用户名: 密码: 验证码:
基于AMPS的可聚合离子液体及其交联共聚物凝胶的合成与药物缓释作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以带不饱和键的可聚合有机强酸2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,采用酸碱中和方法,合成了基于AMPS的可聚合离子液体;采用共聚方法,选择合适的共聚单体与基于AMPS的可聚合离子液体交联共聚,制备了一系列交联共聚物凝胶;并以氯霉素为模型药物,研究了凝胶的药物负载与药物缓释性能。
     研究了基于AMPS的可聚合离子液体的合成。将AMPS分散在丙酮中,搅拌滴加三乙胺(TEA)至白色粉末完全消失,再常温减压蒸馏去除溶剂,得到淡黄色粘稠状的AMPS-TEA可聚合离子液体,DSC表征结果表明该离子液体的熔点为-59.4℃。采用相同方法,以咪唑(iMz)中和AMPS,得到淡黄色粘稠状的AMPS-iMz可聚合离子液体,DSC表征结果表明该离子液体的玻璃化温度为34℃。
     研究了一系列AMPS-TEA以及AMPS-iMz可聚合离子液体的交联共聚物凝胶的合成与吸液保液性能。采用水溶液聚合法,以N,N’-亚甲基双丙烯酰胺为交联剂,以过硫酸铵为引发剂,AMPS-TEA可聚合离子液体与丙烯酰胺(AAm)交联共聚合成了Poly(AMPS-TEA-co-AAm)无色透明的玻璃状凝胶,吸收去离子水218g/g,吸收生理盐水50g/g。 Poly(AMPS-TEA-co-AAm)凝胶对多种有机溶剂具有超强吸收作用,对有机溶剂的吸收性能与该溶剂的极性没有明显关系。Poly(AMPS-TEA-co-AAm)凝胶吸收水或者有机溶剂之后,成为无色透明、具有一定弹性、并可以保持恒定形状的玻璃状凝胶。与普通吸液材料海棉相比,Poly(AMPS-TEA-co-AAm)凝胶具有良好的保液性能,在离心、施加静态压力的条件下,可以显著地抑制吸收的液体从凝胶中溢出;在加热条件下,可以显著地抑制吸收的液体的挥发。
     AAm对Poly(AMPS-TEA-co-AAm)凝胶的吸液性能具有重要的影响。AAm的添加比例低于15wt%, Poly(AMPS-TEA-co-AAm)凝胶是粘稠的膏状,没有吸收水或者有机溶剂的能力;AAm的添加比例超过95wt%, Poly(AMPS-TEA-co-AAm)凝胶仍然具有吸水性能,但不再吸收有机溶剂。
     采用水溶液聚合法,AMPS-iMz可聚合离子液体分别与AAm、丙烯酸(AANa)共聚合成了Poly(AMPS-iMz-co-AAm)、 poly(AMPS-iMz-co-AANa)凝胶。在实验范围内,Poly(AMPS-iMz-co-AAm)凝胶吸水186g/g、吸收二甲亚砜267g/g,不能吸收其它有机溶剂;而poly(AMPS-iMz-co-AANa)凝胶只能吸水(351g/g),不能吸收有机溶剂。以苯为溶剂,采用溶液聚合法,AMPS-iMz可聚合离子液体分别与甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BMA)共聚合成了poly(AMPS-iMz-co-MMA)、 poly(AMPS-iMz-co-BMA)凝胶。在实验范围内,两种凝胶不吸水,对苯、甲苯、环已烷、甲基丙烯酸甲酯、丁酮等有机溶剂具有吸收作用;两种凝胶对有机溶剂的吸收能力体现出如下规律性:(a)对有机溶剂的吸收能力与该溶剂的介电常数没有直接关系;(b)对于同分异构体,对正构体的吸收能力超过对异构体的吸收能力;(c)对于同系物,碳原子数越多,对该有机溶剂的吸收能力越低。
     研究了基于AMPS的可聚合离子液体的交联共聚物的超强吸液机理,提出在于高分子主链与溶剂具有相容性、离子液体基团处于完全状态、以及自由离子与溶剂具有相容性。基于AMPS的可聚合离子液体的交联共聚物的超强保液机理,在于排出吸收的液体,需要克服高分子主链上相同电荷基团之间的静电排斥力,需要消耗更多的能量。
     研究了Poly(AMPS-TEA-co-AAm)干凝胶对氯霉素负载行为,发现Poly(AMPS-TEA-co-AAm)干凝胶对氯霉素溶液的吸收量,与其对纯溶剂的吸收量相比没有明显变化,而无水乙醇中氯霉素浓度对Poly(AMPS-TEA-co-AAm)干凝胶吸收各种浓度溶液的性能没有明显影响,干凝胶吸收浓度为1.0wt%的氯霉素无水乙醇溶液与吸收不含氯霉素的无水乙醇相同,表明Poly(AMPS-TEA-co-AAm)凝胶的溶质(氯霉素)浓度敏感性不存在或者不明显。分别以水、甲醇、乙醇、乙二醇、异丙醇、1,3-丙二醇、丙三醇、正丁醇为溶剂,采用Poly(AMPS-TEA-co-AAm)干凝胶吸收氯霉素的溶液后再脱除溶剂的方法,将氯霉素负载于凝胶中,在溶液浓度相同的条件下,负载量主要取决于该干凝胶对溶剂的吸收能力;对于相同溶剂,氯霉素浓度与其负载量呈线性关系。
     X射线衍射结果表明,在氯霉素负载量较低的情况下,氯霉素完全以分子状态分散于Poly(AMPS-TEA-co-AAm)干凝胶的交联高分子网络中,没有晶体状态的氯霉素存在;在氯霉素负载量较高的情况下,多数氯霉素在交联高分子聚合物中以晶体状态存在,而晶体中的部分氯霉素分子与高分子之间发生氢键相互作用,导致其结晶状态改变。
     负载氯霉素的Poly(AMPS-TEA-co-AAm)干凝胶的药物释放过程包括凝胶溶胀而导致被高分子链缠绕的氯霉素与水分子发生接触、氯霉素溶解于凝胶内部的自由水中、氯霉素分子从凝胶内部溶液向凝胶外部溶液扩散等三个步骤。载药干凝胶在去离子水、生理盐水以及磷酸盐缓冲溶液PBS中的溶胀速度很快,一般在200min左右即可达到饱和溶胀。氯霉素负载量越大,载药干凝胶吸收水溶液达到饱和时的吸水量越低。在去离子水、生理盐水以及磷酸盐缓冲溶液(PBS)中,氯霉素从Poly(AMPS-TEA-co-AAm)凝胶中的释放速度很快,经过60-120min的释放,氯霉素的累计释放率不再增加,而此时各种氯霉素负载量的凝胶,其氯霉素累计释放率已经达到40-90%左右,并且干凝胶中氯霉素的负载量越大,其氯霉素累计释放率越低。
Polymerizable room temperature ionic liquids (RTILs) were synthesized by neutralization of2-acrylamido-2-methyl-l-propane sulfonic acid (AMPS) and triethylamine (TEA) or imidazole (iMz). Co-polymeric gels based on such RTILs were synthesized by solution copolymerization; the swelling properties in water and organic liquids of the gels were investigated. By using chloramphenicol as a model drug, uploading and release of water insoluble drugs onto Poly(AMPS-TEA-co-AAm) gels were investigated.
