用户名: 密码: 验证码:
聚环氧琥珀酸反渗透阻垢剂绿色化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的二十世纪,化学为人类创造了巨大的物质财富和生存革命,也让人类付出了资源枯竭和环境污染的沉重代价,忽视自然规律和生态系统自我调节能力利用化学的过程产生了系列生态问题。“从源头根除污染”的绿色化学应运而生,依照绿色化学建立的标准、原则和方法体系,设计更安全和更环保的化学品,开发可最大限度利用能源、资源,并且无毒、无害、无污染排放的化学反应和化工过程正在成为化学工作者努力的方向和追求的目标。本研究从绿色化学的理念出发,以目前公认的绿色阻垢剂聚环氧琥珀酸(Polyepoxysuccinic acid PESA)为对象,从阻垢剂的绿色化学设计与性能研究入手,通过实验及理论分析,对PESA的合成工艺及在反渗透(RO)水处理中的应用进行较为全面和深入的研究。
     依据绿色化学的原则,研究具有原子经济性、对人类和环境友好的PESA的合成方法。选择无磷无氮、不含对环境有害成分的化合物马来酸酐作为单体,用水溶液作反应介质,在合成过程中不使用有机溶剂,而采用简单的无机化合物,用过氧化氢作氧化剂、钨酸钠作催化剂、固体氢氧化钠作引发剂,通过单因素试验和正交设计试验对一步法合成PESA工艺的水解、环氧化反应、聚合反应条件进行优化,以实现目标产物高性能、能源消耗最小化和反应过程无废化。优化的环氧化条件为:反应温度70℃;反应时间55分钟;氧化剂H202(30%)用量为马来酸酐质量的35%;催化剂Na2WO4用量为马来酸酐质量的2.4%。聚合反应条件为:引发剂NaOH用量为马来酸酐质量的0.34%;聚合温度80℃;聚合时间2h;聚合反应体系的pH=7±0.5。
     按上述优化条件合成的PESA,马来酸酐单体的转化率为89.1%;目的产物中羧基含量为21.45%;对CaCO3的阻垢率大于96%。按HG/T 3823-2006《聚环氧琥珀酸(盐)》的技术要求对产品进行检验和表征的结果全部达标;参照国际标准OECD301B测定的10天生物降解率大于77%。
     采用静态和动态的方法研究了PESA作为反渗透阻垢剂的有效性和可行性。模拟反渗透浓水水质,在阳离子质量浓度分别为40mg/L、100mg/L、200mg/L的试验水中加入10m/LPESA,试验结果表明,PESA对易沉积在反渗透膜上的碳酸钙、硫酸钙、硫酸钡、硫酸锶的平均阻垢率可达到90%以上,具有多元阻垢性能。
     模拟海水和城市自来水的反渗透系统,采用加药全循环的方式,考查PESA的动态阻垢性能,经过10个周期的实验,反渗透膜透水率和脱盐率的变化均未超过5%。且与反渗透预处理中常用的铁盐及铝盐混凝剂有着良好的相容性。
     用JSM-6360LV型扫描电镜对加入阻垢剂PESA的碳酸钙垢晶体进行扫描分析的结果显示,PESA可以使碳酸钙(CaCO3)的晶格发生畸变,破坏CaCO3晶体原有的规则致密结构,从而抑制了CaCO3垢的形成,结合PESA可显著提高微溶盐的相对过饱和度,足见PESA对成垢离子具有分散、络合增溶、晶格畸变等多种阻垢作用。
     本文还对阻垢剂的评价方法进行了试验研究,采用电导法评定PESA的阻垢性能,通过电导率滴定难溶盐的相对过饱和度,分析评价阻垢剂的阻垢效果。对比试验的结果显示,电导滴定法与碳酸钙沉积法的试验结果一致,但重现性优于碳酸钙沉积法。与碳酸钙沉积法相比,电导法能够快速、准确地评定阻垢剂的阻垢性能,具有简单方便、重现性好等优点。
In the 20th century, chemistry created enormous material wealth and brought great revolutions for human survival. At the same time, human beings had paid huge prices of resources depletion and environmental pollution, as a consequence of ignorimg natural law and the limited self-regulation capacity of ecosystem. This curel realtity challenged the idea of traditional chemistry. "Eliminating the pollution from the source"-the concept of green chemistry was proposed and embraced by more and more chemists. Producing safer and more eco-fridenly chemical producs following the standards and protacals of green chemistry, developing energy-saving, non-toxic, pollution free chemical industry has become the goal for many chemists. This paper aims to study the widely recognized green scale inhibitor, Polyepoxysuccinic acid. From the property and the green chemistry design of the scale inhibitor, using both experiments and theoretical analysis, we carefully studied the synthesis and application of PESA in the reverse osmosis process.
