolved electronic spectrum ofpropadienylidene. J. Mol. Spectrosc. 2005, 229 (2): 276-282.
    
    [148] Tokmakov I V, Park J, Lin M C. Experimental and computational studies of the phenylradical reaction with propyne. Chemphyschem. 2005, 6 (10): 2075-2085.
    
    [149] Tonokura K, Koshi M. Absorption spectrum and cross sections of the allyl radical measuredusing cavity ring-down spectroscopy: The A -X band. J. Phys. Chem. A. 2000, 104 (37):8456-8461.
    
    [150] DeMille S, deLaat R H, Tanner R M et al. Comparison of CRDS to ICL-PAS andphase-shift CRDS spectroscopies for the absolute intensities of C-H (Av (CH) = 6) overtoneabsorptions. Chem. Phys. Lett. 2002,366 (3-4): 383-389.
    
    [151] Scherer J J. Ringdown spectral photography. Chem. Phys. Lett. 1998,292 (1-2): 143-153.
    
    [152] Atkinson D B, Hudgens J W, Orr-Ewing A J. Kinetic studies of the reactions of IO radicalsdetermined by cavity ring-down spectroscopy.J. Phys. Chem. A. 1999,103 (31): 6173-6180.
    
    [153] Atkinson D B, Hudgens J W. Chlorination Chemistry. 2. Rate Coefficients, ReactionMechanism, and Spectrum of the Chlorine Adduct of Allene. J. Phys. Chem. A. 2000, 104 (4):811-818.
    
    [154] Atkinson D B, Hudgens. Rate Coefficients for the Propargyl Radical Self-Reaction andOxygen Addition Reaction Measured Using Ultraviolet Cavity Ring-down Spectroscopy. J.Phys. Chem. A. 1999, 103 (51): 4242-4252.
    
    [155] Campargue A, Biennier L, Garnache A et al. High resolution absorption spectroscopy of thev_1= 2-6 acetylenic overtone bands of propyne: Spectroscopy and dynamics. J. Chem. Phys.1999, 111 (17): 7888-7903.
    
    [156] Enami S, Yamanaka T, Hashimoto S et al. Direct observation of adduct formation of alkyland aromatic iodides with Cl atoms using cavity ring-down spectroscopy. J. Phys. Chem. A.2005, 109 (27): 6066-6070.
    
    [157] Paulisse K W, Friday T O, Graske M L. Vibronic spectroscopy and lifetime of S_1 acrolein. J.Chem. Phys. 2000,113 (1): 184-191.
    
    [158] Zalyubovsky, S J, Glover B G, Miller T A et al. Observation of the A-X electronic transitionof the 1-C3H7O2 and 2-C3H7O2 radicals using cavity ringdown spectroscopy. J. Phys. Chem.,4.2005, 109(7): 1308-1315.
    
    [159] Linnartz H, Vaizert O, Motylewski T. The ~3Σ_u~-←~3Σ_u~+ electric spectrum of linear C_4 in thegas phase. J. Chem. Phys. 2000, 112 (22): 9777-9779.
    
    [160] Robinson A G, Winter P R, Zwier T S. The singlet-triplet spectroscopy of 1,3-butadieneusing cavity ring-down spectroscopy. J. Chem. Phys. 2002, 116 (18): 7918-7925.
    
    [161] Glover B G, Miller T A. Near-IR cavity ringdown spectroscopy and kinetics of the isomersand conformers of the butyl peroxy radical. J. Phys. Chem. A. 2005, 109 (49): 11191-11197.
    
    [162] Motylewski T, Vaizert O, Giesen T F et al. The ~1Π_u←X~1Σ_g~+ electronic spectrum of C5 in thegas phase J. Chem. Phys. 1999, 111 (14): 6161-6163.
    
    [163] Kotterer M, Maier J P. Electronic spectrum of C_6H: ~2Π-X ~2Π in the gas-phase detected bycavity ringdown. Chem. Phys. Lett. 1997,266 (3-4): 342-346.
    
    [164] Linnartz H, Motylewski T, Vaizert O et al. Electronic ground and excited state spectroscopyof C_6H and C_6D. J. Mol. Spectrosc. 1999,197 (1): 1-11.
    
    [165] Linnartz H, Motylewski T, Maier J P. The ~2Π←X~2Π electronic spectra of C_8H and C_(10)H inthe gas phase. J. Chem. Phys. 1998, 109 (10): 3819-3823.
    
    [166] Yu T, Lin M C. Kinetics of the C_6H_5 + O_2 Reaction at Low Temperatures. J. Am. Chem. Soc.1994,116 (21): 9571-9576.
    
    [167] Park J, Nam G J, Tokmakov I V et al. Experimental and theoretical studies of the phenylradical reaction with propene. J. Phys. Chem. A. 2006, 110 (28): 8729-8735.
    
    [168] Choi Y M, Xia W S, Park J. Kinetics and Mechanism for the Reaction of Phenyl Radicalwith Formaldehyde. J. Phys. Chem. A. 2000,104 (30): 7030-7035.
    
    [169] Yu T, Lin M C. Kinetics of phenyl radical reactions studied by the cavity-ring-downmethod. J. Am. Chem. Soc. 1993,115 (10): 4371-4372.
    
    [170] Yu T, Lin M C. Kinetics of the C_6H_5 + NO Association Reaction. J. Phys. Chem. 1994, 98(8): 2105-2109.
    
    [171] Yu T, Lin M C. Kinetics of the phenyl radical reaction with ethylene: An RRKM theoreticalanalysis of low and high temperature data. Combust. Flame. 1995, 100 (1-2): 169-176.
    
    [172] Park J, Gheyas S I, Lin M C. Kinetics of C_6H_5 radical reactions with 2-methylpropane,2,3-dimethylbutane and 2,3,4-trimethylpentane. Int. J.Chem. Kinet. 1999, 31 (9): 645-653.
    
    [173] Park J, Burova S, Rodgers A S. Experimental and Theoretical Studies of the C_6H_5 + C_6H_6Reaction. J. Phys. Chem. A. 1999, 103 (45): 9036-9041.
    
    [174] Nam G J, Xia W, Park J et al. The Reaction of C_6H_5 with CO: Kinetic Measurement andTheoretical Correlation with the Reverse Process. J. Phys. Chem. A. 2000, 104 (6):1233-1239.
    
    [175] Yu T, Lin M C. Kinetics of Phenyl Radical Reactions with Selected Cycloalkanes andCarbon Tetrachloride. J. Phys. Chem. 1995, 99 (21): 8599-8603.
    
    [176] Park J, Chakraborty D, Bhusari D M et al. Kinetics of C_6H_5 Radical Reactions with Tolueneand Xylenes by Cavity Ringdown Spectrometry. J. Phys. Chem. A. 1999, 103 (20):4002-4008.
    
    [177] Tonokura K, Koshi M. Cavity ring-down spectroscopy of the benzyl radical. J. Phys. Chem.A. 2003, 107 (22): 4457-4461.
    
    [178] Vasudev R, Usachev A, Dunsford W R. Detection of Toxic Compounds by CavityRing-Down Spectroscopy. Environ. Sci. Technol.1999, 33: 1936-1939.
    
    [179] Boogaarts M G H, Meijer G J. Measurement of the beam intensity in a laser desorptionjet-cooling mass spectrometer. Chem. Phys. 1995,103 (13): 5269-5274.
    