     Synthesis of AMPS-based RTILs were investigated. By using acetone as a solvent, AMPS was neutralized with TEA and iMz followed by evaporation of the solvent, to give AMPS-TEA and AMPS-iMz RTIL, respectively. The two RTILs were characterized with FT-IR and1H-NMR. DSC data showed the glass transition temperature was-59.4℃for AMPS-TEA, and34℃for AMPS-iMz.
     A series of co-polymeric gels based on AMPS-TEA and AMPS-iMz were synthesized, their swelling properties in water and a series of organic liquids were investigated. Firstly, Co-polymeric gels of Poly(AMPS-TEA-co-AAm) were synthesized by co-polymerizing AMPS-TEA with acrylamide (AAm) in aqueous solutions using N,N'-methylenebisacrylamide (MBAm) as a crosslinker, and ammonium persulfate (APS) as an initiator. The results showed that Poly(AMPS-TEA-co-AAm) were transparent and glassy gels. Poly(AMPS-TEA-co-AAm) gels exhibited superabsorbency in both water and a series of organic liquids. There was no obvious relationship between absorbency and dielectric constant of the liquids being absorbed by the gels. Poly(AMPS-TEA-co-AAm) gels exhibited good liquids retaining property; the liquids being absorbed were kept without spillage under static pressure and centrifugation.
     The swelling property of Poly(AMPS-TEA-co-AAm) was seriously influenced by AAm content in the gels. Poly(AMPS-TEA-co-AAm) did not show any absorbency if the feeding ratio of AAm was less than15wt%; and Poly(AMPS-TEA-co-AAm) can swell in water while can not swell in any organic liquids if the feeding ratio of AAm was more than95wt%.
     Co-polymeric gels of AMPS-iMz and AAm or sodium acrylic acid (AANa) were synthesized by aqueous solution copolymerization; their swelling property were investigated. The results showed that the absorbency of Poly(AMPS-iMz-co-AAm) was186g/g and267g/g for water and DMSO respectively; and Poly(AMPS-iMz-co-AAm) can not swell in other organic liquids. Poly(AMPS-iMz-co-AANa) can only swell in water. Co-polymeric gels of AMPS-iMz and methylmethylate (MMA), butylmethylate (BMA) were synthesized respectively by solution copolymerization using benzene as a solvent, and divinylbenzene (DVB) as a crosslinker. Both poly(AMPS-iMz-co-MMA) and poly(AMPS-iMz-co-BMA) can not swell in water; while they can swell in benzene, toluene, cyclohexane, butanone and methylmethylate. There was no obvious relationship between absorbency and dielectric constant of the liquids being absorbed by poly(AMPS-iMz-co-MMA) and poly(AMPS-iMz-co-BMA) gels.
     The mechanism of superabsorbency for water and a series of organic liquids of co-polymeric gels based on AMPS-based ionic liquids were investigated. It was suggested that the reasons of superabsorbency for organic liquids were compatibility of macromolecular chains and the solvents, and the ionic liquids being completely made of ions.
     By using chloramphenicol as a model drug, uploading of water insoluble drugs on the xerogels of Poly(AMPS-TEA-co-AAm) was investigated by swelling the xerogel of Poly(AMPS-TEA-co-AAm) in the drug solution followed by removing the solvent to give drug-polymer conjugate using water and alcohols as a solvent, respectively.. The results showed that there was no obviously difference between absorbency in pure solvents and chloramphenicol solutions; and chloramphenicol concentration of the solutions has no influence on the absorbency. The drug loading capacity was decided by the concentration of chloramphenicol in the solutions.
     The drug-polymer conjugate was characterized with XRD, and the results showed that chloramphenicol was molecularly dispersed in the networks of the gels if the drug uploading was low; and chloramphenicol was crystal in the networks of the gels if the drug uploading was high.
     The chloramphenicol release from the xerogel of Poly(AMPS-TEA-co-AAm) was investigated in distilled water, physiological saline, and phosphate buffer solution (PBS). The results showed the release process of chloramphenicol included swelling of the xerogel, dissolution of the drug in water, and diffusion of the drug from the gels to the swelling media. The xerogel of drug-polymer conjugate swelled quickly in distilled water, physiological saline, and PBS; and the absorbency for the swelling media was decided by the drug uploading content. In distilled water, physiological saline, and PBS, the drug release ratio was40-90%and did not change after60-120min release. For more drug uploaded onto the xerogel, the drug release ratio was less.