     We employed synthetic method for PESA which is of atomic economy and environmental friendly on in term of the theory of green chemicals. Maleic anhydride without nitrogen and phosphorus pollution was chosen as the monomer, and water as the reaction medium without any organic solvents, the inorganic compound H2O2 as oxidant, Na2WO4 as catalyst, and solid NaOH as initiating agent. The optimal conditions of hydrolysis, epoxidation and polymerization of the synthetic process were identified through simple factor experiment and orthogonal experiment. In this case, the PESA product with high performances, less energy consumption and no waste has been realized. The optimal conditions of the epoxidation are that the reaction temperature is 70℃reaction time is 55 min, with 35% dosage of oxidizing agent H2O2 (30%),2.4% dosage of maleic anhydride and catalyst Na2WO4 and the dosage of maleic anhydride. The condition of polymerization is that the dosage of initiating agent is 0.34% maleic anhydride with polymerization temperature of 80℃, polymerization time of 2h, and pH of 7+/-0.5.
     The PESA was obtained under the optimal conditions above with the maleic anhydride monomer converting ratio of 89.1% and carboxyl content of 21.45%. The scale inhibition ratio of CaCO3 is above 96%. After tests and measurement, the products could meet all requirement of The Sector Standard of The Technical requirements of PSEA (HG/T 3823-2006), According to the standard method OECD301B, the biograduation ratio of PESA is above 77%.
     The effectiveness and applicability of PESA as a RO scale inhibitor were studied using both static and dynamic methods. 10mg/L PESA was added into the synthesized RO water with cation concentration of 40mg/L, 100mg/L and 200mg/L, respectively. According to the results, PESA showed multi-inhibitory performances with the average scale inhibition ratio of 90% to CaCO3, CaSO4, BaSO4 and SrSO4 which could easily deposit on the RO membrane.
     The dynamic scale inhibition performance of PESA in the RO system of both sea water and tap water was investigated under the full recycle operation mode. After ten cycles of experiments, the variations in water permeability and desalination ratios are within 5% after PESA treatment. In addition PESA is well compatible with with Fe and Al coagulants commonly used in RO system.
     Analysis of JSM-6360LV SEM images of CaCO3 crystals treated with PESA suggested that PESA could induce CaCO3 crystal deformation, damaging the crystal structure, thus prevent the growth of CaCO3 scale. Reacting with PESA can greatly increase the relative degree of super saturation of slightly soluble salts. We recognized that PESA had a verity of anti-scaling effects like separation, promotion in solubility by complexion, and crystal deformation on scale causing ions.
     We also compared the methods for evaluating scale inhibitors. Through conductometric titration, the relative saturation level of the slightly soluble salts was obtained which is used to evaluate the performance of scale inhibitor. The results show that Titration method gave essentially the same results as the precipitation of CaCO3, but was more repeatable. Compared with CaCO3 precipitation, conductometric titration can access the performance of the scale inhibitor more quickly and accurately, is easier to apply and more repeatable.
引文
[1]Carson R.寂静的春天[M].吕瑞兰,李长生译.长春:吉林人民出版社,1999:149.
    [2]朱清时,李占军.绿色化学:让大自然远离伤害[N].科学时报,2001-02-01(003).
    [3]胡锦涛.在中国共产党第十七次全国代表大会上的报告[R].北京:2007-10-15.
    [4]温家宝.政府工作报告[R].十届全国人大五次会议,北京:2007-3-5.
    [5]中国绿色国民经济核算研究报告2004[R].北京:环境保护部、国家统计局,2006-9-7.
    [6]吕志芳,董伟,夏明珠等.聚环氧琥珀酸的阻垢缓蚀性能研究[J].工业水处理,2001,21(3):23-25.
    [7]Yasuhisa F,Takao T. Water treating agents for prevention of metal corrosion and scale generation [P]. JP04166298,1991
    [8]Stephen M. Method of inhibiting eorrosionin aqueous systems[P].US5256332,1993.
    [9]Bush R D,Heinzman S W. Ether hydroxylpolearboxylate detergeney builders [P]. US4654159, 1987-03-03.
    [10]Carter C G, Fan L G, Fan J C, et al. Method of inhibiting corrosion of metal susing Polytartarie acids[P]. EP0609590,1994-08-10.
    [11]朱清时.绿色化学和新的产业革命[J].现代化工,1998,(1):4-6.
    [12]Kidwai M, Mohan R. Green chemistry:An innovative technology [J]. Foundations of Chemistry, 2005,7(3):269-287.
