用户名: 密码: 验证码:
烷基化缩聚型超高交联树脂的制备、修饰及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高交联吸附树脂作为继凝胶树脂和大孔吸附树脂后的第三代聚合物吸附剂,凭借其优良的微孔结构、较高的比表面积以及良好的吸附性能,在石油化工环境保护、生物医药以及天然产物分离纯化等领域发挥着重要的作用。由于传统的超高交联吸附树脂存在骨架结构单一、制备成本较高的缺点,在某些程度上限制了其应用领域的拓展。不断开发高性能、低成本的超高交联吸附树脂以满足工业化发展对吸附分离材料的新要求,已成为研究人员共同努力的目标和方向。本研究利用Friedel-Crafts烷基化缩聚反应制备了一系列非苯乙烯型超高交联吸附树脂,并对其性能及应用进行了系统的研究。主要内容包括以下四个部分:
     (1)通过1,4-二氯甲基苯(XDC)、4,4’-二氯甲基联苯(CMB)自聚或与苯(BE)、联苯(DP)共聚,制备了7种具有不同骨架结构的超高交联吸附树脂。比较了不同单体及其比例对产品比表面积和孔径分布的影响,XDC-XDC. CMB-CMB和XDC-CMB树脂的比表面积分别可达1045.23m2/g、1253、23m2/g、1502.75m2/g。增加单体中二氯甲基化合物的比例或使用氯甲基含量高的单体,可使反应产物的交联度提高,比表面积和孔体积增大。分别用BET法和染料吸附法测定了树脂的干态比表面积和溶胀态下的有效比表面积。结果表明,随着干态比表面积的增加,溶胀态下有效比表面积也增加,在树脂比表面积较接近的情况下,树脂的孔体积与孔径分布会对有效比表面积产生一定的影响。
     (2)研究了不同骨架吸附树脂对苯酚、萘酚和亚甲蓝的吸附性能。通过测定树脂对不同分子尺寸化合物的吸附容量和吸附速率,考察了树脂孔结构与吸附质分子尺寸对吸附性能的影响。结果表明,双氯甲基化合物自聚或共聚得到的XDC-CMB、CMB-CMB和XDC-XDC对苯酚、萘酚、亚甲蓝的吸附量都比较大,对有机小分子化合物的吸附,吸附量主要受树脂比表面积的影响,随着树脂比表面积的增大,吸附量也增大。8种吸附树脂对苯酚、萘酚、亚甲蓝的吸附等温线都能很好的用Langmuir方程和Freundlich方程拟合,Freundlich模型中,当n>1时,表明吸附过程易于进行,均为优惠吸附。苯酚、萘酚和亚甲蓝在树脂上的吸附动力学行为可用一级不可逆吸附反应膜扩散方程进行描述;在298K时,CMB-CMB树脂对苯酚、萘酚和亚甲蓝的吸附速率常数K分别为0.035min-1,0.082min-1,0.012min-1,对3神吸附质均有较快的吸附速率和较大的吸附量,适用于对水中酚类和小分子染料污染物的快速吸附。
     (3)对BE-XDC树脂进行极性修饰,得到了强酸(-SO3H)型超高交联离子交换树脂。利用红外光谱、元素分析及化学滴定等手段对树脂的物理化学结构和性能进行了分析和表征,并对树脂的合成工艺条件进行优化。在反应温度65℃,反应时间4h,物料物质的量比为1:2(树脂:氯磺酸)时,可得到交换容量为3.89mmol/g的强酸型超高交联离子交换树脂(SBE-XDC)。SBE-XDC树脂对水溶液中Cu2+、Ni2+的吸附量分别可达1.82mmol/g和1.85mmol/g,均略高于理论吸附量1.64mmol/g,说明树脂的微孔结构对Cu2+、Ni2+也有较好的吸附。SBE-XDC树脂对水溶液中Cu2+、Ni2+的吸附过程均符合Langmuir模型,该吸附过程主要是单分子层的化学吸附,并且是一个自发吸热的不可逆过程(△H>0,△G<0,△S>0)。
     (4)采用硝基苯-二甲基硅油双油相悬浮聚合体系制备得到球形非苯乙烯型超高交联吸附树脂(SCMB)。采用红外光谱仪、比表面及孔径测定仪以及显微成像系统对ACMB、SCMB和PSCMB树脂的表面基团、微观形貌以及孔性能进行了表征。采用双油相比例01/02=1:5(体积比),苯甲酸正丁酯用量1%(体积比),50℃、60℃、70℃各反应1h后,停止搅拌,升温至80℃保温4h,调节搅拌速度能够得到不同粒径分布的产品。产品的比表面积最高可达1190.02m2/g,孔体积为0.714cm3/g。
Hypercrosslinked resin as the third generation of polymeric adsorbent after the gel resin and macroporous adsorption resin, for the characteristics of excellent micropore structure, higher BET surface areas, and good adsorption properties, has played an important role in petrochemical, environmental protection, biological medicine and separation of plants active ingredient. However, due to the single framework (St-DVB) and high preparation cost of the traditional hypecrosslinked resin, the application was limited to some extent. It has become a common goal for scientific workers of different countries to continuous develop high-performance and low cost hypercrosslinked resin, in order to satisfy the new requirement from the industry. In this paper, non-traditional hypercrosslinked resin with high specific area was prepared by direct Friedel-Crafts alkylation polycondensation. The main content contains four parts.