    [180] Yu T, Mebel A M, Lin M C et al. Reaction of phenoxy radical with nitric oxide. J Phys. Org.Chem. 1995, 8: 47-53.
    
    [181] Yu T, Lin M C. Kinetics of the C_6H_5+ CCl_4 Reaction in the Gas Phase: Comparison withLiquid-Phase Data. J. Phys. Chem. 1994,98 (39): 9697-9699.
    
    [182] Just G M P, Sharp E N, Zalyubovsky S J et al. Cavity ringdown spectroscopy of the A-Xelectronic transition of the phenyl peroxy radical. Chem. Phys. Lett. 2006, 417 (4-6):378-382.
    
    [183] Kleine D, Stry S, Lauterbach J et al. Measurement of the absolute intensity of the fifth CHstretching overtone of benzene using cavity ring-down spectroscopy. Chem. Phys. Lett. 1998,312(2-4): 185-190.
    
    [184] Fiedler S E, Hese A and Ruth A A. Incoherent broad-band cavity-enhanced absorptionspectroscopy of liquids. Rev. Sci. Instrum. 2005,76 (2): Art. No. 023107.
    
    [185] Xu S C, Sha G H and Xie J C. Cavity ring-down spectroscopy in the liquid phase. Rev. Sci.Instrum. 2002, 73 (2): 255-258.
    
    [186] Ruth A A, Fernholz T, Brint R P et al. The cavity ring-down absorption spectrum of the S_0→ T_1 and S_0 → S_1 transition of jet-cooled 4-H-l-benzopyrane-4-thione. Chem. Phys. Lett.1998, 287 (3-4): 403-411.
    
    [187] Birza P, Khoroshev D, Chirokolava A et al. Lifetime broadening in the gas phase (?)~2Π ← (?)~2Π electronic spectrum of C_8H. Chem. Phys. Lett. 2003, 382 (3-4): 245-248.
    
    [188] Casaes R, Provencal R, Paul J et al. High resolution pulsed infrared cavity ringdownspectroscopy: Application to laser ablated carbon clusters. J. Chem. Phys. 2002, 116 (15):6640-6647.
    
    [189] Romanini D, Biennier L, Salama F et al. Jet-discharge cavity ring-down spectroscopy ofionized polycyclic aromatic hydrocarbons: progress in testing the PAH hypothesis for thediffuse interstellar band problem. Chem. Phys. Lett. 1999, 303 (1-2): 165-170.
    
    [190] Biennier L, Salama F, Allamandola L J et al. Pulsed discharge nozzle cavity ringdownspectroscopy of cold polycyclic aromatic hydrocarbon ions. J. Chem. Phys. 2003, 118 (17):7863-7872.
    
    [191] Tan X F, Salama F. Cavity ring-down spectroscopy of jet-cooled 1-pyrenecarboxyaldehyde(C_(17)H_(10)O) and 1-methylpyrene (C_(17)H_(12)) cations. Chem. Phys. Lett. 2006,422 (4-6): 518-521.
    
    [192] Tan X F, Salama F. Cavity ring-down spectroscopy and theoretical calculations of theS_1(~1B_(3u))← S_0(~1Ag) transition of jet-cooled perylene. Ournal Chem. Phys. 2005, 122 (8): Art.No. 084318.
    
    [193] Tan X F, Salama F. Cavity ring-down spectroscopy and vibronic activity ofbenzo[ghi]perylene. J. Chem. Phys. 2005, 123 (1): Art. No. 014312.
    
    [194] Marcus G A, Schwettman H A. Cavity ringdown spectroscopy of thin films in themid-infrared. Appl. Opt. 2002,41 (24): 5167-5171.
    
    [195] Engeln R, von Helden G, van Roij A J A et al. Cavity ring down spectroscopy on solidC-60.J. Chem. Phys. 1999,110: 2732-2733.
    
    [196] Zhu L, Kellins D. Temperature dependence of the UV absorption cross sections andphotodissociation products of C_3---C_5 nitrates. Chem. Phys. Lett. 1997,24 (1-3): 41-48.
    
    [197] Muller T, Wiberg K B, Vaccaro P H. Cavity ring-down polarimetry (CRDP): A new schemefor probing circular birefringence and circular dichroism in the gas phase. J. Phys. Chem. A.2000, 104: 5959-5968.
    
    [198] Muller T, Vaccaro P H, Perez-Bernal F et al. Algebraic approach for the calculation ofpolyatomic Franck-Condon factors: application to the vibronically resolved absorptionspectrum of disulfur monoxide (S_2O). Chem. Phys. Lett. 2000, 329 (3-4): 271-282.
    
    [199] Wilcox B P, Chrysostom ETH, McIlroy A et al. Measurement of CrO in flames by cavityringdown spectroscopy. Appl. Phys. B-Lasers Opt. 2003,77 (5): 535-540.
    
    [200] Kraus D, Saykally R J, Bondybey V E. Cavity ringdown spectroscopy search for transitionmetal dimmers. Chem. Phys. 1999,247 (3): 431-434.
    
    [201] Shaw A M, Hannon T E, Li F P et al. Adsorption of crystal violet to the silica-waterinterface monitored by evanescent wave cavity ring-down spectroscopy. J. Phys. Chem. B.2003, 107 (29): 7070-7075.
    
    [202] Pipino A C R, Hoemagels J P M, Watanabe N. Absolute surface coverage measurementusing a vibrational overtone. J. Chem. Phys. 2004, 120 (6): 2879-2888.
    
    [203] Fan H F, Hung C Y, Lin K C. Molecular adsorption at silica/CH_3CN interface probed byusing evanescent wave cavity ring-down absorption spectroscopy: Determination ofthermodynamic properties. Anal. Chem. 2006, 78 (11): 3583-3590.
    
    [204] Booth J P, Corr C S, Curley G A et al. Fluorine negative ion density measurement in a dualfrequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Appl. Phys. Lett.2006, 88 (15): Art. No. 151502.
    
    [205] Howie W H, Lane I C, Orr-Ewing A J. The near ultraviolet spectrum of the FCO radical:Re-assignment of transitions and predissociation of the electronically excited state. J. Chem.Phys. 2000,113 (17): 7237-7251.
    
    [206] Ninomiya Y, Goto M, Hashimoto S et al. Cavity ring-down spectroscopic study of thekinetics of the reactions of FCO radicals with O_2 and NO at 295 K. J. Chem. Kinet. 2001, 33(2): 130-135.
    
    [207] Hemmerling B, Kozlov D N. Generation and Temporally Resolved Detection ofLaser-Induced Gratings by a Single, Pulsed Nd:YAG Laser. Appl Opt. 1999, 38 (6):1001-1007.
    
    [208] Van De Sanden M C M, Van Hest M F A M, De Graaf A et al. Plasma chemistry of anexpanding Ar/C_2H_2 plasma used for fast deposition of a-C:H. Diamond Relat. Mater. 1999, 8(2-5): 677-681.
    
    [209] Quandt E, Kraemer I, Dobele H F. Measurements of negative-ion densities by cavityringdown spectroscopy. Europhys. Lett. 1999,45 (1): 32-37.
    
    [210] Grangeon F, Monard C, Dorier J L et al. Applications of the cavity ring-down technique to alarge-area rf-plasma reactor. Plasma Sources Sci. Technol. 1999, 8 (3): 448-456.
    