    [13]震惊世界的污染事故[DB/OL].绿地球,http://www.our-greenearth.com/2009-10-19.
    [14]环境保护部公告2010年13号[Z].北京:环境保护部,2010-2-25.
    [15]第一次全国污染源普查公报[Z].北京:环境保护部、国家统计局、农业部,2010-2-6:5.
    [16]孙瑞灼.环境税宜尽早开征[N].时代周报,2009-6-4.
    [17]Anastas P T, Kirchhoff M M. Origins, current status, and future Challenges of green chemistry[J]. Accounts of chemical research,2002,35(9):686-694.
    [18]Sustainable Chemistry[EB/OL]. http://www.oecd.org/document/,2008-4-5
    [19]Anastas P T.The role of catalysis in the design, development, and implementation of green chemistry [J]. Catalysis Today,2000,55(1-2):11-22.
    [20]Anasta P T, Warner J C. Green Chemistry:Theory and Practice [M]. NewYork:Oxford University Press,1998.
    [21]Abraham M A, Nguyen N. Environ. Prog,2003,22:233-236.
    [22]Anastas P T, Zimmerman J B. Environ.Sci.Technol,2003,37:94-101.
    [23]Kirchhoff M M. Environ.Sci.Technol,2003,37:5349-5353.
    [24]Ritter S K. C&EN,2003,81:30-32.
    [25]Ritter S K.Green Chemistry.Chem.Eng.News,2001,79,27
    [26]Trost Barry M.The atom economy:a search for synthetic efficiency [J]. Science,1991, 254(5037):1471
    [27]Trost B M, Yian S.Cycloisomerization for atom economy. Polycycle Construction via tandem transition metal Catalyzed electro Cyclic processes [J]. JAm.Chem.Soc,1992,114,791.
    [28]Trost B M. On Inventing Reactions for Atom Economy [J]. Ace. Chem.Res,2002,35,695.
    [29]阂恩泽,吴巍.绿色化学与化工[M].北京:化学工业出版社,2000.11.
    [30]朱清时.绿色化学[J].化学进展,2000,12(4):410-414.
    [31]Anastas P T, Williamson T C. Eds..Oxford University Press:New York 1998, Chapter 11.
    [32]Draths K M, Frost J W. Synthesis using plasmid-based biocatalysis:plasmid assembly and 3-deoxy-D-arabino-heptulosonate production [J]. J Am Chem Soc,1990,112(4):1657-1659.
    [33]Draths K M, Frost J W. Genomic direction of synthesis during plasmid-based biocatalysis[J].J Am Chem Soc,1990,112(26):9630-9632.
    [34]Draths K M, Frost J W. Conversion of D-glucose into catechol:the not-so-common pathway of aromatic biosynthesis[J]. J,Am Chem Soc,1991,113(24):9361-9363.
    [35]Kumar G, Bristow J F, Smith P J, et al,Enzymatic gelation of the natural polymer chitosan[J]. Polymer,2000,41(6):2157-2168
    [36]Mesiano A, Beckman E J, Russell A J. Bio Catalytic Synthesis of Fluorinated Polyesters[J]. Biotechnol.Prog.,2000,16,64
    [37]Draths K M, Frost J W. Improving the environment through process changes and product substitutions[A].In:Anastas P T,Williamson T C,eds. Green Chemistry:Frontiers in Benign Chemical Syntheses and Processes[C]. NewYork:Oxford University Press,1998, Chapter 9
    [38]Kravchenko R, Waymouth R M. Altemating Ethene/Propene Copolymerization with a Metallocene Catalyst[J]. Angew.Chem,Int.Ed,1998,37,922
    [39]Matyjaszewski K, Patten T E, Xia J. Controlled/Living Radical Polymerization, Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene[J].J Am Chem Soc,1997,119, 674.
    [40]Darensbourg D J, Mackiewicz R M, Phelps A L,et al, Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes[J]. Acc.Chem.Res,2004,37,836
    [41]Anastas P T, Heine L G, Williamson T C. American Chemical Society:Washington,DC,2001,10
    [42]Wool R P.Affordable Composites from Renewable Sources(ACRES).In The Presidential Green Chemistry Challenge Awarde Program:Summary of 2000 Award Entries and Recipients. EPA744-R-00-001,U.S. Environmental Protection Agency,Office of Pollution Prevention and Toxics:Washington,DC,2001,9.