     Part One:A series of hypercrosslinked resin with different framework was prepared by self-condensation of1,4-bis(chloromethyl)-benzene (XDC) and4,4'-bis-(chloromethyl)-l,1'-biphenyl (CMB) or co-polycondensation with benzene (BE) and biphenyl (DP). The effects of different monomer and the ratio on the surface areas and pore size distribution of the products were compared. The surface areas of XDC-XDC. CMB-CMB and XDC-CMB resin were1045.23m2/g,1253.23m2/g and1502.75m2/g, respectively. The pore radiuses were centralized below20nm. The degree of the crosslink, surface area and pore volume were increased with the increasing the ratio of dichloromethyl compound or using monomer with high chloromethyl content. The surface areas under dry state and swell state were determined by BET method and dye adsorption method, respectively. The results indicated that, the surface area under swell state is to some extent in proportional to the surface area under dry state, as well as affected by the pore structure and the pore size distribution.
     Part Two:The adsorption performance of resins with different framework on phenol, naphthol and methylene blue were investigated. The effect of pore structure of the resins and molecular size of the adsorbors on the adsorption performance were reviewed, the adsorption capacity and adsorption rate of compounds with varies size on different resins were determined. The results show that resins which obtained by self-condensation or co-polymerization of dichloromethyl compound have higher surface area, and the adsorption capacities on phenol, naphthol and methylene blue were also higher. To the adsorption of small size compound, the adsorption capacity was mainly affected by the surface area of the resin; it was increased with the surface area of the resin. The thermodynamic adsorption data showed that Langmuir and Freundlich isotherms were found to fit well the adsorption data of three adsorbor onto the eight resins. The exponent factor n>1in Freundlich isotherms equations, the adsorption is thus favorable. Kinetic study showed that the adsorption performance of these resins for phenol, naphthol and methylene blue can be described by a first-order irreversible adsorption rate equation. The rate constants of adsorptions of phenol, naphthol and methylene blue at298K are0.034min-1,0.082min-1,0.011min-1respectively. CMB-CMB resin possesses a quick adsorption rate and high adsorption capacity, and it has good potential for treating the contamination in the water with high removal efficiency.
     Part Three:Strong acidic (-SO3H) ion exchange hypercrosslinked resins were prepared via introduce sulfonic group on BE-XDC resin. The physic-chemical structure and properties were characterized by FT-IR, elementary analysis and chemical titration respectively. Various factors affecting the sulfonation reaction such as reactive temperature, reactive time and the mole ratio of the sulfonation reagent were optimized. The exchange capacity of the sulfonated resin is up to3.89mmol/g. The adsorption capacities of SBE-XDC resin for Cu2+、Ni2+in aqueous solution were114.97mg/g (1.82mmol/g) and109.09mg/g (1.85mmol/g) respectively, both slightly higher than the theoretic adsorption capacity, it indicate that the micropore of the resin can absorb Cu2+、Ni2+to same extent. The thermodynamic adsorption data showed that Langmuir isotherms were found to fit well with the adsorption data of Cu2+、Ni2+onto the SBE-XDC resin. The adsorption progress was mainly mono layer chemical adsorption, adsorption enthalpy ΔH>0, adsorption free energy ΔG<0and adsorption entropy ΔS>0, it indicate that the adsorption progress was a spontaneous, endothermal and irreversible progress.
     Part Four:The suspension polymerization with two organic phases was successful adopted to prepare spherical hypercrosslinked resin by self-polycondensation of4,4'-bis-(chloromethyl)-1,1'-biphenyl (CMB). The chemical structure, morphology and pore characteristics of the novel spherical resin were characterized with Fourier transform infrared spectroscopy (FTIR), micrograph and Brunauer-Emmett-Teller (BET). Keep the volume ratio of the two organic phases (nitrobenzene/dimethyl silicon oil)1:5(V/V), dispersant amount1%(V/V),50℃(1h),60℃(1h),70℃(1h) and80℃(4h), adjust the stirring speed, appropriate size products can be obtained. The maximum surface area of the resin bead was1190.02m2/g, and the pore volume was0.714cm3/g.
引文
[1]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科教出版社,1995.
    [2]Okay O. Macroporous copolymer networks [J]. Progress in Polymer Science,2000,25:71 1-779.