    [211] Macko P, Ban G, Hlavenka P et al. Afterglow studies of H_3~+(v = 0) recombination usingtime resolved cw-diode laser cavity ring-down spectroscopy. Int. J. Mass Spectrometry. 2004,233 (1-3): 299-304.
    
    [212] Hlavenka P, Korolov I, Plasil R et al. Near infrared second overtone cw-cavity ringdownspectroscopy of H_2D+ ions. Czechoslovak J. Phys. 2006, 56: B749-B760 Part 4 Suppl. B.
    
    [213] Martin W B, Mirov S, Martyshkin D et al. Hemoglobin adsorption isotherm at thesilica-water interface with evanescent wave cavity ring-down spectroscopy. J. BiomedicalOpt. 2005,10 (2): Art. No. 024025.
    
    [214] Ding H, Orr-Ewing A J, Dixon R N. Phys. Rotational structure in the (?)~1 A"-(?)~1 A' spectrumof formyl chloride. Phys. Chem. Chem. Phys. 1999, 1 (18): 4181-4185.
    
    [215] Liu K, Dulligan M, Bezel I et al. Quenching of interconversion tunneling: The free HClstretch first overtone of (HCl)_2. J. Chem. Phys. 1998,108 (23): 9614-9616.
    
    [216] Huneycutt A J, Stickland R J, Hellberg F et al. Infrared cavity ringdown spectroscopy ofacid-water clusters: HCl-H_2O, DCl-D_2O, and DCl-(D_2O)_2. J. Chem. Phys. 2003, 118 (3):1221-1229.
    
    [217] Romanini D, Lehmann K K. Ring-down cavity absorption spectroscopy of the very weakHCN overtone bands with six, seven, and eight stretching quanta. J Chem. Phys. 1993, 99:6287-6301.
    
    [218] Romanini D, Lehmann K K. Line-mixing in the 106←000 overtone transition of HCN. J.Chem. Phys. 1996,105 (1): 81-88.
    
    [219] Romanini D, Lehmann K K. Cavity ring-down overtone spectroscopy of HCN, H~(13)CN andHC~(15)N. J. Chem. Phys. 1995, 102 (2): 633-642.
    
    [220] Romanini D, Lehmann K. K. Calculation of the Herman-Wallis effect in Π-Σ vibrationalovertone transitions in a linear molecule: Comparison with HCN experimental results. J.Chem. Phys. 1996,105 (1): 68-80.
    
    [221] Teslja A, Dagdigian P J, Banck M et al. Experimental and theoretical study of the electronicspectrum of the methylene amidogen radical (H_2CN): Verification of the ~2A_1 ← ~2B_2assignment. J. Phys. Chem. A. 2006,110 (25): 7826-7834.
    
    [222] Nizamov B, Dagdigian P J. Spectroscopic and kinetic investigation of methylene amidogenby cavity ring-down spectroscopy. J. Phys. Chem. A. 2003,107 (13): 2256-2263.
    
    [223] Ninomiya Y, Goto M, Hashimoto S et al. Cavity ring-down spectroscopy and relative ratestudy of reactions of HCO radicals with O_2, NO, NO_2, and Cl_2 at 295 K. J. Phys. Chem. A.2000,104 (32): 7556-7564.
    
    [224] Tang Y X, Zhu L, Chu L T et al. Cavity ring-down spectroscopic study of acetaldehydephotolysis in the gas phase, on aluminum surfaces, and on ice films. Chem. Phys. 2006, 330(1-2): 155-165.
    
    [225] Krasnoperov L N, Chesnokov E N, Stark H et al. Elementary reactions of formyl (HCO)radical studied by laser photolysis - transient absorption spectroscopy. Proceedings of theCombustion Institute. 2005, 30: 935-943 Part 1.
    
    [226] Zhu L, Kellis D, Ding C F. Photolysis of glyoxal at 193, 248, 308 and 351 nm. Chem. Phys.Lett. 1996,257 (5-6): 487-491.
    
    [227] Scherer J J, Rakestraw D J. Cavity ringdown laser absorption spectroscopy detection offormyl (HCO) radical in a low pressure name. Chem. Phys. Lett. 1997,265 (1-2): 169-176.
    
    [228] Cronin T J, Zhu L. Dye Laser Photolysis of n-Pentanal from 280 to 330 nm. J. Phys. Chem.A. 1998, 102(50): 10274-10279.
    
    [229] Zhu L, Cronin T J, Narang A. Wavelength-Dependent Photolysis of i-Pentanal andt-Pentanal from 280 to 330 nm. J. Phys. Chem. A. 1999, 103 (36): 7248-7253.
    
    [230] Min Z, Wong T H, Quandt R et al. The Reactions of O(~3P) with Alkenes: The FormylRadical Channel.J. Phys. Chem. A. 1999, 103 (49): 10451-10453.
    
    [231] Zhu L, Cronin T J. Photodissociation of benzaldehyde in the 280-308 nm region. Chem.Phys. Lett. 2000, 317 (3-5): 227-231.
    
    [232] Tulej M, Meisinger M, Knopp G et al. Comparative study of degenerate four-wave mixingand cavity ringdown signal intensities of formaldehyde in a molecular beam. J. RamanSpectrosc. 2006,37 (6): 680-688.
    
    [233] Corner L, Barry H R, Hancock G. Comparison of cross-section measurements of the 2 v_5overtone band of formaldehyde determined by cavity ringdown and cavity enhancedspectroscopy. Chem. Phys. Lett. 2003, 374 (1-2): 28-32.
    
    [234] Dahnke H, Von Basum G, Kleinermanns K et al. Rapid formaldehyde monitoring inambient air by means of mid-infrared cavity leak-out spectroscopy. Appl. Phys. B-Lasers Opt.2002,75 (2-3): 311-316.
    
    [235] Miller J H, Bakhirkin Y A, Ajtai T et al. Detection of formaldehyde using off-axis integratedcavity output spectroscopy with an interband cascade laser. Appl. Phys. B-Lasers Opt. 2006,85 (2-3): 391-396.
    
    [236] Staak M, Gash E W, Venables D S et al. The rotationally-resolved absorption spectrum offormaldehyde from 6547 to 6804 cm~(-1). J. Mol. Spectrosc. 2005,229: 115-121.
    
    [237] Ito F, Nakagana T. A jet-cooled infrared spectrum of the formic acid dimer by cavityring-down spectroscopy. Chem. Phys. Lett. 2000, 318 (6): 571-577.
    
    [238] Ito F, Nakanaga T. Jet-cooled infrared spectra of the formic acid dimer by cavity ring-downspectroscopy: observation of the O-H stretching region. Chem. Phys. 2002, 277 (2): 163-169.
    
    [239] Birza P, Motylewski T, Khoroshev D et al. Cw cavity ring down spectroscopy in a pulsedplanar plasma expansion. Chem. Phys. 2002,283 (1-2): 119-124.
    
    [240] Ball C D, McCarthy M C, Thaddeus P. Cavity ringdown spectroscopy of the linear carbonchains HC_7H, HC_9H, HC_(11)H, and HC_(13)H. J. Chem. Phys. 2000, 112 (23): 10149-10155.
    
    [241] Ball C D, McCarthy M C, Thaddeus P. Laser Spectroscopy of the Carbon Chains HC_7H andHC_9H. Astrophys. J. Lett. 1999, 523: L89-L91.
    