    [43]Cargill Dow Polymers,LLC. Process to Produce Biodegradable Polylactic Acid Polymers. In The Presidential Green Chemistry Challenge Awarde Program:Summary of 2000 Award Entries and ReciPients,EPA744-R-00-001,U.S.Environmental Protection Agency,Office of Pollution Prevention and Toxics:Washington,DC,2001,51
    [44]闵恩泽,傅军.绿色化学的进展[J].化学通报,1999,卷(1):10-15
    [45]诺贝尔化学奖看中环保 绿色化学家登巅峰[EB/OL]. http://news.sina.com.cn/w /2005-10-06/14087937873.shtml,2005-10-06
    [46]Leitner W.Carbon Dioxide as Environmentally Benign Reaetion Medium for Chemical Synthesis[J]. Appl. Organomet. Chem.,2000,14,809
    [47]Giles M R,Griffiths R M T,Aguiar-Ricardo A I,et al., Fluorinated Graft Stabilizers for Polymerization in Supercritical Carbon Dioxide:The Effect of Stabilizer Architecture[J]. Macromolecules.,2001,34,20
    [48]Zhang J,Roek D P,Chateauneuf J E,Brennecke J F. A Steady-State and Time-Resolved Fluorescence Study of Quenching Reactions of Anthracene and 1,2-Benzanthracene by Carbon Tetrabromide and Bromoethane in Supercritical Carbon Dioxide[J]. J.Am.Chem.Soe.,1997,119, 9980.
    [49]Hughes Environmental Systems,Ine.Dry Wash TM:Carbon Dioxide Dry Cleaning Technology.In The Presidential Green Chemistry Challenge Awards Program:Summary of 1997 Award Entries and Reeipients,EPA744-S-97-001 U.S. Environmental Protection Agency,Office of Pollution Prevention and Toxies:Washington,DC,1998,23.
    [50]Hitzler M G,Poliakoff M. Continuous Hydrogenation of Organic Compounds in SuPercritical Fluids[J]. Chem.Commun.,1997,1667.
    [51]朱清时,阎立峰,郭庆祥.绿色化学:产业发展从粗放走向集约[N].中国化工报,2005-01-05(T0A).
    [52]李文明,王建国,李正名.绿色化学研究进展[J].天津化工,2008,22(2):1-4.
    [53]Albert Matalack.Green Chem,2003,5(1):G7-G12
    [54]彭红艳.机械化学法制备水溶性壳聚糖[D].大连:大连交通大学,2008,5.
    [55]Rogers R D, Seddon K R.Ionic Liquids-Solvents of the Future[J].Science,2003,302,792.
    [56]John S W, Michael J Z. Air and Water Stable 1-ethyl-3-methylimidazolium Based Ionic Liquids [J]. J.Chem.Soc.,Chem.Commun.,1992,13,965.
    [57]Welton T. Room-Temperature Ionic Liquids.Solvents for Synthesis and Catalysis [J]. Chem.Rev., 1999,99,2071.
    [58]DuPont J, Souza R F,Suarez P AZ. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis[J]. Chem.Rev.,2002,102,3667.
    [59]Hu Y F,Xu C M.Redox Ionic Liquid Phases:Ferrocenated Imidazoliums [Z].Chem.Rev.,2006, 106,ASAP Article,DOI:10.1021/cr0502044.
    [60]Liu Y, Zhang Y, Wu G. Coexistence of Liquid and Solid Phases of Bmim-PF6 Ionic Liquid on Mica Surfaces at Room Temperature [J].J.Am.Chem.Soe,2006,128,7456
    [61]Yoshio M, Kagata T, Hoshino K,et al, One-Dimensional Ion-Conductive Polymer Films: Alignment and Fixation of Ionic Channels Formed by Self-Organization of Polymerizable Columnar Liquid Crystals [J].J.Am.Chem.Soc.,2006,128,5570
    [62]He Y, Li Z, Simone P,et al, Self-Assembly of Block Copolymer Micelles in an Ionic Liquid [J]. J.Am.Chem.Soc,2006,128,2745
    [63]Huang J F, Luo H, Liang C,et al, Ionic Thermotropic Liquid Crystal Dendrimers [J]. J.Am.Chem.Soc.,2005,127,12784
    [64]Martin RR,Marcs M,Omenat A, et al, J.Am.Chem.So,2005,127,7397
    [65]Welton T. Chem. Rev.,1999,99:2071-2083
    [66]Olivier H J. Mol. Catal. A:Chem.,1999,146:285-289
    [67]Blanchard L A, Hancu D, Beckman E J, et al, Green processing using ionic liquids and CO2 [J]. Nature,1999,399(6731):28-29
    [68]Blanchard L A,Brennecke,J.F.Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide[J].Ind.Egn. Chem.Res.,2001,40:287
    [69]Bates E D,Mayton R D,Ntai I,et al.,CO2 capture by a task-specific ionic liquid[J].J Am Chem Soc, 2002,124(6):926-927
    [70]Fadee A G,Meagher M M.Opportunities for ionic liquid in recovery of biofuels[J].Chem Commun, 2001(3):295-296
    [71]Visser A E,Swatloski R P,Roger R D.Task-specific ionic liquid for the extraction of metal ions from aqueous solutions [J].Chem Commun,2001(1):135-136.