引文
1 张先洲,范金玲,潘细贵.不同剂型青藤碱的体外皮肤渗透性[J].中国医院药学杂志,2011,31:901-903
    2 Farokhzad 0 C, Langer R. Impact of nanotechnology on drug delivery [J]. ACS Nano, 2009,3:16-20
    3 刘杰,刘少杰,吕峰峰,李干佐,郑利强.微乳液体系作为药物载体的研究进展[J].日用化学工业,2004,34(2):100-104
    4 高洁,连潇嫣,魏振平,王博,李洪起,任晓文.纳米技术在药物制剂研究中的应用[J].化学工业与工程,2012,29(5):64-69
    5 Shah J C, Sadhale Y, Chilukurid D M. Cubic phase gels as drug delivery systems [J]. Advanced Drug Delivery Reviews, 2001,47:229-250
    6 Turchiello R F, Vena F C, Maillad PH, et al. Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT) [J]. Journal of Photochemistry and Photobiology B: Biology,2003,70 (1):1-6
    7 Palazzo G, Lopez F, Giustini M, et al. Role of the co-surfactant in the CTAB/water/ n-pentanol/n-hexane water-in-oil microemulsion. Pentanol effect on the microstructure [J]. JPhys Chem B,2003,107 (8):1924-1931
    8 Kumar D, Aqilm, Sultana Y, et al. Investigation of a nanoemulsion as vehicle for transdermal delivery of amlodipine [J]. Pharmazie,2009,64:80-85
    9 Yezhelyev M V, Qi L, Oregan R M, et al. Protonsponge coated quantum dots for siRNA delivery and intracellular imaging [J]. Journal of the American Chemical Society,2008, 130(28):9006-9012
    10 Tahara K, Miyazaki Y, Kawashima Y, et al. Brain targeting with surface-modified poly (D,L-lacticco-glycolic acid) nanoparticles delivered via carotid artery administration [J]. European Journal of Pharmaceutics and Biopharmaceutics,2011,77(1):84-88
    11 Mou D, Chen H, Du D, Mao C, Wan J, Xu H. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs [J]. International Journal of Pharmaceutics,2008,353(2):270-276
    12 Mariagraziacascone, Zhouhaizhu, Flaviaborselli, Luigilazzeri. Poly(vinyl alcohol) hydrogels as hydrophilic matrices for the release of lipophilic drugs loaded in PLGA nanoparticles[J]. Materials Science: Materials in Medicine,2002,13:29-32
    13 Yan H, Tsujii K. Potential application of poly(N-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems [J]. Colloids and Surfaces B: Biointerfaces, 2005,46(3):142-6
    14 Wan Ajun (?) Kou Yuxia. The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers [J]. J Nanopart Res,2008,10: 437-448
    15 Tian W, Fan X, Kong J, Liu T,Huang Y. Novel supramolecular system of amphiphilic hyperbranched polymer with β-cyclodextrin and hyperbranched topography cavities: Synthesis and selective encapsulation [J]. Polymer,2010,51(12):2556-2564
    16 Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers [J]. International Journal of Pharmaceutics,2003,259(1-2):143-160
    17 Merril E W. Poly(ethylene oxide) star molecules:synthesis, characterization and applications in medicine and biology [J]. Biomater Sci. Polymer Edition,1994,5(1-2): 1-11
    18 Gou P F, Zhu W P, Shen Z Q. Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drag-Conjugated Amphiphilic A14B7 Miktoarm Star Copolymers Based on Poly(ε-caprolactone) and Poly(ethylene glycol) [J]. Biomacromolecules,2010,11(4):934-943
    19 Cai S S, Vijayan K S, Cheng D, Lima E M, Discher D E. Micelles of different morphologies-advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery [J]. Pharmaceutical Res,2007,24:2099-2109
    20梁晓飞,胡晶莹,陈复华,李宗海,常津.微乳液法制备可共载水溶和脂溶药物的壳聚糖季铵盐乙醇脂质体的载药性能表征[J].物理化学学报,2012,28(4):897-902
    21孙中丰.微乳状液及其应用[J].广东化工,2010,37(4):24-25
    22 Cho H, Kwon G S. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging [J]. ACSNano,2011,5:8721-8729
    23杨鹏波,张华.脂质体的研究新进展[J].浙江中医药大学学报,2013,37(7):936-939
    24 Hao J, Fang X, Zhou Y, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design [J]. International Journal of Nanomedicine,2011,6:683-692
    25梁健钦,刘华钢.白藜芦醇固体脂质纳米粒制备工艺及形态学研究[J].中国实验方剂学杂志,2010,16:28-30
    26 Sanna V, Gavini E, Cossu M, et al. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate:in-vitro characterization, ex-vivo and in-vivo studies [J]. Journal of Pharmacy and Pharmacology,2007,59:1057-1064
    27 Manoharan V N, Imhof A, Thorne J D, Pine D J. Photonic crystals from emulsion templates [J]. Adv Mater,2001,13:447-450
    28 Xu X D, Wei H, Zhang X Z, Cheng S X, Zhuo R X. Potential application of poly(N-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems [J]. Journal of Biomedical Materials Research Part A,2007,81 (2):418-426
    29孙飞,尹莉芳,周建平,等.热敏脂质体的研究进展[J].药学进展,2010,34(9):399-405
    30莫方芬,邓盛齐.新型药物载体免疫脂质体的研究进展[J].中国抗生素杂志,2011,36(4):249-253
    31陈智娴.中药脂质体研究进展[J].实用中医药杂志,2010,26(8):587-589
    32段降龙,龙延滨,李国威.尿素免疫脂质体的制备及理化性质研究[J].陕西医学杂志,2011,40(6):653-655
    33 尚青,郑和堂,闫丽,史永利.聚合物纳米粒子载药体系的研究进展[J].河北工业科技,2005,22(1):38-43
    34孙庆雪,邵伟,黄桂华.脂质体制备方法的选择[J].中成药,2010,32(8):1397-1401
    35杨彤.新型脂质体的研究进展[J]. Herald of Medicine,2009,28(3):336-338