    [242] Pfluger D, Motylewski T, Linnartz H et al. Rotationally resolved A ~2Πu←X~2Πg electronicspectrum of tetraacetylene cation. Chem. Phys. Lett. 2000, 329 (1-2): 29-35.
    
    [243] Morville J, Kassi S, Chenevier M et al. Fast, low-noise, mode-by-mode, cavity-enhancedabsorption spectroscopy by diode-laser self-locking. Appl. Phys. B-Lasers. Opt. 2005, 80 (8):1027-1038.
    
    [244] Morville J, Romanini D, Kachanov A A et al. Two schemes for trace detection using cavityringdown spectroscopy. Appl. Phys. B-Lasers Opt. 2004, 78 (3-4): 465-476.
    
    [245] Jongma R T, Boogaarts M G H, Hollemann I et al. Trace gas detection with cavity ringdown spectroscopy. Rev. Sci. Instrum. 1995, 66 (5): 2821-2828.
    
    [246] Spuler S, Linne M, Sappey A et al. Development of a cavity ringdown laser absorptionspectrometer for detection of trace levels of mercury. App. Opt. 2000,39 (15): 2480-2486.
    
    [247] Tao S Q, Mazzotti F J, Winstead C B et al. Determination of elemental mercury by cavityringdown spectrometry. Analyst. 2000,125 (6): 1021-1023.
    
    [248] Wang C J, Scherrer S T, Duan Y X et al. Cavity ringdown measurements of mercury and itshyperfine structures at 254 nm in an atmospheric microwave plasma: spectral interferenceand analytical performance. J. Anal. Atomic Spectrometry. 2005, 20 (7): 638-644.
    
    [249] Ibrahim N, Thiebaud J, Orphal J et al. Air-broadening coefficients of the HO_2 radical in the2v(1) band measured using cw-CRDS. J. Mol. Spectrosc. 2007,242 (1): 64-69.
    
    [250] Thiebaud J, Fittschen C. Near infrared cw-CRDS coupled to laser photolysis: Spectroscopyand kinetics of the HO2 radical. Appl. Phys. B-Lasers. Opt. 2006,85 (2-3): 383-389.
    
    [251] Naus H, Ubachs W, Levelt P F et al. Cavity-ring-down spectroscopy on water vapor in therange 555-604 nm. J. Mol. Spectrosc. 2001,205 (1): 117-121.
    
    [252] Schulz K J, Simpson W R. Frequency-matched cavity ring-down spectroscopy. Chem. Phys.Lett. 1998,297 (5-6): 523-529.
    
    [253] Kassi S, Macko P, Naumenko O et al. The absorption spectrum of water near 750 nm bycw-CRDS: contribution to the search of water dimer absorption. Phys. Chem. Chem. Phys.2005,7 (12): 2460-2467.
    
    [254] Chan M C, Yeung S H. High-resolution cavity enhanced absorption spectroscopy usingphase-sensitive detection. Chem. Phys. Lett. 2003, 373 (1-2): 100-108.
    
    [255] Xie J, Paldus B A, Wahl E H et al. Near-infrared cavity ringdown spectroscopy ofwater-vapor in an atmospheric flame. Chem. Phys. Lett. 1998, 284 (5-6): 387-395.
    
    [256] Paldus B A, Harris J S, Martin J et al. Laser diode cavity ring-down spectroscopy usingacousto-optic modulator stabilization. J. Appl. Phys. 1997, 82 (7): 3199-3204.
    
    [257] Paldus B A, Harb C C, Spence T G et al. Cavity-locked ring-down spectroscopy. J. Appl.Phys. 1998, 83 (8): 3991-3997.
    
    [258] Levenson M D, Paldus B A, Spence T G et al. Optical heterodyne detection in cavityring-down spectroscopy. Chem. Phys. Lett. 1998, 290 (4-6): 335-340.
    
    [259] Reichert L, Hernandez M D A, Burrows J P et al. First CRDS-measurements of watervapour continuum in the 940 nm absorption band. J. Quant. Spectrosc. Rad. Trans. 2007, 105(2): 303-311.
    
    [260] Lehman S Y, Bertness K A, Hodges J T. Optimal spectral region for real-time monitoring ofsub-ppm levels of water in phosphine by cavity ring-down spectroscopy. J. Crystal Growth.2004, 261 (2-3): 225-230.
    
    [261] Ramponi A J, Milanovich P P, Kan T et al. High sensitivity atmospheric transmissionmeasurements using a cavity ringdown technique. Appl. Opt. 1988,27 (22): 46064608.
    
    [262] Vasudev R. Wavelength modulated cavity enhanced absorption spectroscopy of water in the1.37 μm region. Appl. Spectrosc. 2006, 60 (8): 926-930.
    
    [263] Funke H H, Raynor M W, Bertness K A et al. Detection of trace water vapor in high-purityphosphine using cavity ring-down spectroscopy. Appl. Spectrosc. 2007, 61 (4): 419-423.
    
    [264] Peeters R, Berden G, Apituley A et al. Open-path trace gas detection of ammonia based oncavity-enhanced absorption spectroscopy Appl. Phys. B. 2000,71 (2): 231-236.
    
    [265] Crosson, ER; Haar, P; Marcus, GA; et al. Pulse-stacked cavity ring-down spectroscopy. Rev.Sci. Instrum. 1999,70 (1): 4-10.
    
    [266] Dupre P, Gherman T, Zobov N F et al. Continuous-wave cavity ringdown spectroscopy ofthe 8 nu polyad of water in the 25195-25340 cm~(-1) range. J. Chem. Phys. 2005, 123 (15): Art.No. 154307.
    
    [267] Meshkov A I, De Lucia F C. Broadband absolute absorption measurements of atmosphericcontinua with millimeter wave cavity ringdown spectroscopy. Rev. Sci. Instrum. 2005, 76 (8):Art. No. 083103.
    
    [268] Naumenko O, Sneep M, Tanaka M et al. Cavity ring-down spectroscopy of H_2~(17)O in therange 16570-17125 cm~(-1). J. Mol. Spectroc. 2006,237 (1): 63-69.
    
    [269] Tanaka M, Sneep M, Ubachs W et al. Cavity ring-down spectroscopy of H_2~(18)O in the range16570-17120 cm~(-1). OurnalMol Spectroc. 2004,226 (1): 1-6.
    
    [270] Hodges J T, Ciurylo R. Automated high-resolution frequency-stabilized cavity ring-downabsorption spectrometer. Rev. Sci. Instrum. 2005,76 (2): Art. No. 023112.
    
    [271] Paul J B, Provencal R A, Saykally R J. Characterization of the (D_2O)_2hydrogen-bond-acceptor antisymmetric stretch by IR cavity ringdown laser absorptionspectroscopy. J. Phys. Chem. A. 1998, 102 (19): 3279-3283.
    
    [272] Paul J B, Provencal R A, Chapo C et al. Infrared cavity ringdown spectroscopy of waterclusters: O-D stretching bands. J. Chem. Phys. 1998,109 (23): 10201-10206.
    
    [273] Paul J B, Provencal R A, Chapo C et al. Infrared Cavity Ringdown Spectroscopy of theWater Cluster Bending Vibrations. J. Phys. Chem. A. 1999, 103 (16): 2972-2974.
    