    [3]Yu Y, Zhang Y Y, Wang Z H, et al. Adsorption of water soluble dyes onto modified resin [J]. Chemosphere,2004:54 425-430.
    [4]Ma C H, Liu T T, Yang L, et al. Preparation of high purity biphenyl cyclooctene lignans from Schisandra extract by ion exchange resin catalytic transformation combined with macroporous resin separation [J]. Journal of Chromatography B.2011,879(30):3444-3451.
    [5]Lin L Z, Zhao H F, Dong Y, et al. Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM) HARA leaf [J]. Food Chemistry,2011, 130(2):417-424.
    [6]Tsyurupa M P, Volynskaya A V, et al. Thermal effects of interaction between macronet isoporous styrene polymers and solvents or precipitators for linear polystyrene [J]. Journal of Applied Polymer Science,1983,28(2):685-689.
    [7]Pastukhov V A, Tsyurupa P M, Davankov V A. Hypercrosslinked Polystyrene:A Polymer in a Non-Classical Physical State [J]. Journal of Polymer Science:Part B:Polymer Physics,1999, 37:2324-2333.
    [8]Davankov. V A, Tsyurupa M P. Structure and properties of hypercrosslinked polystyrene-The first representative of a new class of polymer networks [J]. Reactive polymers,1990,13: 27-42.
    [9]Yuan S G, Zhang S H, Zou W H, et al. Facile synthesis of characterization of novel pseudo-hypercrosslinked resin [J]. Chinese Chemistry Letter,2008,19:611-614.
    [10]原思国,周小会CMB-CMB-XDC吸附树脂对甲苯的吸附行为研究[J].郑州大学学报(工学版),2010,31:9-12.
    [11]马建标,李晨曦.功能高分子材料[M].北京:化学工业出版社,2000.
    [12]Adams B A, Holmes E L. Synthetic ion exchange resins [J]. Society of Chemical Industry, 1935:54.
    [13]Kunin R.[美]离子交换树脂[M].朱秀昌译.北京:科学出版社,1960.
    [14]何炳林,吸附与吸附树脂[J].石油化工,1977,6(3):263-283.
    [15]史作清,施荣富.吸附分离树脂在医药工业中的应用[M].北京:化学工业出版社,2008.
    [16]牧野考夫,等.日本公开特许公报平3-275629(1991).
    [17]松井建次,等.日本公开特许公报平3-227955(1991).
    [18]梅田诚一,等.日本公开特许公报平4-152434(1992).
    [19]何炳林,萧绪玲.强碱性多孔阴离子交换树脂的制备[J].科学通报,1957,6:169.
    [20]何炳林,孙君坦,马桂兰,等.数种球状弱碱性阴离子交换树脂的合成[J].高分子通讯,1959,4:183-190.
    [21]何炳林,离子交换树脂的发展动向[J].沈阳化工,1977,3:32-55.
    [22]何炳林,林雪.新型离子交换与吸附树脂的研究进展[J].中国科学基金.1991,1:19-22.
    [23]黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版社,2005.
    [24]Fiona S M, David C S. Control of Porous Morphology in Suspension Polymerized Poly(divinylbenzenc) Resins Using Oligomeric Porogens [J]. Macromolecules,2004,37: 7628-7636.
    [25]Mojtaba Abbasian, Ali Ghaderi, Hassan Namazi, et al. Preparation of Anion-Exchange Resin Based on Styrene-Divinylbenzene Copolymer Obtained by Suspension Polymerization Method [J]. Polymer-Plastics Technology and Engineering,2011,50(15):1606-1612.
    [26]Dowding, Vincent, Williams. Preparation and Swelling Properties of Poly (NIPAM) "Minigel" Particles Prepared by Inverse Suspension Polymerization [J]. Journal of colloid and interface science,2000,221 (2):268-272.
    [27]周武源,宁方红,刘坐镇,等.析因设计法优化GMA/MBAA/AA三元共聚大孔树脂的合成[J].化工学报,2005,56(5):932-936.
    [28]Nobuhiro Tanaka, TakaoIijima, WakichiFukuda, et al. Synthesis and Properties of Interpenetrating Polymer Networks Composed of Epoxy Resins and Polysulphones with Cross-linkable Pendant Vinylbenzyl Groups [J]. E-Journal of Chemistry,1999,42(1): 95-106.
    [29]屠鹏飞,贾存勤,张洪全.大孔吸附树脂在中药新药研究和生产中的应用[J],高分子学报.2004,6(3):22-28.
    [30]张全兴,陈金龙,李爱民,等.树脂对化废水中有毒有机化合物的吸附作用机理及技术研究[J].高分子学报,2008,7:651-655.
    [31]史作清,许名成,施荣富,等.树脂吸附法制备银杏叶提取物[J].中国食品添加剂,1997,3:38-40.