    [72]Visser A E, Swatloski R P, Roger R D. Liquid:liquid extraction of metal ions in room temperature ionic liquid [J].JSeparaton & Science Technology,2001,36(5-6):785-804.
    [73]Helene O B, Lionel M. Ionic liquid:perspective for organic and catalytic reaction [J].Journal of Molecular Catalysis A:Chemical,2002,182(1):419-437
    [74]Breslow R, Coinnor R, Zhu Z.Mechanistic studies using antihydrophobic agents [J]. Pure Appl Chem.,1996,68::1527-1533
    [75]Breslow R, Coinnor R, Zhu Z. Quantitative antihydrophobic effects as probe for transition state structures:2.Diels-Alder reactions [J]. J Am Chem Soc,1993,117(39):9923-9924
    [76]Paquette L A. Indium-promoted coupling reactions in water [A]. In:Anastas P T, Heine L G, eds. Green Chemical Syntheses and Processes[C]. Washington DC:American Chemical Society,2000, Chapter 9.
    [77]Breton G W, Hughey C A. A Grignard-Like Organie Reaction in Water [J]. J. Chem.Educ,1998, 75,85
    [78]廖永卫,陈卫平.氟两相催化反应的进展[J].有机化学,2001,21(3):181-190
    [79]Vincent J M, Rabion A,Yachandra VK,et al, Fluorous Biphasic Catalysis:Complexation of 1)4,7,-[C8F17(CH2)3]3-1,4,7-Triazacyclononane with [M(C8Fi7(CH2)2CO2)2](M)Mn,Co) To Provide Perfluoroheptane-Soluble Catalysts for Alkane and Alkene Functionalization in the Presenee of t-BuOOH And O2 [J]. J.Angew.Chem.Int.Ed Engl.1991,36,2346
    [80]Dijksman A, Marino-Gonzalez A I, Payeras A M, et al, Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System [J]. JAm. Chem.Soc.2001,123,6826
    [81]Mubofu E B,Clark J H,Macquarrie D J. A novel Suzuki Reaction system based on a supported Palladium Catalyst [J].Green Chem.2001,3,23
    [82]Dias E L,Brookhart M,White P S.Rhodium(I)-Catalyzed Homologation of Aromatie Aldehydes with Trimethylsilyldiazomethane [J]. J.Am.Chem.Soc.2001,123,2442
    [83]Murahashi S,Komiya N,Oda Y.et al.,Ruthenium-Catalyzed Oxidation of Alkanes with tert-Butyl Hydroperoxide and Peracetic Acid[J].J.Org.Chem.2000,65,9186
    [84]Sheldon R A, Downin R S, Heterogeneous catalytic transformations for environmentally friendly production[J].Appl Catal,1999,189(2):163-183
    [85]Guidoni M,Ravasio N,Psaro R,et al.Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas [J]. Green Chemistry,2003,5(4):421-424
    [86]Corma A,Renz M.Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbonyl-ene reaction [J]. Chem Commun,2004,(5):550
    [87]Brooks D, Huang H, et al, Heterogeneously catalysed cleavage of carbon-carbon double bonds with hydrogen peroxide using calcined heteropolyacids on oxide supports [J].Chem Commun.1999, (1):37-38
    [88]Kishore D, Kannan S. Isomerization of eugenol and safrole over MgAl hydrotalcite,a solid base catalyst [J]. Green Chemistry,2002,A(6):607-610
    [S9]Wei T,Wang M H,et al, Synthesis of dimethyl carbonate by transester-ification over CaO/Carbon composites [J]. Green Chemistry,2003,5(3):343-346
    [90]Pillai Unnikrishnan R,Sahle-Demessie Endalkachew. Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any addnives [J].Green Chemistry,2004,6(3): 116-165
    [91]Kovacs Gabor, Nadasdi Levente,et al, Aqueous organometallic catalysis. Isotope exchange reactions in H2-D2O and D2-H2O systems catalyzed by water-soluble Rh-and Ru-phosphine complexes [J]. Green Chemistry,2003,5(2):213-217.