    [274] Paul J B, Collier C P, Saykally R J et al. Direct measurement of water cluster concentrationsby infrared cavity ringdown laser absorption spectroscopy. J. Phys. Chem. A. 1997, 101 (29):5211-5214.
    
    [275] Brown S S, Wilson R W, Ravishankara A R. Absolute intensities for third and fourthovertone absorptions in HNO_3 and H_2O_2 measured by cavity ring down spectroscopy. J. Phys.Chem. A. 2000, 104 (21): 4976-4983.
    
    [276] Pearson J, OrrEwing A J, Ashfold M N R et al. J-dependent linewidths for the (110)-(000)band of the (?)~1A"-(?)~1A' transition of HNO studied by cavity ring-down spectroscopy. J. Chem.Soc. Faraday Trans. 1996, 92 (7): 1283-1285.
    
    [277] Pearson J, OrrEwing A J, Ashfold M N R et al. Spectroscopy and predissociation dynamicsof the (?)~1A"-(?)~1A' state of HNO. J. Chem. Phys. 1997,106 (14): 5850-5873.
    
    [278] Wang L M, Zhang J S. Detection of nitrous acid by cavity ring down spectroscopy. Environ.Sci. Technol. 2000, 34 (19): 4221-4227.
    
    [279] Bean B D, Mollner A K, Nizkorodov S A et al. Cavity ringdown spectroscopy of cis-cisHOONO and the HOONO/HONO_2 branching ratio in the reaction OH+NO_2+M. J. Phys.Chem. A. 2003, 107 (36): 6974-6985.
    
    [280] Pipino A C R. Monolithic folded resonator for evanescent wave cavity ringdownspectroscopy.Appl. Opt. 2000, 39: 1449-1453.
    
    [281] Pipono A C R. Ultrasensitive Surface Spectroscopy with a Miniature Optical Resonator.Phys. Rev. Lett. 1999, 83: 3093-3096.
    
    [282] Kleine D, Lauterbach J, Kleinermanns K et al. Cavity ring-down spectroscopy ofmolecularly thin iodine layers. Appl. Phys. B. 2001,72 (2): 249-252.
    
    [283] Pipino A C R, Hudgens J W, Huie R E. Evanescent wave cavity ring-down spectroscopy forprobing surface processes. Chem. Phys. Lett. 1997, 280: 104-112.
    
    [284] Meijer G, Boogaarts M G H, Jongma R T et al. Coherent cavity ring down spectroscopy.Chem. Phys. Lett. 1994,217: 112-116
    
    [285] Bitter M, Ball S M, Povey I M et al. A broadband cavity ringdown spectrometer for in-situmeasurements of atmospheric trace gases. Atmospheric Chem. Phys. 2005, 5: 2547-2560.
    
    [286] Newman S M, Howie W H, Lane I C et al. Predissociation of the A~2Π_(3/2) state of IO studiedby cavity ring-down spectroscopy. J.Chem. Soc. Faraday Trans. 1998, 94 (18): 2681-2688.
    
    [287] Enami S, Yamanaka T, Hashimoto S et al. Kinetic study of IO radical with RO_2 (R = CH3,C_2H_5, and CF_3) using cavity ring-down spectroscopy. J. Phys. Chem. 2006, 110 (32):9861-9866.
    
    [288] Atkinson D B, Hudgens J W, Orr-Ewing A J. Kinetic studies of the reactions of IO radicalsdetermined by cavity ring-down spectroscopy. J. Phys. Chem. A. 1999, 103 (31): 6173-6180.
    
    [289] Nakano Y, Enami S, Nakamichi S et al. Temperature and pressure dependence study of thereaction of 10 radicals with dimethyl sulfide by cavity ring-down laser spectroscopy. J. Phys.Chem. A. 2003,107 (33): 6381-6387.
    
    [290] Ma T M, Leung J W H, Cheung A S C. Cavity ring-down laser absorption spectroscopy ofIrC. Chem. Phys. Lett. 2004,385 (3-4): 259-262.
    
    [291] Labazan I, Milosevic S. Laser vaporized Li_2, Na_2, K_2, and LiNa molecules observed bycavity ring-down spectroscopy. Phys. Rev. A. 2003, 68 (3): Art. No. 032901
    
    [292] Labazan I, Rudic S, Milosevic S. Nonlinear effects in pulsed cavity ringdown spectroscopyof lithium vapour. Chem. Phys. Lett. 2000, 320 (5-6): 613-622.
    
    [293] Li F P, Zare R N. Molecular orientation study of methylene blue at an air/fused-silicainterface using evanescent-wave cavity ring-down spectroscopy. J. Phys. Chem. B. 2005, 109(8): 3330-3333.
    
    [294] Chem Y Q, Wang W J, Zhu L.Wavelength-Dependent Photolysis of Methylglyoxal in the290-440 nm Region. J. Chem. Phys. 1997,107:11126-11131.
    
    [295] Yalin A P, Surla V, Butweiller M et al. Detection of sputtered metals with cavity ring-downspectroscopy. Appl. Opt. 2005,44 (30): 6496-6505.
    
    [296] Miller G P, Winstead C B. Inductively coupled plasma cavity ringdown spectrometry. J.Anal. Atom. Spectrosc. 1997, 12 (9): 907-912.
    
    [297] Huneycutt A J, Casaes R N, McCall B J et al. Infrared cavity ringdown spectroscopy ofjet-cooled polycylic aromatic hydrocarbons. Chemphyschem. 2004, 5 (3): 321-326.
    
    [298] Hancock G, Peverall R, Ritchie G A D et al. Absolute number densities of vibrationallyexcited N_2 (A~3Σu~+) produced in a low pressure rf plasma. J. Phys. D-Appl. Phys. 2006,39 (9):1846-1852.
    
    [299] Yalin A P, Zare R N, Laux C O et al. Temporally resolved cavity ring-down spectroscopy ina pulsed nitrogen plasma. Appl. Phys. Lett. 2002, 81 (8): 1408-1410.
    
    [300] Kotterer M, Conceicao J, Maier J P. Cavity ringdown spectroscopy of molecular ions: A~2Π_u←X~2Σ_g~+ (6-0) transition of N_2~+. Chem. Phys. Lett. 1996, 259 (1-2): 233-236.
    
    [301] Aldener M, Lindgren B, Pettersson A et al. Cavity Ringdown Laser AbsorptionSpectroscopy - Nitrogen cation. Phys. Scripta. 2000, 61(1): 62-65.
    
    [302] Lehr L, Hering P. Quantitative nonlinear spectroscopy: A direct comparison of degeneratefour-wave mixing with cavity ring-down spectroscopy applied to NaH. IEEE J. Quantum.Electron. 1997,33(9): 1465-1473.
    
    [303] Lehr L, Hering P. Cavity ring-down spectroscopy of photochemically produced NaH for thedetermination of relative dipole transition moments. Appl. Phys. B. 1997, 65 (4-5): 595-600.
    
    [304] Derzy I, Lozovsky V A, Cheskis S. CH, NH, and NH_2 concentration profiles in methane/airflames doped with N_2O. Isr. J. Chem. 1999, 39 (1): 49-54.
    
    [305] van den Oever P J, van Helden J H, van Hemmen J L et al. N, NH, and NH_2 radical densitiesin a remote Ar-NH_3-SiH_4 plasma and their role in silicon nitride deposition. J. Appl. Phys.2006, 100 (9): Art. No. 093303.
    