    [32]任萍.水体系中高选择性氢键吸附树脂的结构设计、吸附机理及应用研究[D].博士学位论文.天津:南开大学,2008.
    [33]陈艳立,杨益忠,张金荣,等.后交联均孔树脂的筛分性能及其对银杏叶黄酮的纯化[J].华东理工大学学报(自然科学版),2006,32(6):676-680.
    [34]耿啸天.高选择性吸附树脂结构设计及在中药复方有效成分提取中的应用[D].博士学位论文.天津:南开大学,2010.
    [35]查忠勇.中药中黄酮类化合物吸附分离用大孔树脂的合成及应用[D].硕士学位论文.四川大学,2002.
    [36]Miller W L, Kullterg M P, Banning, M. E, et al. Quantitative extraction of morphine from urine using nonionic XAD-2 resin [J]. Biochemistry Medicine,1973,7(1):145.
    [37]Payne, G F, Shuler, M. L. Selective adsorption of plant products [J]. Biotechnology and Bioengineering,1988,31(9):922-928.
    [38]黄建明,郭济贤,陈万生,等.大孔树脂对草乌生物碱的吸附性能及提取工艺[J].复旦学报(医学版)2003,3(3):267-269.
    [39]王瑞芳.色层分离树脂的合成及其分离性能的研究[D],博士学位论文.天津:南开大学,2004.
    [40]张琳,杨磊,牛卉颖,祖元刚,大孔树脂吸附分离长春花中的文多灵、长春质碱和长春碱[J].化工学报,2008,59(3):607-614.
    [41]Itagaki K, Ito Takeshi. Purification of stevioside [P]. JP54041898,1979.
    [42]张崇禧,郑友兰,张春红,等.大孔树脂吸附人参总皂苷工艺及再生使用的研究,中国药学杂志[J].2003,38(9):661-664.
    [43]欧来良,史作清,施荣富,等.强极性大孔吸附树脂对三七皂苷的分离纯化研究.中草药[J].2003,34(10):905-906.
    [44]叶燕彬,李希璇,郜文,等.大孔吸附树脂分离纯化元宝枫叶总多酚[J].首都医科大学学报.2010,31(5):628-631.
    [45]孙宗喜,徐桂花,李艳芳.大孔树脂纯化绵茵陈中总有机酸和绿原酸的研究[J].中草药.2012,35(2):306-310.
    [46]叶殷殷,曾元儿,曹骋,等.不同型号大孔树脂分离大黄蒽醌类成分的研究[J].中成药.2011,33(1):168-170.
    [47]Bi Xiaoyi, Wang Peng, Jiang Hong, et al. Treatment of phenol wastewater by microwave-induced C102-CuOx/Al203 catalytic oxidation process [J]. Journal of Environmental Science,2007,19:1510-1515.
    [48]Hoshi M, Kogure M. Separation of aqueous phenol through polyurethane membranes by pervaporation [S]. Journal of Applied Polymer Science,1997,65(3):469-479.
    [49]Bui H B, Nguyen L T, Dang L D. Biodegradation of phenol by native bacteria isolated from dioxin contaminated soils [J]. Journal of Bioremediation & Biodegradation.2012,3(11): 1000168/1-1000168/6.
    [50]Tiwari A, Soni A, Bajpai A K. Nanoparticles loaded alginate beads as potential adsorbent for removal of phenol from aqueous solution [J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry.2012,42(8):1158-1166.
    [51]Zeng X W, Yu T J, Wang P, et al. Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water [J]. Journal of hazardous materials.2010,177(1-3):773-780.
    [52]Krishnah Abburi. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin [J]. Joumal of Hazardous Materials.2003, 105:143-156.
    [53]Liu Fu Qiang, Xia Ming Fang, Yao San Li. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents:Effects of adsorbents/adsorbates structure and interface [J]. Joumal of Hazardous Materials,2008,152:715-720.
    [54]Zhang W M, Chen J L, Pan B C, et al. Synergistic effect on phenol/aniline mixture adsorption on nonpolar resin adsorbents from aqueous solution [J]. Reactive & Functional Polymers. 2006,66(4):395-401.
    [55]张全兴,王勇,李秀娟,等.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究[J].化工环保,1997,17(6):323-326.
    [56]Wang J N, Li A M, Zhang B, et al. Adsorption of phenol and Pb2+ from aqueous solutions by a new di-function adsorbent with sulfhydryl groups [J]. Chinese Journal of Reactive Polymers 2007,16(1-2):46-54.
    [57]陈金龙,张全兴,徐建平,等.树脂吸附法处理高浓度混甲酚生产废水的研究[J].南开大学学报,1995,31(4):598-605.
    [58]张全兴,陈金龙,许昭仪,等.树脂吸附法处理有毒有机化工废水及其资源化研究[J].南开大学学报,2005,8(4):116-121.