    [92]郭奇珍,陈明德著.仿生化学[M].北京:化学工业出版社,1990.7
    [93]佘远斌,王兰芝,宋旭锋等.金属卟啉类仿生催化剂的合成、构效关系及在催化氧化碳氢化合物中的应用[J].精细化工,2005,22(6):401408.
    [94]周智明,李连友,徐巧,余从煊,仿生催化剂-Salen金属络合物催化不对称环氧化烯烃的基础[J].有机化学,2005,25(4):347-354
    [95]纪红兵,佘远斌.绿色化学化工基本问题的发展与研究[J].化工进展,2007,26(5):605-614.
    [96]纪红兵,佘远斌.绿色化学与还原[M].北京:中国石化出版社,2005.
    [97]闵恩泽.工业催化剂的研制与开发[M].北京:中国石化出版社,1997.152-154.
    [98]闵恩泽,何鸣元.机动车燃料和基本有机化学品生产中的绿色化学-21世纪技术创新的科学知识基础[J].石油炼制与化工,1999,30(1):1-6.
    [99]Zou Z, Ye J, Sayama K,et al,Direct Splitting of water under Visible Llight Irradiation with an Oxide Semiconductor Photo Catalyst [J]. Nature,2001,414,625
    [100]Gagani R.Tempest in a Tiny Tube [J]. Chem.Eng.News,2002,80,25
    [101]http://www. epa.gov/gcc/pubs/docs/award_entries_and_recipients 2007.pdf
    [102]Grogan J,Devitos C,Pearlman R S.Modeling cyanide release from nitriles:prediction of cytochrome P450 mediate acute nitrile toxicity[J]. Chem Res In Tex,1992,5:548-552
    [103]Gupta S C.The design of catalysts for green oxidation processes[J]. Science,2002,296:326-328.
    [104]潘一,杨双春,徐霖.绿色化学的研究现状及进展[J].化学工业与工程技术,2005,26(5):26-29.
    [105]中华人民共和国国民经济和社会发展第十一个五年规划纲要.2005,6.22.2
    [106]王世昌.海水淡化工程[M].北京:化学工业出版社,2003:15-25
    [107]Mark Wilf,Steven Alt. Application of low fouling RO membrane elements for reclamation of municipal wastewater[J].Desalonation,2000,132 (1):11-19
    [108]Butt F H,et al.Evaluation of SHMP and advanced scale inhibitor for control of CaSO4,SrSO4and CaCO3scales in RO desalination[J]. Desalination,1997,109:323-332
    [109]Y Ning Robert,et al. Complete elimination of acid injection in reverse osmosis plants[J]. Desalination,2002,143:29-34.
    [110]Ahmed Al-Rammah.The application of acid free antiscalants to mitigate scaling in reverse osmosis membranes [J].Desalination,2000,132:83-87
    [111]Gill J S. Anovel inhibitor scale control in water desalination [J]. Desalination,1999.124(1):43-50
    [112]Al-Shammiri M, Afar M,Al-Dawa M.Evaluation of two different antiscalants in real operation at the Doha research plant [J]. Desalination,2000,128(1):1-16
    [113]金栋,王锦堂.我国聚合物阻垢分散剂研究开发新进展[J].化工科技市场,2005,5:37-42
    [114]李艳丽,周柏青,施有弟等.反渗透阻垢剂的研究进展[J].工业水处理,2004,24(3):17-20
    [115]熊蓉春,董雪玲,魏刚.绿色化学与21世纪水处理剂发展战略[J].环境工程,2000,18(2):22-49
    [116]Carey.Composition for controlling seale formation in aqueous systems [P].US5866032,1999
    [117]Brown J M, Mc Dow ell J F.Methods of controlling scale formation in aqueous systems [P]. US5147555,1992-9-15
    [118]Brown J M, Mc Dow ell J F.Methods of controlling scale formation in aqueous systems[P]. US5062962,1991-11-15
    [119]何爱江.阻垢剂性能及机理研究[D].成都:四川大学,2006.5
    [120]朱志良,张冰如,苏耀东等.BPTCA及马丙共聚物对碳酸钙垢阻垢机理的动力学研究[J].工业水处理,2002,20(2):20-23
    [121]朱志良,张冰如,苏耀东等.聚丙烯酸及马丙共聚物对硫酸钙垢阻垢机理的动力学研究[J].工业水处理,2000,20(12):17-21
    [122]Gill J S,Anderson C D,Varsanik R G.Mechanism of scale inhibition by phosphornates [R]. Proc 44th Int Water Conf[,Pittsburgh:Pa(USA),1983,4:26
    [123]冯敏.工业水处理技术[M].北京:海洋出版社,1992,45-48
    [124]张秋禹,侯振宇,袁定重等.绿色水处理剂的研究与应用[J].安徽大学学报(自然科学版),2006,30(1):89-93.