    [306] van den Oever P J, van Helden J H, Lamers C C H et al. Density and production of NH andNH_2 in an Ar-NH_3 expanding plasma jet. J. Appl. Phys. 2005,98 (9): Art. No. 093301.
    
    [307] Diau E W, Yu T, Wagner, M A G et al. Kinetics of the NH_2 + NO Reaction: Effects ofTemperature on the Total Rate Constant and the OH/H_2O Branching Ratio. J. Phys. Chem.1994,98 (15): 4034-4042.
    
    [308] Rahinov I, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy and cavityring-down spectroscopy in low-pressure flames. Appl. Phys. B-Laser Opt. 2005, 81 (1):143-149.
    
    [309] Berden G, Peeters R, Meijer G. Cavity-enhanced absorption spectroscopy of the 1.5 μmband system of jet-cooled ammonia. Chem. Phys. Lett. 1999, 307 (3-4): 131-138.
    
    [310] Engeln R, Berden G, Peeters R et al. Cavity enhanced absorption and cavity enhancedmagnetic rotation spectroscopy. Rev. Sci. Instrum. 1998,69 (11): 3763-3769.
    
    [311] Vasudev R. Wavelength modulated cavity enhanced absorption spectroscopy of ammonia at1994 nm. Appl. Phys. B-Lasers Opt. 2007, 87 (1): 163-167.
    
    [312] Marine J, Sukhorukov O, Jager W et al. Pulsed quantum cascade laser-based cavityring-down spectroscopy for ammonia detection in breath. Appl. Opt. 2006,45 (36):9230-9237.
    
    [313] Paldus B A, Harb C C, Spence T G et al. Cavity ringdown spectroscopy using mid-infraredquantum-cascade lasers. Opt. Lett. 2000,25 (9): 666-668.
    
    [314] Sepman A V, van Essen V M, Mokhov A V et al. Cavity ring-down measurements ofseeded NO in premixed atmospheric-pressure H_2/air and CH_4/air flames. Appl. Phys.B-Lasers Opt. 2003, 77 (1): 109-117.
    
    [315] Pillier L E, Bakali A, Mercier X et al. Influence of C_2 and C_3 compounds of natural gas onNO formation: an experimental study based on LIF/CRDS coupling. Proceedings of theCombustion Institute. 2005, 30: 1183-1191 Part 1.
    
    [316] Romanini D, Kachanov A A, Sadeghi N et al. Cw-cavity ring down spectroscopy. Chem.Phys. Lett. 1997, 264 (3-4): 316-322.
    
    [317] He Y B, Hippler M, Quack M. High-resolution cavity ring-down absorption spectroscopy ofnitrous oxide and chloroform using a near-infrared cw diode laser. Chem. Phys. Lett. 1998,289 (5-6): 527-534.
    
    [318] Parkes A M, Linsley A R, Orr-Ewing A J. Absorption cross-sections and pressurebroadening of rotational lines in the 3v_3 band of N_2O determined by diode laser cavityring-down spectroscopy. Chem. Phys. Lett. 2003, 377 (3-4): 439-444.
    
    [319] Kasyutich V L, Martin P A, Holdsworth R J. Phase-shift off-axis cavity-enhancedabsorption detector of nitrogen dioxide. Measure. Sci. Technol. 2006, 17 (4): 923-931.
    
    [320] Hargrove J, Wang L M, Muyskens K et al. Cavity ring-down spectroscopy of ambient NO_2with quantification and elimination of interferences. Environ. Sci. Technol. 2006,40 (24):7868-7873.
    
    [321] Mazurenka M, Wada R, Shillings A J L et al. Fast Fourier transform analysis in cavityring-down spectroscopy: application to an optical detector for atmospheric NO_2. Appl. Phys.B-Lasers Opt. 2005, 81 (1): 135-141.
    
    [322] Courtillot I, Morville J, Motto-Ros V et al. Sub-ppb NO_2 detection by optical feedbackcavity-enhanced absorption spectroscopy with a blue diode laser. Appl. Phys. B-Lasers Opt.2006, 85 (2-3): 407-412.
    
    [323] Kebabian P L, Herndon S C, Freedman A. Detection of nitrogen dioxide by cavityattenuated phase shift spectroscopy. Anal. Chem. 2005, 77 (2): 724-728.
    
    [324] Langridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorptionspectrometer for detection of atmospheric NO_2 using light emitting diodes. Analyst. 2006,131 (8): 916-922.
    
    [325] Tomita H, Watanabe K, Kawarabayashi J et al. Development of high dose rate sensingmethod based on cavity ring-down laser spectroscopy. J. Nuclear Sci. Technol. 2005,42 (8):673-677.
    
    [326] Romanini D, Dupre P, Jost R. Non-linear effects by continuous wave cavity ringdownspectroscopy in jet-cooled NO_2. Vibr. Spectrosc. 1999, 19 (1): 93-106.
    
    [327] Brown S S, Ravishankara A R, Stark H. Simultaneous Kinetics and Ring-down: RateCoefficients from Single Cavity Loss Temporal Profiles. J. Phys. Chem. A. 2000, 104 (30):7044-7052.
    
    [328] Nakano Y, Ukeguchi H, Ishiwata T. Rate constant of the reaction of NO_3 with CH_2I_2measured with use of cavity ring-down spectroscopy. Chem. Phys. Lett. 2006,430 (4-6):235-239.
    
    [329] Pipino A C R, Silin V. Gold nanoparticle response to nitro-compounds probed by cavityring-down spectroscopy. Chem. Phys. Lett. 2005,404 (4-6): 361-364.
    
    [330] Nakano Y, Ishiwata T, Aloisio S et al. Temperature and pressure dependence of the rateconstants of the reaction of NO3 radical with CH_3SCH_3. J. Phys. Chem. A. 2006,110 (23):7401-7405.
    
    [331] King M D, Dick E M, Simpson W R. A new method for the atmospheric detection of thenitrate radical (NO_3). Atmospheric Environ. 2000, 34: 685-688
    
    [332] Venables D S, Gherman T, Orphal J et al. High sensitivity in situ monitoring of NO_3 in anatmospheric simulation chamber using incoherent broadband cavity-enhanced absorptionspectroscopy. Environ. Sci. Technol. 2006,40 (21): 6758-6763.
    
    [333] Dube W P, Brown S S, Osthoff H D et al. Aircraft instrument for simultaneous, in situmeasurement of NO_3 and N_2O_5 via pulsed cavity ring-down spectroscopy. Rev. Sci. Instrum.2006,77 (3): Art. No. 034101 Part 1.
    
    [334] Ayers J D, Apodaca R L, Simpson W R et al. Off-axis cavity ringdown spectroscopy:application to atmospheric nitrate radical detection. Appl. Opt. 2005,44 (33): 7239-7242.
    
    [335] Kasyutich V L, Canosa-Mas C E, Pfrang C et al. Off-axis continuous-wave cavity-enhancedabsorption spectroscopy of narrow-band and broadband absorbers using red diode lasers.Appl. Phys. B-Lasers Opt. 2002, 75 (6-7): 755-761.
    
    [336] Deev A, Sommar J, Okumura M. Cavity ringdown spectrum of the forbidden (?)~2E"← (?)~2A_2'transition of NO_3: Evidence for static Jahn-Teller distortion in the A state. J. Chem. Phys.2005, 122 (22): Art. No. 224305.
    