    [59]王槐三,寇晓康,黄文强.树脂吸附法处理苯酚工业废水的研究[J].四川大学学报.2001,33(6):67-70.
    [60]张全兴,黄杰,裘兆蓉,等.树脂吸附法处理含苯胺工业废水的研究[J].离子交换与吸附,1999,7(6):421-426.
    [61]翟志才超高交联吸附剂对苯基联氨化合物的吸附行为及在废水处理中的应用研究[D].博士学位论文.南京:南京大学,2003.
    [62]康静树脂吸附法处理含苯胺废水的研究[D].硕士学位论文.南京:南京理工大学,2004.
    [63]张庆建,许正文,王海玲,等.大孔树脂对对硝基苯胺的吸附行为及其应用研究[J].离子交换与吸附,2006,22(6):503-511.
    [64]Xiao G Q, Long L P. Efficient removal of aniline by a water-compatible microporous and mesoporous hyper-cross-linked resin and XAD-4 resin:A comparative study [J]. Applied Surface Science,2012,258:6465-6471.
    [65]张炜铭,陈金龙,张全兴.树脂吸附法处理色酚AS生产废水的研究[J].工业水处理,2005,25(4):49-52.
    [66]肖芳,王槐三,吴铁恒。树脂吸附法处理吐氏酸生产废水[J].四川大学学报(工程科学版)2004,36(2):51-53.
    [67]张萍,大孔吸附树脂处理颜料废水的实验研究[D].硕士学位论文.济南:山东师范大学,2004.
    [68]Davankov V A, Rogozhin S V, Tsyurupa M P. Macrocrosslined polystyrenes [P]. US 3729457, 1971.
    [69]Rozenberg G I, Shabaeva A S, Moryakov V S, et al. Sorption properties of hypercrosslinked polystyrene sorbents [J]. Reactive Polymers, Ion Exchangers, Sorbents,1983,1(3):175-182.
    [70]Davankov V A, Tsyurupa M P, Ilyin M, ct al. Hypercross-linked polystyrene and its potentials for liquid chromatography:a mini-review [J]. Journal of Chromatography A,2002, 965:65-73.
    [71]Tsyurupa M P, Davankov V A. Porous structure of hypercross-linked polystyrene: State-of-the-art mini-review [J]. Reactive & Functional Polymers,2006,66:768-779.
    [72]Davankov V A, Sychov C S, Ilyin M M,et al. Hypercrosslinked polystyrene as a novel type of high-performance liquid chromatography column packing material.Mechanisms of retention [J]. Journal of Chromatography A.2003,987(1-2):67-75.
    [73]Negre M, Bartholin M, Gugot A. Functionalized resins 1:Gel and macroporous chloromethylated styrenic resins prepared in the presence of toluene as a pore forming agent [J]. Angewandte Makromolekulare Chemie.1982,106:67-77.
    [74]Davankov V A, Rogozhin S V, Tsyurupa M P. Influence of polymeric matrix structure on performance of ion-exchange resin [J]. Ion Exchange and Slovent Extraction,1977,7:29-81.
    [75]Tsyurupa M P, Maslova L A, Andreeva A I, et al. Soption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents'Styrosorb'[J]. Reactive Polymers, 1995,25:69~78.
    [76]何炳林,陈伟朱,林雪,等.一步法合成大网等孔聚苯乙烯树脂[J].离子交换与吸附,1987,3(1):25.
    [77]Pavel V, Jefabek K. Mechanism of hypercrosslinking of chloromethylated styrene-divinylbenzene copolymers [J]. Reactive &Functional Polymers,1999,41:21-25.
    [78]温珍珍窄分布纳米网孔吸附树脂的合成、结构及性能研究[D].硕士学位论文天津:南开大学,2002.
    [79]何炳林,张全兴,李效白,等.新型大孔吸附剂-H系列吸附树脂的合成和应用[J].高等学校化学学报.1981,2(3):397-399.
    [80]张全兴,施荣富,朱孝伦,等.交联聚苯乙烯孔结构对氯甲基化的影响[J].离子交换与吸附.1986,2(1):25.
    [81]张全兴,阎虎生,何炳林.低交联聚苯乙烯后交联的研究(Ⅱ)[J].离子交换与吸附.1986,3:8-17.
    [82]张全兴,阎虎生,何炳林.低交联聚苯乙烯后交联的研究(Ⅰ)[J].高等学校化学学报.1987,8(10):946-951.
    [83]阎虎生,张全兴,何炳林.一种极性吸附树脂的合成研究[J].高等学校化学学报.1988,4(3):167-171.
    [84]何炳林,王林富,史作清,等.高比表面极性吸附树脂的合成及其性能研究[J].离子交换与吸附.1991,7(3):161-166.
    [85]陈艳立,杨益忠,张金荣,等.后交联均孔树脂的筛分性能及其对银杏叶黄酮的纯化[J].华东理工大学学报,2006,32(6):676-680.
