用户名: 密码: 验证码:
膜分离技术在天然气化工废水处理中的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气化工废水属于高浓度难生物降解有机废水,其COD高达40000mg/L。该废水的毒性较大,长期接触对人体有较大伤害,排入水体会造成严重污染,因此必须及时对其进行处理。
     反渗透膜是一种新型的膜,它的应用范围日益广泛。美国海德能公司生产的ESPA2-4040膜是一种超低压聚酰胺复合膜,这种膜广泛应用于废水处理中,本文选取这种反渗透膜对然气化工废水处理进行试验研究,考察了操作因素对反渗透分离性能的影响。
     试验结果表明,温度和压力是影响反渗透分离性能主要因素,在其他条件不变的情况下,温度的升高导致膜通量的增加和COD及苯胺基乙腈截留率的降低,最佳的操作温度在36~38℃之间。压力增加,膜通量显著提高,截留率也有上升的趋势,因此增加压力有利于提高膜的分离性能。膜通量随料液浓度的增加而减少,但膜对溶质的截留率受料液浓度的影响不大。浓缩次数增加会使膜通量下降,经5此浓缩后,膜通量从6.2L/m~2·h下降到了2L/m~2·h左右,COD及苯胺基乙腈的浓度分别从40000mg/L和8000mg/L增加到了71000mg/L和15000mg/L以上。试验运行了30天后,出现了膜污染现象,用清水清洗不能恢复膜通量,用乙醇溶液清洗后,膜通量恢复,膜的化学清洗周期确定为30天。
     本文建立了膜组件中溶质浓度和渗透水中溶质浓度的数学表达模型,膜上聚集的溶质浓度随着操作时间的增加而增加,还与原水溶质的浓度、溶液的浓差极化因子以及回收率有着直接的关系。由于在一定压力下回收率不变,则膜出水中溶质浓度随着操作时间的增加而减小,也说明了溶质越来越多的聚集在了膜表面或膜内部,膜污染也越来越严重。对以压力为驱动反渗透膜过程而言,本文建立了渗透通量表达模型,其大小主要取决于料液的粘度,极化层及边界层的阻力。
The wastewater of natural gas chemical industry is high-concentration and hard-biodegradation organic wastewater. The COD is as high as 40000 mg / L. It is poisonous wastewater. People will get injury with long-term exposure. If it is discharged into the river, the water will be polluted severely. So it need to be treated in time.The Reverse Osmotic (RO) membrane ESPA2-4040 that is made by Hydranautics company of American is a kind of super and low-pressure polyamide composite membranes, This kind of membrane extensively apply in the wastewater treatment. The article apply it to the research.According to the result of research, temperature and pressures are main factor of the separation function of RO . Under other conditions are constant, the flux of membrane will increase and the stop rates of COD and n-phenylglycinonitrileto will decrease with temperature going up. The best operation temperature is in 36-38℃ With the pressure increment, the flux of membrane increase obviously The stop rate also has the trend of increasement, so increasing pressure is advantageous to the function of separation of the membrane. Flux of membrane decrease with increment of the liquid concentration. But the stop rate is hardly influenced by liquid concentration. If The times of concentration increase the flux of membrane will descend. Through 5 times concentration, flux of membrane decrease from 6.2 L/m2 · h to 2L/m2 · h .The concentration of COD and n-phenylglycinonitrile separately increase from 40000 mg/L to 71000mg/L and 8000 mg/L to 15000 mg/L. The test process for 30 days and the membrane contamination phenomenon appears. Cleaning water can't recover the flux of membrane with the clear water. After cleaning with the ethanol solution, the membrane flux come back. So the period of the chemistry cleaning is 30 days.This text built up the mathematics expression model of the solute concentration in membrane module and the mathematics expression model of solute concentration in the osmosis liquid. Solute concentration on the membrane increase with the increment of the operation time. It also has the direct relation with the concentration of the raw water, solute concentration polarization factor and the
    recovery rate. Because the recovery rate don't change in the certain pressure, the concentration of solute in osmosis liquid will increase with the increment of operate time. Meanwhile, more and more accumulation of solute is at surface of membrane or inner part of membrane. Membrane contamination also is more and more serious. For the RO membrane which is drived by pressure , this text built up the expression model of osmosis flux. Its quantity mainly is decided by the viscosity of liquid and the resistance of the polarization lay and the boundary lay.