    36王志宣,邓英杰,张晓鹏,等.脂质体肺部给药系统的应用[J].中国医药工业杂志,2007,38(1):58-61
    37 Zhang J, Lei Y, Dhaliwal A, et al. Protein-polymer nanoparticles for nonviral gene delivery [J]. Biomacromolecules,2011,12:1006-1014
    38 Chen Y, Liu J, Yang X, et al. Oleanolic acid nanosuspensions:Preparation, in-vitro characterization and enhanced hepatoprotective effect [J]. Journal of Pharmacy and Pharmacology,2005,57:259-264
    39曾祥,刘道军.两亲性刷状多肽共聚物纳米药物载体研究[J].汕头大学医学院学报,2011,24:78-80
    40 Paraj Y, Dangeloi, Horvtha et al. PLGA poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors [J]. European Journal of Pharmaceutical Sciences,2010,41:644-649
    41 高洁,连潇嫣,魏振平,王博,李洪起,任晓文.纳米技术在药物制剂研究中的应用[J].化学工业与工程,2012,29(5):64-69
    42 Li X, Tian X, Zhang J, et al. In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymermodified liposomes loaded with docetaxel [J]. International Journal of Nanomedicine,2011,6:1167-1184
    43 Kumari A, Yadav S K, Yadav S C. Biodegradable polymeric nanoparticles based drug delivery systems [J]. Colloids and Surfaces B: Biointerfaces,2010,75:1-18
    44 Rao J P, Geckeler K E. Polymer nanoparticles:Preparation techniques and size-control parameters [J]. Polymer Science,2011,36:887-913
    45 Yeo Y, Ito T,Bellas E,Highley C B,Marini R,Kohane D S.In situ cross-linkablehyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions[J]. Annals of Surgery,2007,245(5):819-24
    46查刘生,高海峰,杨武利,蒋新国,府寿宽.聚合物纳米粒子用于给药载体[J].高分子通报,2002,(3):24-32
    47 Sangamesh G, Kumbar, Tejraj M. Preparation and characterization of interpenetrating network beads of poly(v-inyl alcohol)-graft d poly(acrylamide) with sodium alginate and their con trolled release characteristics for cypermethrin pesticide [J]. Journal of Applied Polymer Science,2002,84:552-560
    48 Jeong J Y, Young I J, Young H S, et al. Preparation of core-shell type nanoparticles of di-block copolymers of poly(Llactide)/poly(ethylene glycol) and their characterization in vitro [J]. Journal of Applied Polymer Science,2002,85:2625-2634
    49 Hans M L, Lowman A M. Biodegradable nanoparticles for drug delivery and targeting [J]. Curr Opin Solid St,2002,6:319-327
    50 Ramge P, Unger R E, Oltrogge J B, et al. Polybutylcyan oacrylate- nanoparticles by human and bovin primary brain capillary endothelial cells [J]. Eur JNeurosci,2000,12: 1931-1940
    51 Lavasanifar A, Samuel J, Kwon G S. Poly(ethyleneoxide)-block-poly(L-amino acid) micelles for drug delivery [J]. Adv Drug Deliv Rev,2002,54:169-190
    52 Kim I S, Kim S H. Evaluation of polymeric nanoparticles composed of cholic acid and methoxy poly(ethylene glycol) [J]. Int J Pharm,2001,226:23-29
    53 Rosler A, Vandermeulen G, Klok H. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers [J]. Adv Drug Deliv Rev,2001,53:95-108
    54 Valo H, Kovalainen M, Laaksonen P, et al. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release [J]. Journal of Controlled Release,2011,156:390-397
    55 Liu Y Y, Fan X D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups [J]. Biomaterials,2005,26(32): 6367-6374
    56 Liu Y Y, Fan X D, Hu H, Tang Z H. Release of chlorambucil from Poly(N-isopropylacrylamide) hydrogels with P-Cyclodextrin moieties [J]. Macromol Biosci,2004,4:729-736
    57陆晨熠,庄贞静,邱飞.纳米金的药用研究进展[J].中国药学杂志,2012,47(7):481-485
    58 Bowang M C, Ballard T E, Acakerson J C, et al. Inhibition of HIV fusion with multivalent gold nanoparticles [J]. J Am Chem Soc,2008,130(22):6896-6897
    59 Veiseh O, Gunn J W, Zhang M Q. Design and fabrication of magnetic nanoparticles for targeted drug de livery and imaging [J]. Advanced Drug Delivery Reviews,2010,62(3): 284-304
    60毕红,余乐乐,宋梦梦.无机纳米载体在靶向药物输送中的应用研究进展[J].安徽大学学报(自然科学版),2011,35(3):1-8
    61 刘聪颖,胡建华,杨东,杨武利.多重响应性介孔二氧化硅纳米微球的制备及载药研究[J].化学学报,2009,67(8):843-849
    62何晓晓,海罗,王柯敏,伍旭,谭蔚泓.基于磷酸化修饰的核/壳硅纳米颗粒药物缓释体研究[J].高等学校化学学报,2009,30(2):283-288
    63袁丽,王蓓娣,唐倩倩,张晓鸿,张晓环,杨东,胡建华.介孔二氧化硅纳米粒子应用于可控药物传输系统的若干新进展[J].有机化学,2010,30(5):640-647
    64于金刚,黄笃树,黄可龙,刘素琴,曾冬铭.碳纳米管在药物载体领域的进展[J].化学通报,2011,74(8):715-719
    65李三清,刘耀驰,于金刚.多壁碳纳米管-聚乙二醇复合材料缓释氧氟沙星[J].科技导报2013,31(9):23-26
    66王芳,欧俊.碳纳米管的功能化改性及其在载药领域的研究进展[J].大众科技,2012,14(11):70-72
    67冉冉,刘建平,朱家壁,王纠.功能化碳纳米管在药物递送系统中的应用[J].药学服务与研究,2013,13(3):170-173
    68 Jana Pardeike, Aiman Hommoes, Rainer H Muller. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products [J]. IntJPharm,2009,36(1-2):170-184
    69 Souto E B, Mehnert W, Muller R H. Polymorphic behaviour of compritol888 ATO as bulk lipid as SLN and NLC [J]. JMicroencapsul,2006,23(4):417-433
    70 Xia Q, Saupe A, Muller R H, et al. Nanostructured lipid carriers as novel carrier for sunscreen formulations [J]. Int J Cosmet Sci,2007,29(6):473-482