    [86]Nuria Fontanals, Marina Galia, Peter A.G. Cormack, et, al. Evaluation of a new hypercrosslinked polymer as a sorbent for solid-phase extraction of polar compounds [J]. Journal of Chromatography A,1075 (2005) 51-56.
    [87]Nuria Fontanals, Panagiotis Manesiotis, David C Sherrington. Synthesis of Spherical Ultra-High-Surface-Area Monodisperse Amphipathic Polymer Sponges in the Low-Micrometer Size Range [J]. Advanced Materials,2008,20:1298-1302.
    [88]张政朴,钱庭宝交联苯乙烯-二乙烯苯共聚物的氯甲基化反应[J].离子交换与吸附,1987,5:70-78.
    [89]Nyhus A K, Hagen S, Berge A. Characterization of crosslinked macroporous monosized polymer particles [J]. Journal of Applied Polymer Science,2000,76(2):152-169.
    [90]Hodge P, Waterhouse J. Chemical modification of chloromethylated crosslinked polystyrene via phase transfer catalysed Wittig reactions [J]. Polymer,1981,22(9):1153-1154.
    [91]Yamamizu T, Akiyama M, Takoda K. A new styrene derivative and its application to reactive polymer synthesis [J]. Reactive Polymers,1985,3(3):173-179.
    [92]Hao D X. Gong F L.'Wei W. et. al. Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high sueface areas [J]. Journal of Colloid Interface Science,2008,323:52-59.
    [93]Nyhus A K, Hagen S, Berge A. Friedel-Crafts reactions of pendant vinyl groups in macroporous monosized poly(meta-divinylbenzenc) and poly(para-divinylbenze particles [J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38:1366-1378.
    [94]Aleksieva K, Xu J, Wang L M et al. Effects of post-crosslinking of macroreticular styrene-divinylbenzene copolymers on their morphology [J]. Polymer,2006,47(19): 6544-6550.
    [95]Zhou C C, Yan J, Cao Z N. Postcrosslinking of macroporons styrene-divinylbenzen copolymers via pendant vinyl groups:effect of the starting copolymers on the pore structure of the postcrosslinked products [J]. Journal of Applied Polymer Science,2002, 83:1668-1677.
    [96]姚琴,赵欣,张以群.苯乙烯-二乙烯苯共聚物通过悬挂双键的后交联反应[J].离子交换与吸附,2003,19(2):98-103.
    [97]曾小伟,悬挂双键后交联吸附树脂的结构设计、极性修饰及其性能研究[D].博士学位论文,天津:南开大学2011.
    [98]Zeng X W, Yao H J, Ma N, et al. Synthesis, characterization and adsorption performance of a novel post-crosslinked adsorbent [J]. Journal of Colloid and Interface Science,2011,354: 353-358.
    [99]原思国,金秋,张晓燕,等.芳烃小分子化合物制备高比表面积吸附树脂的方法[P].CN101698702A.2010,4,28.
    [100]Bai L L, Zhou Y H, Wang X L, et al. Facile synthesis of hypercrosslinked resin via photochlorination of p-xylene and succedent alkylation polymerization [J]. Chinese Chemical Letters,2011,22(9):1115-1118.
    [101]周小会,原思国.非苯乙烯型超高交联树脂对空气、溶液及水面浮苯的性能研究[J].离子交换与吸附,2011,27(4):297-303.
    [102]Wood C D, Tan Bien, Trewin Abbie, et al. Hydrogen Storage in Microporous Hyper-crosslinked Organic Polymer Networks [J]. Chemistry of Materials,2007,19: 2034-2048.
    [103]Zeng S Z, Guo L M, He Q J, et al. Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture[J]. Microporous and Mesoporous Material,2010,131:141-147.
    [104]白玲玲,张鑫,黄佳佳,等.光氯化-烷基化两步法纸币超高交联树脂及对苯酚的吸附性能[J].高分子材料科学与工程,2012,28(6):125-129.
    [105]Tsyurupa M P, Davankov V A. Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials [J], Reactive & Functional Polymers,2002,53:193-203.
    [106]Zhang X Y, Jin Q, Yuan S G, The facile synthesis of hypercrosslinked resins via chloro-methylation and continuous condensation of simple aryl molecules [J]. Bulletin of Materials Seience,2011,34(1):1-4.
    [107]吕邢鑫,原思国,沙娇,等.非苯乙烯型胺基树脂的制备及对间苯二酚的吸附性能[J].化工进展,2011,30:274-276.
    [1]Davankov. V A, Tsyurupa M P. Structure and properties of hypercrosslinked polystyrene-The first representative of a new class of polymer networks [J]. Reactive polymers,1990,13: 27-42.
    [2]Li A M, Zhang Q X, Zhang G C, Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent [J]. Chemosphere, 2002,47:981-989.