引文
1 肖锦.城市污水处理及回用技术.第1版.北京:化学工业出版社,2002
    2 刘鸿亮,韩国刚,严济民.中国水环境预测与对策概论.中国环境科学出版社,1998
    3 钱易.现代废水处理新技术.北京:中国环境科学出版社,1993
    4 唐受印等.废水处理工程.北京:化学工业出版社,1998
    5 沈耀良,王宝贞.废水生物处理新技术理论应用.中国环境科学出版社,1998
    6 [美]R E斯皮思著.李亚新译.工业废水的厌氧生物技术.中国建筑工业出版社,2001
    7 白晓慧.超声波技术与污水污泥及难降解废水处理.工业水处理,2000
    8 陈伟,范瑾初.超声降解水体中有机污染物技术综述.上海环境科学,1999
    9 Kotronarou A, Mills G, Hoffman M R, et al. Decomposition of parathion in aqueous solution by ultrasonic irradiation. Environ Sci Technol, 1992
    10 李志建,李可成,周明.超声法—厌氧生化法处理碱法草浆黑液的研究.环境科学与技术.2000
    11 杨贵芝,陈宇生.退浆废水超声波处理新工艺.环境工程,1994.,12(2):10~11
    12 周炳炎,刘湘.国内外有害废弃物焚烧技术现状和发展趋势.上海环境科学,1992.11(10):19~23
    13 董元芳.焚烧法处理三废的情况和技术.化工环保,1989,9(3):152~156
    14 王兆熊,郭崇涛,张瑛,曹履通.化工环境保护和三废治理技术.北京:化学工业出版社,1984,69:71
    15 郁志勇,王文化等.紫外光作用下氯酚矿化程度比较.环境化学,1998
    16 Pigllatello J. J.. Dark and Photo assisted Fe2+ Catalyzed degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide [J]. Environ. Sci. Technology, 1992, (26): 944
    17 张乃东.UV/Fe法处理苯胺类废水的研究.哈尔滨:哈尔滨工业大学.1999
    18 何强,吉方英等.兼氧—好氧工艺处理苯胺基乙腈废水.中国给水排水,2004
    19 王学松.膜分离技术及应用.北京:科学出版社,1989
    20 朱长乐.膜科学技术.第2版.高等教育出版社,2004
    21 许振良.膜污水处理膜分离技术的研究进展.净水技术,2000
    22 李键秀,王树清.超滤和反渗透联用处理玉米浸渍水.化工进展,2003
    23 孙的栋,张启修.反渗透深度处理回用生活污水的试验研究.工业水处理.2003
    24 崔文科.膜分离技术处理高浓度味精废水试验研究.江苏环境科技.2001,6
    25 王生春,温建志等.聚丙烯中空纤维微孔滤膜在油田含油污水处理中的应用.膜科学与技术,1998
    26 吴光夏,邱广明等.超滤膜法城市污水深度处理中水回用中试试验研究.膜科学与技术,2004
    27 Jiraratananon R, Uttapian D and Tangamomsuksun. Self-forming dynamic membrane for ultrafiltration of pineapple juice Member. Sci., 1997
    28 Pupunat L, Rios CG M. Joulie R, et al. Electronanofil-tration: a new process for ion separation, Sep. Sci. 1998, 33(1): 67~81
    29 Krantz W B, Bilinear R R, Voorhees M E, et al. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator. J. Membr. Sci., 1997, I24: 283—299
    30 Famand et al. Ultrafiltration as an advanced tertiary treatment process for municipal waste water[J]. Desalination, 1998, 119: 315-321.
    31 Waypa J J, Elimelech M, hering J G. Arsenic removeal by RO and NF membranes. JAWWA, 1997, 89(10): 102-116
    32 康纬.国内外清洗技术纵横.工业水处理,1993,13(30:11
    33 刘昌胜,邬行彦,潘德维等.膜的污染及其清洗[J].膜科学与技术,1996,16(2):26—27
    34 朱安娜,祝万鹏,张玉春.纳滤过程的污染问题及纳滤膜性能的影响因素.膜科学与技术,2003,23(1):45—46
    35 吴光夏等.膜的负压清洗.水处理技术.2003.8
    36 张国俊等.膜过程中膜清洗技术研究进展.水处理技术.2003.8
    37 高以煊,叶凌碧.膜分离技术基础.北京:科学出版社,1989
    38 王湛,膜分离技术基础.北京:化学工业出版社,2000.48
    39 许振良.膜法水处理技术.化学工业出版社.2001
    40 余跃,冯晖,吴沪宁等.膜处理印染废水的研究[J].化工时刊,2004
    41 Yamauchi A, Sbin Y, Schinozaki M, et al. Membrane characteristics of composite collation membrane. Iv. Transport properties across blended collation /nanofiltration membrane [J]. JMembr Sci, 2000, 170(1): 1-7
    42 张玉中,郑领英,高从凯.液体分离膜技术及应用.北京:化学工业出版社,2004,348-384
    43 刘国信,刘禄声.膜法分离技术及应用.北京:中国环境科学出版社,1992
    44 松浦刚,刘廷惠。膜分离科学与技术,1982(3):28
    45 刘东方,陈璐,纪涛.纳滤膜处理高浓度工业废液浓差极化与膜污染.城市环境与城市生态,2003,16(1):16-17
    46 Vrijenhoek V E, Hong S, Elimelech M. Influence of membrane surface properties on initialrate of colloid fouling of reverse osmosis and nanofiltration membranes[J]. J. membr. Sci., 188(1): 115-128
    47 郑成.膜的污染及其防治膜科学与技术,1997(2):5
    48 blot J Her N, Amy G, Jarusutthirak C. Seasonal variation of nanofiltration foulants: identification and controLDesalination, 2000, 132(1-3): 143—160
    49 王志,甄寒菲,王世昌等.膜过程中防治膜污染强化渗透通量技术进展.膜科学与技术,1999,19(1);I—11
    50 Post, J. Recovery+, a higher recovery with capillary nanofiltration(inDutch). Mscthesis, Deflt Univers: ty of technology, Deflt
    51 Marcel Mulder(荷兰)著,李琳译.膜技术基本原理.北京:清华大学出版社.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700