    71李勇,曲韵智,李津明,高建玲.纳米结构脂质载体的研究进展[J].黑龙江医药,2009,22(6):781-784
    72 Buning Zhang, Yingde Cui, Guoqiang Yin, Xinming Li. Adsorption of Copper (II) and Lead (Ⅱ) Ions onto Cottonseed Protein-PAA Hydrogel Composite [J]. Polymer-Plastics Technology and Engineering,2012,51(6):612-619
    73 Buning Zhang, Yingde Cui, Guoqiang Yin, Xinming Li. Synthesis and swelling properties of protein-poly(acrylic acid-co-acrylamide) superabsorbent composite [J]. Polymer Composite,2011,32(5):683-691
    74 Xinming Li, Yingde Cui. Ultraviolet-induced decomposition of acrylic acid-based superabsorbent hydrogels crosslinked with N,N-methylenebisacrylamide [J]. Journal of Applied Polymer Science.2008,108:3435-3441
    75 Nikolaos A Peppas. Hydrogels and drug delivery [J]. Current Opinion in Colloid & Interface Science.1997,2:531-537
    76 A. Mohanana, B. Vishalakshia, S. Ganeshb. Swelling and Diffusion Characteristics of Stimuli-Responsive N-Isopropylacrylamide and κ-Carrageenan Semi-IPN Hydrogels [J]. InternationalJournal of Polymeric Materials,2011,60(10):787-798
    77 S. K. Bajpaia, M. Bajpaib, L. Sharmac. In Situ Formation of Silver Nanoparticles in Poly(N-Isopropyl Acrylamide) Hydrogel for Antibacterial Applications [J]. Designed Monomers and Polymers,2011,14(4):383-394
    78 Talib Hussaina, Nazar Muhammad Ranjhab, Yasser Shahzadc. Swelling and Controlled Release of Tramadol Hydrochloride from a pH-Sensitive Hydrogel [J]. Designed Monomers and Polymers,2011,14(3):233-249
    79 Zuhal Nart, Nilhan Kayaman-Apohan. Preparation, characterization and drug release behavior of poly(acrylic acid-co-2-hydroxyethylmethacrylate-co-2-acrylamido-2-methyl-1- propanesulfonic acid) microgels [J]. J. Polym. Res.2011,18:869-874
    80 K Varaprasada, N Narayana Reddya, S Ravindraa, K Vimalaa, K Mohana Rajua. Synthesis and Characterizations of Macroporous Poly(acrylamide-2-acrylamido-2-methyl-l-propanesulfonic acid) Hydrogels for In Vitro Drug Release of Ranitidine Hydrochloride [J]. International Journal of Polymeric Materials,2011,60(7):490-503
    81 Mehmet Senel, Emre Cevik, M. Fatih Abasiyamk, Ayhan Bozkurt. Entrapment of Urease in Poly(1-vinyl imidazole)/Poly(2-acrylamido-2-methyl-l-propanesulfonic acid) Network [J]. Journal of Applied Polymer Science.2011,119:1931-1939
    82 Haroldo C. B. Paula, Regina C. M. de Paula, Sterlane K. F. Bezerra. Swelling and release kinetics of larvicide-containing chitosan/cashew gum beads [J]. Journal of Applied Polymer Science,2006,102:395-400
    83 Alvarez-Lorenzo C, Concheiro A, Dubovik A S, Grinberg N V,Burova T V, Grinberg V Y. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties [J]. Journal of Controlled Release,2005,102(3):629-641
    84 Gallardo A, Parejo C, San Roman J. NSAIDs bound to methacrylic carriers: Microstructural characterization and in vitro release analysis [J]. Control Rel,2001,71: 127-140
    85 Cheng S X, Zhang J T, Zhuo R X. Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties [J]. Biomed Mater Res Part A,2003,67A:96-103
    86 Zhang J T, Silvia Petersen, Mahendra Thunga. Micro-structured smart hydrogels with enhanced protein loading and release efficiency [J]. Acta Biomaterialia,2010,6: 1297-1306
    87 Hiratani H, Alvarez-Lorenzo C. The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug deliverysystems [J]. Biomaterials,2004,25:1105-1113
    88 Bolisay L D, Culver J N, Kofinas P. Molecularly imprinted polymers for tobacco mosaic virus recognition [J]. Biomaterials,2006,27:4165-4168
    89 Siddarth Venkatesh, Stephen P Sizemore, Mark E Byrne. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics [J]. Biomaterials.2007, 28:717-724
    90 Carmen Alvarez-Lorenzo, Fernando Yanez, Rafael Barreiro-Iglesias, Angel Concheiro. Imprinted soft contact lenses as norfloxacin delivery systems [J]. J. Control. Release. 2006,113:236-244
    91 Carmen Alvarez-Lorenzo, H Hiratani, J L Gomez-Amoza, R Martinez-Pacheco, C Souto, A Concheiro. Soft contact lenses capable of sustained delivery of timolol [J]. J. Pharm. Sci.2002,91:2182-2192
    92 H Hiratani, Y Mizutani, C Alvarez-Lorenzo. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities [J]. Macromol. Biosci.2005,5:728-733
    93 H Hiratani, A Fujiwara, Y Tamiya, Y Mizutani, C Alvarez-Lorenzo. Ocular release of timolol from molecularly imprinted soft contact lenses [J]. Biomaterials.2005,26: 1293-1298
    94 H Hiratani, C Alvarez-Lorenzo. Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid [J]. J. Control. Release. 2002,83:223-230