    [3]徐满才,史作清,何炳林.超高交联聚苯乙烯吸附剂的合成、结构与性能[J].离子交换与吸附[J],1994,10(6):555-562.
    [4]Aleksieva K, Xu J, Wang L M et al. Effects of post-crosslinking of macroreticular styrene-divinylbenzene copolymers on their morphology [J]. Polymer,2006,47(19):6544-655.
    [5]Hao D X. Gong F L.'Wei W. et. al. Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high sueface areas [J]. Journal of Colloid Interface Science,2008,323:52-59.
    [6]Tsyurupa M P, Davankov V A. Porous structure of hypercross-linkcd polystyrene: State-of-the-art mini-review [J]. Reactive & Functional Polymers,2006,66:768-779
    [7]Wood C D, Tan Bien, Trewin Abbie, et al. Hydrogen Storage in Microporous Hyper-crosslinked Organic Polymer Networks [J]. Chemistry of Materials,2007,19:2034-2048.
    [8]Lim H, Cha M C, Chang J Y, Synthesis of microporous polymers by Friedel-Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification [J]. Polymer Chemistry,2012,3:868-870.
    [9]Zhang X Y, Jin Q, Yuan S G, The facile synthesis of hypercrosslinked resins via chloro-methylation and continuous condensation of simple aryl molecules [J]. Bulletin of Materials Seience,2011,34(1):1-4.
    [10]白玲玲,张鑫,黄佳佳,等.光氯化-烷基化两步法纸币超高交联树脂及对苯酚的吸附性能[J].高分子材料科学与工程,2012,28(6):125-129.
    [11]近藤精一,石川达熊,安部郁夫著,李国希译.吸附科学[M],北京,化学工业出版社,2006.
    [12]Babushkina T A, Klimova T P, Davankov, et al.'HNMR cryoporsimetry of swollen hypercrosslined polymers [J]. Russian Journal of Physical Chemistry A,2010,84(3): 460-465.
    [13]Huxham I M, Rowatt B, Sherrington D C. Molecular architectural changes in hydrated macroporous styrene-divinylbenzene resin sorbents revealed by transmission electon microscopy using image analysis [J]. Polymer,33(13):2768-2777.
    [14]裴光文,何炳林.利用X射线小角度散射法研究离子交换树脂的孔结构[J].离子交换与吸附,1986,1:10-18.
    [15]裴光文.利用X射线小角度散射法研究大孔吸附树脂的孔结构[J].高分子学报,1988,2:50-54.
    [16]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科教出版社,1995.
    [1]Davankov V, Tsyurupa M, Ilyin M, et al. Hypercross-linked polystyrene and its potentials for liquid chromatography:a mini-review [J]. Journal of Chromatography A,2002,965:65-73.
    [2]Tsyurupa M P, Davankov V A. Porous structure of hypercross-linkcd polystyrene: State-of-the-art mini-review [J]. Reactive & Functional Polymers,2006,66:768-779.
    [3]曾小伟,陈丽娟,范云鸽.一种后交联大孔吸附树脂的合成及其对苯酚和维生素B12吸附性能研究[J],高分子学报,2009,9:909-916.
    [4]Nuria Fontanals, Marina Galia, Peter A.G. Cormack, et al. Evaluation of a new hypercrosslinked polymer as a sorbent for solid-phase extraction of polar compounds [J]. Journal of Chromatography A,2005,1075:51-56.
    [5]Tsyurupa M P, Davankov V A. Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials [J], Reactive & Functional Polymer,2002,53:193-203.
    [1]Davankov V A, Tsyurupa M P. Structure and properties of hypercrosslinked polystyrene the first representative of a new class of polymer networks [J], Reactive Polymer,1990, 13:27-42.
    [2]张全兴,陈金龙,李爱民,等.树脂对化工废水中有毒有机化合物的吸附作用机理与技术研究[J].高分子学报,2008(7):6.
    [3]Zeng X W, Yao H J, Ma N, et al. Synthesis, characterization and adsorption performance of a novel post-crosslinked adsorbent [J]. Journal of Colloid and Interface Science,2011,354: 353-358
    [4]Li A M, Zhang Q X, Zhang G C, et al. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hyperorosslinked polymeric adsorbent [J]. Chemosphere, 2002,47:981-989.
    [5]陈艳立,杨益忠,张金荣,等.后交联均孔树脂的筛分性能及其对银杏叶黄酮的纯化[J].华东理工大学学报,2006,32(6):676-680.
    [6]Li B Y, Su F B, Luo H K, et al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water [J]. Microporous and Mesoporous Materials,2011, 138:207-214.
    [7]BratkowskaD, Fontanals N, Borrull F, et al. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water [J]. Journal of Chromatography A,2010,1217:3238-3243.