    [125]周晓蔚,周柏青.聚天冬氨酸多元阻垢性能的研究[J].水处理技术,2005,31(3):31-34.
    [126]熊蓉春,董雪玲,魏刚.绿色高分子聚天冬氨酸的合成及其阻垢性能研究[J].工业水处理,2001,21(1):17-20.
    [127]孙波,魏荣宝,安钢等.类蛋白质阻垢剂聚天冬氨酸的合成研究[J].南开大学学报(自然科学),002,2:90-96.
    [128]荆国林,于水利,刘淑芝.绿色阻垢剂聚天冬氨酸的研究进展[J].工业水处理,2003,11:1-4.
    [129]谢陈鑫,操卫平,冯玉军等.绿色水处理剂的研究现状与发展趋势[J].精细石油化工进展,2006,7(6):54-58.
    [130]Tillmon H P.Detergent formulations[P].US3776850,1973-12-04.
    [131]McGiffney G.J.Method of controlling scale formation in brine concentrion and evaporation system[P].US5866011,1999-02-02.
    [132]张冰如,李凤亭.聚环氧琥珀酸的多元阻垢性能[J].工业水处理,2002,22(9):21-24
    [133]白华萍,赵志仁,雷武等.聚环氧琥珀酸的合成及性能评定[J].工业水处理,2002,22(12):24-26
    [134]Fukumolo Y.Water TreatmentAgent[P].JP04166298,1992-06-12.
    [135]熊蓉春,魏刚,周娣等.绿色阻垢剂聚环氧琥珀酸的合成[J].工业水处理,1999,19(3):11-13
    [136]王亚权,潘明.环氧琥珀酸及其盐的制备方法.CN031242588,2004-01-28.
    [137]孙咏红,周晓慧,马磊等.绿色阻垢剂聚环氧琥珀酸的合成[J].大连铁道学院学报,2004,25(1):93-95
    [138]杨莹琴,段香芝,平坤.生物降解性阻垢剂聚环氧琥珀酸的合成及其阻垢性能研究[J].信阳师范学院学报(自然科学版),2004,17(2):221-223
    [139]Benedict J J, Bush R D, Sunberg R J. Oral compositions and methods for reducing dental calculus[P].US4846650,1989-07-11
    [140]王风云,吕志芳,董伟等.聚环氧琥珀酸钠的合成及阻垢性能[J].应用化学,2001,18(9):746-748.
    [141]Davor F, Preetha M.Carbonate scale controlling method[P].US5662830,1997-09-02
    [142]侯振宇,张秋禹,李丹等.聚环氧琥珀酸钠的合成及其阻垢性能研究[J].工业用水与废水,2006,37(2):73-76
    [143]刘汉玉,梅平,陈武等.绿色阻垢剂聚环氧琥珀酸的合成试验研究[J].长江大学学报(自科版),2007,4(2):38-39
    [144]GBZ/T160.60-2004
    [145]吕志芳,董伟,夏明珠等.环氧琥珀酸合成体系中酒石酸的测定[J].石油化工,2001,30(10):789-791
    [146]刘阳桥,高濂,郭景坤.5-硝基水杨酸合铁(Ⅲ)褪色光度法测定2膦酸丁烷1,2,4三羧酸[J].分析化学,2001,29(1):112
    [147]GB/T16632-2008
    [148]蔡士杰.绿色水处理剂聚环氧琥珀酸物化性能指标及表征技术[D].北京:北京化工大学.2004
    [149]HG/T 3823-2006
    [150]杜娟娟,柏子龙,李树华.用介孔分子筛催化剂合成环氧琥珀酸的研究[J].广东化工,2008,35(3):11-83
    [151]张其锦,董炎明,宗惠娟等译.当代聚合物化学[M].北京:化学工业出版社,2006:38-39.