    95 Rei Uchida, Takao Sato, Haruyasu Tanigawa, Kenji Uno. Azulene incorporation and release by hydrogels containing methacrylamide propyltrimethylammonium chloride, and its application to soft contact lens [J]. J. Control. Release.2003,92:259-264
    96 Takao Sato, Rei Uchida, Haruyasu Tanigawa, Kenji Uno, Akira Murakami. Application of polymer gels containing side-chain phosphate groups to drug-delivery contact lenses [J]. Journal of Applied Polymer Science.2005,98:731-735
    97 Anne Danion, Heidi Brochu, Yves Martin, Patrick Vermette. Fabrication and characterization of contact lenses bearing surface-immobilized layers of intact liposomes [J]. Journal of Biomedical Materials Research, Part A,2007,80A: 41-51
    98 Derya Gulsen, Anuj Chauhan. Dispersion of microemulsion drops in HEMA hydrogels: a potential ophthalmic drug delivery vehicle [J]. International Journal of Pharmaceutics 2005,292:95-117
    99 Derya Gulsen, Anuj Chauhan. Ophthalmic drug delivery through contact lenses [J]. Invest. Ophthalmol. Visual Sci.2004,45:2342-2347
    100 Derya Gulsen, Chi-Chung Li, Anuj Chauhan. Dispersion of DMPC liposomes in contact lens for ophthalmic drug delivery [J]. Current Eye research. 2005,30: 1071-1080
    101 Rodnguez-Tenreiro C, Alvarez-Lorenzo C, Rodnguez-Perez A, Concheiro A, Torres- Labandeira JJ. New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability [J]. Pharmaceutical,2006,23(1): 121-130
    102 Li J, Ni X, Leong K W. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and α-cyclodextrin[J]. J Biomed Mater Res, 2003,65:196-202
    103 Kanjickal D, Lopina S, Evancho-Chapman M M, Schmidt S, Donovan D. Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins [J]. Journal of Biomedical Materials Research Part A,2005,74(3):454-60
    104 Inoue T, Chen G, Nakamae K, Hoffman A S. A hydrophobially-modified bioadhesive polyelectrolyte hydrogel for drug delivery [J]. Controlled Release,1997,49:167-176
    105 Liu Y Y, Liu W Q, Chen W X, Sun L, Zhang G B. Investigation of swelling and controlled-release behaviors of hydrophobically modified poly(methacrylic acid) hydrogels [J]. Polymer,2007,48(9):2665-71
    106 Dulong V, Mocanu G, Le Cerf D. A novel amphiphilic pH-sensitive hydrogel based on pullulan [J]. Colloid and Polymer Science,2007,285(10):1085-1091
    107程振平,路建美,朱健,等.等离子体引发高吸醇树脂的合成及性能[J].石油化工,2000,29(8): 571-574
    108 Qingchun Zhao, Changling Liu. Synthesis and Characterization of Superabsorbent-Ethanol Polyacrylic Acid Gels [J]. Journal of Applied Polymer Science,2007,105: 3458-3461
    109 K. Kabiri, A. Azizi, M. J. Zohuriaan-Mehr, G. Bagheri Marandi, H. Bouhendi. Poly(acrylic acid-sodium styrene sulfonate) Organogels: Preparation, Characterization, and Alcohol Superabsorbency [J]. Journal of Applied Polymer Science,2011,119: 2759-2769
    110 Kourosh Kabiri, Speideh Lashani, Mohammad Jalal Zohuriaan-Mehr, Malihe Kheirabadi. Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid) [J]. J Polym Res.2010, DOI 10.1007/s10965-010-9436-y
    111 Kourosh Kabiri1, Azadeh Azizi, Mohammad J Zohuriaan-Mehr1, Gholam Bagheri Marandi, Hossein Bouhendi, Ahmad Jamshidi. Super-alcogels Based on 2-Acrylamido-2-methylpropane Sulphonic Acid and Poly(ethylene glycol) Macromer [J]. Iranian Polymer Journal,2011,20 (3):175-183
    112 K. Kabiri, A. Azizi, M. J. Zohuriaan-Mehr, G. Bagheri Marandi, H. Bouhendi. Alcohophilic Gels:Polymeric Organogels Composing Carboxylic and Sulfonic Acid Groups [J]. Journal of Applied Polymer Science,2011,120:3350-3356
    113路建美,朱健,纪顺俊,等.二元共聚吸醇树脂的合成及其性能研究[J].胶体与聚合物,2000,18(2):18-20
    114 Jianmei Lu, Zhenping Cheng, Xiulin Zhu, Lifen Zhang. Plasma-Induced Copolymerization of Hydrochloride of N,N-Dimethylaminoethyl Methacrylate and Acrylamide [J]. Journal of Applied Polymer Science,2002,84:729-734
    115程振平,路建美,朱秀林,等.高吸液树脂的合成与性能[J].石油化工,2000,29(9):667-679
    116朱秀林,程振平,路建美,等.反相悬浮聚合制备高吸醇树脂及性能研究[J].胶体与聚合物,2000,18 (1):25-28
    117程振平,朱秀林,路建美,等.反相悬浮聚合法珠状高吸醇树脂的制备及性能[J].石油化工,2001,30(6):444-447
    118 Yoshihiro Kiritoshi, Kazuhiko Ishihara. Preparation of cross-linked biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) gel and its strange swelling behavior in water/ethanol mixture [J]. J. Biomater. Sci. Polymer Edn,2002,13 (2):213-224
    119 Ziying Tang, Xiaoyang Wu, Zhisen Luo, Qunwei Tang, Jianming Lin, Jihuai Wu. Alcohol elastomer based on superabsorbents [J]. Polym. Adv. Technol.2011, DOI: 10.1002/pat.1982
    120 Mouryaa. Polymeric micelles:authoritative aspects for drug delivery [J]. Designed Monomers and Polymers,2012,15(5):465-521
    121 Kumari Rinkia, Pradip K. Duttaa, Andrew J. Huntb, Duncan J. Macquarrieb, James H. Clarkb. Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. International Journal of Polymeric Materials,2011,60(12):988-999