    [337] Simpson, WR. Continuous wave cavity ring-down spectroscopy applied to in situ detectionof dinitrogen pentoxide (N_2O_5). Rev. Sci. Instrum. 2003,74 (7): 3442-3452.
    
    [338] Teslja A, Dagdigian P J. Determination of oxygen atom concentrations by cavity ring-downspectroscopy. Chem. Phys. Lett. 2004,400 (4-6): 374-378.
    
    [339] Halmer D, von Basum G, Hering P et al. Mid-infrared cavity leak-out spectroscopy forultrasensitive detection of carbonyl sulfide. Opt. Lett. 2005, 30 (17): 2314-2316.
    
    [340] Tarsa P B, Rabinowitz P, Lehmann K K. Evanescent field absorption in a passive opticalfiber resonator using continuous-wave cavity ring-down spectroscopy. Chem. Phys. Lett.2004, 383 (3-4): 297-303.
    
    [341] Spaanjaars J J L, TerMeulen J J, Meijer G. Relative predissociation rates of OH (A~2Σ~+,v' = 3)from combined cavity ring down - Laser-induced fluorescence measurements. J. Chem. Phys.1997, 107 (7): 2242-2248.
    
    [342] Schocker A, Brockhinke A, Bultitude K et al. Cavity ring-down measurements in flamesusing a single-mode tunable laser system. Appl. Phys. B-Lasers Opt. 2003, 77 (1): 101-108.
    
    [343] Van Beek M C, Ter Meulen J J. An intense pulsed electrical discharge source for OHmolecular beams. Chem. Phys. Lett. 2001,337 (4-6): 237-242.
    
    [344] Cheskis S, Derzy I, Lozovsky V A et al. Cavity ring-down spectroscopy of OH radicals inlow pressure flame. Appl. Phys. B. 1998, 66 (3): 377-381.
    
    [345] Mercier X, Therssen E, Pauwels J F et al. Cavity ring-down measurements of OH radical inatmospheric premixed and diffusion flames. A comparison with laser-induced fluorescenceand direct laser absorption. Chem. Phys. Lett. 1999,299 (1): 75-83.
    
    [346] Lozovsky V A, Derzy I, Cheskis S. Nonequilibrium concentrations of the vibrationallyexcited OH radical in a methane flame measured by cavity ring-down spectroscopy. Chem.Phys. Lett. 1998,284 (5-6): 407-411.
    
    [347] Hannemann S, van Duijn E J, Ubachs W. Deep-UV high resolution cavity ring-downspectroscopy of the Schumann-Runge bands in ~(16)O_2 and ~(18)O_2 at wavelengths 197-203 nm. J.Mol. Spectrosc. 2005,232 (2): 151-156.
    
    [348] Slanger T G, Huestis D L, Cosby P C. O_2 photoabsorption in the 40950-41300 cm~(-1) region:New Herzberg bands, new absorption lines, and improved spectroscopic data. J. Chem. Phys.1996, 105 (21): 9393-9402.
    
    [349] Huestis D L, Copeland R A, Knutsen K. Branch intensities and oscillator strengths for theHerzberg absorption systems in oxygen. Can. J. Phys. 1994, 72: 1109-1121.
    
    [350] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorptionmeasurements using pulsed laser sources. Rev. Sci.Instrum. 1988, 59 (12): 2544-2551.
    
    [351] Engeln R, Berden G, vandenBerg E et al. Polarization dependent cavity ring downspectroscopy.J. Chem. Phys. 1997, 107 (12): 4458-4467.
    
    [352] Xu S C, Dai D X, Xie J C et al. Quantitative measurements of O_2 b ← X(2,1,0 ← 0) bandsby using cavity ring-down spectroscopy. Chem. Phys. Lett. 1999, 303 (1-2): 171-175.
    
    [353] Naus H, Navaian K, Ubachs W. Fourier transform infrared spectra and molecular structureof 5-methoxytryptamine, N-acety1-5-methoxytryptamine andN-phenylsulfonamide-5-methoxytryptamine. Spectrochimica. Acta A. 1999, 55: 1255-1263
    
    [354] Goldman A, Rahinov I, Cheskis S. Molecular oxygen detection in low pressure flames usingcavity ring-down spectroscopy. Appl. Phys. B-Lasers Opt. 2006, 82 (4): 659-663.
    
    [355] Engeln R, Meijer G. A Fourier transform cavity ring down spectrometer. Rev. Sci. Instrum.1996, 67 (8): 2708-2713.
    
    [356] Berden G, Engeln R, Christianen P C M et al. Cavity-ring-down spectroscopy on the oxygenA band in magnetic fields up to 20 T. Phys. Rev. A 1998,58 (4): 3114-3123.
    
    [357] Hosges J T, Looney J P, Van Zee R D. Laser bandwidth effects in quantitative cavityring-down spectroscopy. Appl. Opt. 1996,35 (21): 4112-4116.
    
    [358] Van Zee R D, Hodges J T, Looney J P. Pulsed, Single-Mode Cavity RingdownSpectroscopy Appl. Opt. 1999, 38 (18): 3951-3960.
    
    [359] van Helden J H, Schram D C, Engeln R. Phase-shift cavity ring-down spectroscopy todetermine absolute line intensities. Chem. Phys. Lett. 2004,400 (4-6): 320-325.
    
    [360] Debecker I, Mohamed A K, Romanini D. High-speed cavity ringdown spectroscopy withincreased spectral resolution by simultaneous laser and cavity tuning. Opt. Exp. 2005,13 (8):2906-2915.
    
    [361] Aldener M, Brown S S, Stark H et al. Near-IR absorption of water vapor: Pressuredependence of line strengths and an upper limit for continuum absorption. J. Mol. Spectrosc.2005,232 (2): 223-230.
    
    [362] Newman S M, Lane I C, Orr-Ewing A J et al. Integrated absorption intensity and Einsteincoefficients for the O_2 α~1△g-X~3Σ_g~- (0,0) transition: A comparison of cavity ringdown andhigh resolution Fourier transform spectroscopy with a long-path absorption cell. J. Chem.Phys. 1999, 110(22): 10749-10757.
    
    [363] Miller H C, McCord J E, Choy J et al. Measurement of the radiative lifetime of O_2(α~1△_g)using cavity ring down spectroscopy. J. Quant. Spectrosc. Rad. Trans. 2001,69 (3): 305-325.
    
    [364] Kassi S, Romanini D, Campargue A et al. Very high sensitivity CW-cavity ring downspectroscopy: Application to the a ~1△_g (0)-X~3Σ_g~- (1) O2 band near 1.58 μm. Chem. Phys. Lett.2005,409 (4-6): 281-287.
    
    [365] Engeln R, Von Helden G, Berden G et al. Phase shift cavity ring down absorptionspectroscopy. Chem. Phys. Lett. 1996,262 (1-2): 105-109.
    
    [366] Naus H, Ubachs W. The b~1Σ_g~+-X~3Σ_g~-(3,0) Band of ~(16)O_2 and ~(18)O_2. J. Mol. Spectrosc. 1999,193 (2): 442-445.
    