    [8]Long C, Lu Z Y, Li A M, et al. Adsorption of reactive dyes onto polymeric adsorbents:effect of pore structure and surface chemistry group of adsorbent on adsorptive properties [J]. Separation and Purification Techhnology,2005,44:115-120.
    [9]Pan B C, Zhang Q X, Meng F W, et al. Sorption enhancement of aromatic sulfonates onto an aminated hypercrosslinked polymer [J]. Environment Science Technolgy,2005,39: 3308-3313.
    [10]Zhang X, Shen S H, Fan L Y. Studies progress of preparation, properties and applications of hypercrosslinked polystyrene networks [J]. Journal of Material Science,2007,42:7621-7629.
    [11]吕利雪,原思国.非苯乙烯骨架极性吸附树脂的合成及结构表征[J].离子交换与吸附,2011,27(1):18-25.
    [12]吕邢鑫.非苯乙烯骨架吸附树脂的化学改性及性能研究[D].硕士学位论文.郑州:郑州大学,2012.
    [1]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境出版社,1985.
    [2]Moon J W, Moon H S, Woo N C, et al. Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China [J]. Environmental Geology,2000,39(9):1039-1052.
    [3]Fu F L, Wang Q. Removal of heavy metal ions from wastewaters:A review [J]. Journal of Environmental Management,2010,92 (3):407-418.
    [4]郭燕妮,方增坤,胡杰华,等.化学沉淀法处理含重金属废水的研究进展[J].工业水处理,2011,31(12):9-12.
    [5]Tu Y J, Chang C K, You C F, et al. Treatment of complex heavy metal wastewater using a multi-staged ferrite process [J]. Journal of Hazardous Materials,2012,209:379-384.
    [6]罗志勇,张胜涛,郑泽根.电化学法处理重金属废水的研究进展[J].中国给水排水,2009,25(16):6-10.
    [7]Mavrov V, Erwe T, Blocher C, et al. [J]. Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater [J], Desalination,2003,157 (1):97-104.
    [8]雷兆武,孙颖.离子交换技术在重金属废水处理中的应用[J].环境科学与管理,2008,33(10):82-84.
    [9]Mostafa M El-Sheekh, Wagieh A. El-Shouny, Mohamed E.H. Osman, et al. Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents [J]. Environmental Toxicology and Pharmacology,2004,19 (2):357-365.
    [10]张玉刚,龙新宪,陈雪梅.微生物处理重金属废水的研究进展[J].环境科学与技术,2008,31(6):58-63.
    [11]Li B Y, Su F B, Luo H K, et al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water [J]. Microporous and Mesoporous Materials,2011, 138:207-214.
    [12]Wang J N, Xu L, Meng Y, et al. Adsorption of Cu2+on new hypercrosslinked polystyrene adsorbent:Batch and column studies [J]. Chemical Engineering Journal,2011,178:108-114.
    [1]Machado R A F, Pinto J C, Araujo P H H, et al. Mathematical modeling of polystyrene particle size distribution produced by suspension polymerization [J]. Brazilian Journal of Chemical Engineering,2000,17:395.
    [2]Davankov V, Tsyurupa M, Ilyin M, et al. Hypercross-linked polystyrene and its potentials for liquid chromatography:a mini-review [J]. Journal of Chromatography A,2002,965:53-73.
    [3]Nuria Fontanals, Marina Galia, Peter A.G. Cormack, et, al. Evaluation of a new hypercrosslinked polymer as a sorbent for solid-phase extraction of polar compounds [J]. Journal of Chromatography A,1075 (2005) 51-56
    [4]Yuan S G, Zhang S H, Zou, et al. Facile synthesis and characterization of novel pseudo-hypercrosslinked resin [J]. Chinese Chemical Letters.2008 (19),5:611-614.
    [5]原思国,白玲玲,赵林秀,等.二甲苯光氯化制备高比表面积吸附树脂的方法[P].CN101914197A.2010,12,15.
    [6]潘祖仁,翁志学,黄志明.悬浮聚合[M].北京:化学工业版社,1997.
    [7]Peter J Dowding, Brian Vincent. Suspension polymerisation to form polymer beads [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2000,161:259-269.
    [8]Jian Pan, Xiuheng Xue, Juhua Wang, et al. Recognition property and preparation of Staphylococcus aureus protein A-imprinted polyacrylamide polymers by inverse-phase suspension and bulk polymerization[J]. Polymer 2009,50:2365-2372.
    [9]王积涛,张宝申,王永梅,等.有机化学[M].天津:南开大学出版社,2003.
    [10]朱立平.反相悬浮聚合制备功能聚合物微球[D].硕士学位论文.天津:天津大学,2004.
    [11]张鑫,张虎威,赵林秀,等.双油相悬浮聚合之辈超高交联树脂微球的研究[C].中国化学会第15届反应性高分子学术讨论会A-50:126-127,2010-08-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700