    [152]Dreyfuss P,Dreyfuss M P.Polymerization of Cyclic Ethers and Sulphides [A].In Comprehensive chemical kinetics[C].NewYork:Elsevier Scientific Publishing Co.,1976,chapter 4
    [153]Ishii Y,Sakai S.Ring-Opening Polymerization[M]. NewYork:K.C.Frisch, S.L.Reegen,Eds.,Marcel Dekker,1974,chapter2
    [154]Saegeusa T,Kobayashi S.Cationic Ring-Opening Polymerization of Cyclic Ethers[A] in Progress in Polymer Science JaPan[C]. New York:S.Onogi,K.Uno, Eds.,Halsted Press,(Wiley),1973,6:107-151
    [155]虞志光.高聚物分子量及其分布的测定[M].上海:上海科学技术出版社,1984:106-133
    [156]翟广通.水处理用聚合物分子量的测定[J].工业水处理,1994,3:33-34
    [157]邹建平,王璐,曾润生.有机化合物结构分析[M].北京:科学技术出版社,2005:34-42
    [158]朱准武.有机分子结构波谱解析[M].北京:化学工业出版社,2005.29-37
    [159]中西香尔,索罗曼.红外光谱分析100例[M].北京:科学出版社,1984.10-25
    [160]冯金成.有机化合物结构分析与鉴定[M].北京:国防工业出版社,2004.18-26
    [161]荆煦瑛,陈式棣,么恩云.红外光谱实用指南[M].天津:天津科学技术出版社,1992.29-30
    [162]OECD (the Organization For Economy Cooperation and Development),1992. Guideline of testing of the chemicals.18
    [163]魏刚,许亚男,熊蓉春.阻垢剂的可生物降解性研究[J].北京化工大学学报,2001,28(1):59-62
    [164]周柏青.全膜水处理技术[M].北京:中国电力出版社,2006
    [165]http://www.ekgj.com/NewsShow.asp?id=97
    [166]Sun Y H, Xiang W H, Wang Y. Study on polyepoxysuccinic acid reverse osmosis scale inhibitor[J]. Journal of Environmental Sciences,2009,S73-S75.
    [167]Yang Q F, Liu Y Q, Gu A Z,et al. Investigation of Calcium Carbonate Scaling Inhibition and Scale Morphology by AFM [J]Joournal of Colloid and Interface Science,2001,240,608-621.
    [168]汪祖模,蔡兰坤.有机膦酸羧酸型水质稳定剂的研究[J].华东化工学院学报,1989,15(5):605-614
    [169]天津化工研究设计院.一种反渗透膜用水处理药剂性能测试评价装置及其评价方法[P].中国专利:CN1804618,2006-07-19
    [170]李建玺,郭包生,陈浩等.浅谈反渗透阻垢剂性能评价方法[R].中国精细化工协会第二届水处理化学品行业年会,乌鲁木齐,2006.8.8
    [171]上海交通大学.反渗透阻垢剂性能的动态测试方法[P].CN101000336,2007-07-18
    [172]张冰如,欧阳清华.快速评价反渗透专用阻垢剂阻垢性能的实验技术[J].膜科学与技术,2004,24(6):38-43
    [173]周柏青,徐厚道等.反渗透系统专用阻垢剂的评价方法[J].华北电力技术,2005,(4):43-54
    [174]程云章,翟祥华,葛红花等.阻垢剂的阻垢机理及性能评定[J].华东电力,2003,(7):14-18.
    [175]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社,1984.
    [176]张青,吴文辉.临界pH在阻垢剂研究中的应用[J].工业水处理,1997,01:17.
    [177]Butt F H, Rahman F, Baduruthamal U. Evaluation of SHMP and advanced scale inhibitors for control[J]Desalination,1997,109(3):323-332.
    [178]Drela I,Falewicz P,Kuczkowska S.New Rapid Test for Evaluation of Scale Inhibitors[J].Wat Res, 1998,32(10):3188.
    [179]孙咏红,王颖,项文化.电导法评价反渗透阻垢剂性能的研究[J].热力发电,2009,38(5):35-37.
    [180]Butt F H, et al. Pilot plant evaluation of advanced vs conventional scale inhibitor for ROdesalination[J].Deralination,1995,103(3):189-198
    [181]Al-Shammiri M,Safar M,A1-Dawas M. Evaluation of two different antiscalants in real Operation at the Doha research plant[J].Desalination,2000,128:1-16
    [182]Plottu-Pecheux A,Houssais B,Democratea C,et al., Comparison of three antiscalants,as applied to the treatment of water from the River Oise[J].Desalination,2002,145:273-280
    [183]周正立.反渗透水处理应用技术及膜水处理剂[M].北京:化学工业出版社,2005:110-115,196-213
    [184]方景礼.有机多膦酸的合成、性质和应用.石油化工,1980,9(7):422.
    [185]郑学忠,魏雨,杨兰英.HEDP的合成及应用[J].河北师范大学学报,1996,20(1):73-77
    [186]Norfleet J.Frankel M J.Carter W J,et al.DE4233547,C A 119:79 862.
    [187]张栩.水中HEDP、ATMP对碳钢的缓蚀作用研究[J].化工腐蚀与防护,1995,03:36-42
    [188]徐厚道,周柏青,李芹等.有害离子对反渗透阻垢剂的影响[J].化学工业与工程技术,2005,26(2):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700