    [367] Naus H, van der Wiel S J, Ubachs W. Cavity-ring-down spectroscopy on the b~1Σ_g~+-X~3Σ_g~-(1,0) band of oxygen isotopomers. J. Mol. Spectrosc. 1998, 192 (1): 162-168.
    
    [368] Naus H, De Lange A, Ubachs W. b~1Σ_g~+-X~3Σ_g~- (0,0) band of oxygen isotopomers in relationto tests of the symmetrization postulate in ~(16)O_2. Phys. Rev. A. 1997, 56 (6): 4755-4763.
    
    [369] Campargue A, Kassi S, Romanini D et al. Cw-cavity ring down spectroscopy of the ozonemolecule in the 6625-6830 cm~(-1) region. J. Mol. Spectrosc. 2006, 240 (1): 1-13.
    
    [370] De Backer-Barilly M R, Barbe A, Tyuterev V G et al. Fourier transform and high sensitivitycw-cavity ringdown absorption spectroscopies of ozone in the 6030-6130 cm~(-1) region. Firstobservation and analysis of the 3v_1+3v_3 and 2v_2+5v_3 bands. J. Mol. Structure. 2006, 780-81:225-233.
    
    [371] Naus H, Ubachs W. Visible absorption bands of the (O2)_2 collision complex at pressurebelow 760 Torr. Appl. Opt. 1999,38 (15): 3423-3428.
    
    [372] Biennier L, Romanini D, Kachanov A. Structure and rovibrational analysis of the [O_2(~1△_g)v= 0]_2 ← [O_2(~3Σ_g~-)v = 0]_2 transition of the O_2 dimer. J.Chem. Phys. 2000, 112 (14):6309-6321.
    
    [373] Muir R N, Alexander A J. Structure of monolayer dye films studied by Brewster anglecavity ringdown spectroscopy. Phys. Chem. Chem. Phys. 2003, 5 (6): 1279-1283.
    
    [374] Winstead C B, Mazzotti F J, Mierzwa J et al. Preliminary results for electrothermalatomization-cavity ringdown spectroscopy (ETA-CRDS). 1999, Anal. Commun. 36 (7):277-279.
    
    [375] Duan Y X, Wang C J, Winstead C B. Exploration of microwave plasma source cavityring-down spectroscopy for elemental measurements. Anal. Chem. 2003,75 (9): 2105-2111.
    
    [376] Moreau C S, Therssen E, Mercier X et al. Two-color laser-induced incandescence and cavityring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames.Appl. Phys. B-Lasers Opt. 2004, 78 (34): 485-492.
    
    [377] Paul J B, Scherer J J, Collier C P et al. Cavity ringdown laser absorption spectroscopy andtime-of-flight mass spectroscopy of jet cooled platinum silicides. J. Chem. Phys. 1996, 104(8): 2782-2788.
    
    [378] Todd M W, Provencal R A, Owano T G et al. Application of mid-infrared cavity-ringdownectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mu m) opticalparametric oscillator. Appl. Phys. B-Lasers Opt. 2002,75 (2-3): 367-376.
    
    [379] Aarts I M P, Hoex B, Smets A H M et al. Direct and highly sensitive measurement ofdefect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy.Appl. Phys. Lett. 2004,4 (16): 3079-3081.
    
    [380] Wheeler M D, OrrEwing A J, Ashfold M N R et al. Predissociation lifetimes of the A~2Σ~+ v =1 state of the SH radical determined by cavity ring-down spectroscopy. Chem. Phys. Lett.1997, 268 (5-6): 421-428.
    
    [381] Wheeler M D, OrrEwing A J, Ashfold MN Ret al. Predissociation dynamics of the A~2Σ~+state of SH and SD. J. Chem. Phys. 1997, 107 (15): 7591-7600.
    
    [382] Wheeler M D, Newman S M, Orr-Ewing A J. Cavity ring-down spectroscopy of theA~2Π_(3/2)-X~2Π_(3/2) transition of BrO. J. Chem. Phys. 1998,108 (16): 6594-6605.
    
    [383] Hoefnagels J P M, Stevens A A E, Boogaarts M G H et al. Time-resolved cavity ring-downspectroscopic study of the gas phase and surface loss rates of Si and SiH_3 plasma radicals.Chem. Phys. Lett. 2002, 360 (1-2): 189-193.
    
    [384] Booth J P, Cunge G, Biennier L et al. Ultraviolet cavity ring-down spectroscopy of freeradicals in etching plasmas. Chem. Phys. Lett. 2000,317 (6): 631-636.
    
    [385] Campargue A, Romanini D, Sadeghi N. Measurement of SiH_2 density in a discharge byintracavity laser absorption spectroscopy and CW cavity ring-down spectroscopy. J. Phys. D:Appl.Phys. 1998,31 (10): 1168-1175.
    
    [386] Boogaarts M G H, Bocker P J, Kessels W M M et al. Cavity ring down detection of SiH_3 onthe broadband (?)~2A'_1 ← (?)~2A_1 transition in a remote Ar-H_2-SiH_4 plasma. Chem. Phys. Lett.2000, 326 (5-6): 400-406.
    
    [387] Kessels W M M, Leroux A, Boogaarts M G H et al. Cavity ring down detection of SiH3 in aremote SiH_4 plasma and comparison with model calculations and mass spectrometry. J. Vac.Sci. Technol. 2001, 19 (2): 467-476.
    
    [388] Remy J, Hemerik M M, Kroesen G M W et al. Relevance of a midinfrared cavity ring-downdiagnostic in the study of a dusty SiH_4 plasma. IEEE Trans. Plasma Sci. 2004, 32 (2):709-715 Part 2.
    
    [389] Vander Wal R L, Ticich T M. Cavity ringdown and laser-induced incandescencemeasurements of soot. Appl. Opt. 1999, 38 (9): 1444-1451.
    
    [390] Wang C J, Koirala S P, Scherrer S T et al. Diode laser microwave induced plasma cavityringdown spectrometer: Performance and perspective. Rev. Sci. Intrum. 2004, 75 (5):1305-1313.
    
    [391] Usachev A D, Miller T S, Singh J P et al. Optical Properties of Gaseous2,4,6-Trinitrotoluene in the Ultraviolet Region. Appl. Spectrosc. 2001, 55: 125-129
    
    [392] Saar B G, Steeves A H, Thoman J W et al. CH-stretching overtone spectroscopy of1,1,1,2-tetrafluoroethane. J. Phys. Chem. A. 2005, 109 (24): 5323-5331
    
    [393] Ma T M, Leung J W H, Cheung A S C. Cavity ring-down laser absorption spectroscopy ofthe E~3△ -X~3△ transition of VN. J. Phys. Chem. A. 2004, 108 (25): 5333-5337.
    
    [394] Kraus D, Saykally R J, Bondybey V E. Cavity ringdown laser absorption spectra of tungstenoxide. Chem. Phys. Lett. 1998, 295 (4): 285-288.
    
    [395] Vallance C. Innovations in cavity ringdown spectroscopy. New J. Chem. 2005,29 (7):867-874.
    
    [396] Leung IWH, Ma T M, Cheung A S C. Cavity ring down absorption spectroscopy of the B~2 Σ~+-X~2Σ~+ transition of YO. J. Mol. Spectrosc. 2005,229 (1): 108-114.
    
    [397] Peeters R. Cavity enhanced absorption spectroscopy. (Doctoral dissertation). Katholieke Universiteit Nijmegen. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700