    122 Todd R. Hoare, Daniel S. Kohane. Hydrogels in drug delivery: Progress and challenges [J]. Polymer.2008,49:1993-2007
    123 Xinming Li, Yingde Cui. Study on synthesis and chloramphenicol release of poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogel [J]. Chinese Journal of Chemical Engineering.2008,16 (4):640-645
    124 Selva Cavus. Poly(methacrylamide-co-2-acrylamido-2-methyl-l-propanesulfonic acid) hydrogels: investigation of pH- and temperature-dependent swelling characteristics and their characterization [J]. Journal of Polymer Science: Part B: Polymer Physics.2010, 48:2497-2508
    125 S. Amalia Pooley, Bernabe'L. Rivas, Amitza L. Ca'rcamo, Guadalupe del C. Pizarro. Hydrogels from 2-(dimethylamino)ethylacrylate with 2-acrylamido-2-methyl-l-propanesulfonic acid:synthesis, characterization, and water-sorption properties [J]. Polym. Bull.2009,62:469-485
    126 Nirada Devia, Arandao Narzarya. Release Dynamics of Brufen from a Drug-Loaded Polymer Hydrogel Containing Polyvinyl Alcohol,2-Acrylamide-2-methylpropane Sulfonic Acid and Acrylamide. International Journal of Polymeric Materials,2012, 61(11):821-833
    127 Chi Zhang, Allan J. Easteal. Rheological Properties of Poly(ethylene glycol)/Poly(N-isopropylacrylamide-co-2-acrylamido-2-methylpropanesulphonic acid) Semi-Interpenetrating Networks [J]. Journal of Applied Polymer Science.2008,109: 3578-3589
    128 Semiha Kundakci, Erdener Karadag, Omer Barls. Uzum. Investigation of Swelling/Sorption Characteristics of Highly Swollen AAm/AMPS Hydrogels and Semi IPNs with PEG as Biopotential Sorbent [J]. Journal of Encapsulation and Adsorption Sciences.2011,1:7-22
    129 Chi Zhang, Allan J. Easteal. Rheological Properties of Poly(ethylene glycol)/Poly(N-isopropylacrylamide-co-2-acrylamido-2-methylpropanesulphonic acid) Semi-Interpenetrating Networks [J]. Journal of Applied Polymer Science.2008,109: 3578-3589
    130 F. Bottari, G. Dicolo, E. Nannipieri, M.F. Saettone, M.F. Serafini. Influence of drug concentration on in vitro release of salicylic acid from ointment bases [J]. Journal of Pharmaceutical Sciences,1974,63(11):1779-1783
    131 M. R. Rubio, E. S. Ghaly. In vitro release of acetaminophen from sodium alginate controlled release pellets [J]. Drug Development and Industrial Pharmacy,1994,20(7): 1239-1251
    132 Xinming Li, Xuejun Pan. Hydrogels based on hemicellulose and lignin from lignocellulose biorefinery:a mini-review. Journal of Bio-Based Materials and Bioenergy.2010,4(4):289-297
    133 J. C. Gayet, G. Fortier. High water content BSA-PEG hydrogel for controlled release device: Evaluation of the drug release properties [J]. Journal of controlled release.1996, 38:177-184
    134 B. G Kabra, S. H. Gehrke, S. T. Hwang, W. A. Ritschel. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water [J]. Journal of Applied Polymer Science.1991,42(9):2409-2416
    135 Issa Katime, Rosa Novoa, E. Diaz De Apodaca, E. Rodriguze. Release of theophylline and aminophylline from acrylic acid/n-alkyl methacrylate hydrogels [J]. Journal of Polymer Science: Part A:Polymer Chemistry.2004,42:2756-2765
    136 Suda Kiatkamjornwong, Pattama Phunchareon. Influence of Reaction Parameters on Water Absorption of Neutralized Poly (acrylic acid-co-acrylamide) Synthesized by Inverse Suspension Polymerization [J]. Journal of Applied Polymer Science.1999,72: 1349-1366
    137 Y. Murali Mohan, P.S. Keshava Murthy, J. Sreeramulu, K. Mohana Raju. Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (acrylamide-co-sodium methacrylate) [J]. Journal of Applied Polymer Science,2005,98:302-314
    138 Xinming Li, Yingde Cui. Hydrogel-hydrogel composite the interfacial structure and interaction between water and polymer chains [J], Journal of Applied Polymer Science. 2008,108:3713-3719
    139陈雪萍,瓮志学,黄志明.高吸水性树脂的结构与吸水机理[J].化工新型材料,2002,30(3):19-21
    140刘廷栋,刘京.高吸水性树脂的吸水机理[J].高分子通报,1994,(3):181-185
    141林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理探讨[J].北京化工大学学报,1998,25(3):20-25
    142 Fatima Rosa, Joao Bordado, Miguel Casquilho. Kinetics of water absorbency in AA-AMPS copolymers: applications of a diffusion-relaxation model [J]. Polymer,2002, 43:63-70
    143 Knorgen M, Arndt K F, Richter S. Investigation of swelling and diffusion in polymers by'H-NMR imaging: LCP networks and hydrogels. Journal of Molecular Structure, 2000,554(1):69-79
    144 Omidian H, Zohuriaan-Mehr M J. DSC studies on synthesis of superabsorbent hydrogels [J]. Polymer,2002,43(2):269-277
    145 Sung Wan Kim, You Han Bae, Teruo Okano. Hydrogel:Swelling, Drug loading, and Release [J]. Pharmaceutical Research,1992,9(3):283-290
    146 Ping Z H, Nguyen Q T, Zhou S M, et al. States of water in different hydrophilic polymers-DSC an d FTIR studies [J]. Polymer,2001,42:8461-8467
    147 Fei Song, Li-Ming Zhang, Nan-Nan Li, Jun-Fei Shi. In situ Crosslinkable Hydrogel Formed from a Palysaccharide-Based Hydrogelator [J]. Biomacromolecules,2009, 10(4):959-965
    148 Fei. Song, Li-Ming. Zhang, Jun-Fei. Shi, Nan-Nan. Li. Novel casein hydrogels: Formation, stucture and controlled drug release [J]. Colloids and Surfaces B: Biointerfaces,2010,79(1):142-148
    149 Kumaresh. S.Soppirmath, Tejraj. M.Aminabhavi. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application [J]. Eur J Pharmaceutics Biopharmaceutics.2002, 53(1):87-98
    150 Puwang Li, Yichao Wang, Zheng Peng, Fenghua She, Lingxue Kong. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends [J]. Carbohydrate Polymers,2011,85:698-704
    151 Luo Y L, Wei Q B, Xu F, et al. Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks [J]. Mater Chem Phys,2009, 118(2-3):329-336
    152 Li, C C, Chauhan, A. Modeling ophthalmic drug delivery by soaked contact lenses [J]. Ind Eng Chem Res,2006,45:3718-3734
    153 Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ. Estradiol sustained release from high affinity cyclodextrin hydrogels [J]. European Journal of Pharmaceutics and Biopharmaceutics,2007,66(1):55-62
    154 Li J, Ni X, Leong K W. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and a-cyclodextrin [J]. J Biomed Mater Res, 2003,65:196-202
    155 Zhang X Z, Zhang J T, Zhuo R X, Chu C C. Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide) hydrogel. Polymer,2002,43: 4823-4827
    156 Zhang X Z, Zhuo R X. Synthesis of temperature sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property [J]. J Colloid Interface Sci,2000,223: 311-313
    157 Zhang X Z, Zhuo R X. Dynamic properties of temperature-sensitive poly (N-isopropylacrylamide) gel cross-linked through siloxane linkage [J]. Langmuir,2001, 17:12-16
    158 Park T G Temperature modulated protein release from pH/temperature-sensitive hydrogels [J]. Biomaterials,1999,20:517-521
    159 Schoenmakers R G, van de Wetering P, Elbert D L, Hubbell J A. The effect of the linker on the hydrolysis rate of drug-linked ester bonds [J]. Journal of Controlled Release, 2004,95(2):291-300
    160 Nakamae K, Nishino T, Kato K, Miyata T, Hoffman A S. Synthesis and characterization of stimuli-sensitive hydrogels having a different length of ethylene glycol chains carrying phosphate groups:loading and release of lysozyme [J]. Journal of Biomaterials Science Polymer Edition,2004,15(11):1435-1446
    161 Brahim S, Narinesingh D, Guiseppi-Elie A. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate [J]. Bioma-cromolecules,2003,4:1224-1231
    162 Siemoneit U, Schmitt C, Alvarez-Lorenzo C. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability [J]. Pharmaceutics,2006,312: 66-74
    163 Dulong V, Mocanu G, Le Cerf D. A novel amphiphilic pH-sensitive hydrogel based on pullulan [J]. Colloid and Polymer Science,2007,285(10):1085-1091
    164 Wichterle O, Lim D. Hydorphilic gels in biologic use [J]. Nature,1960,185:117
    165 Inoue T, Chen G, Nakamae K, Hoffman A S. A hydrophobially-modified bioadhesive polyelectrolyte hydrogel for drug delivery [J]. Controlled Release,1997,49:167-176
    166 Jianming Lin, Jihuai Wu, Zhengfang Yang, Minli Pu. Synthesis and properties of poly (acrylic acid)/mica superabsorbent nanocomposite [J]. Macromolecular.2001,22: 422-424
    167 A. Pourjavadi, Sh. Barzegar, G.R. Mahdavinia. MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels [J]. Carbohydrate Polymers.2006, 66:386-395
    168 Y Murali Mohan, P S Keshava Murthy, K Mohana Raju. Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide-sodium methacrylate superabsorbent copolymers [J]. Reactive & Functional Polymers.2005,63: 11-26
    169 Tsutomu Watanabe, Masayuki Utsunomiya, Seiji Kurihara, Takamasa Monaka. Synthesis of thermosensitive hydrogels from acryloyloxyethyl trialkyl phosphonium chloride-N-isopropylacrylamide-N,N-methylenebisacrylamide terpolymers and their temperature dependence of water absorption [J]. Journal of Polymer Science: Part A: Polymer Chemistry.2001,39:1505-1514
    170 Toshio Yoshimura, Ikumi Uchikoshi, Yuko Yoshiura, Rumiko Fujioka. Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride [J]. Carbohydrate Polymers.2005,61:322-326
    171 Erdener Karadag, Omer Baris, Uzum, Dursun Saraydin. Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels [J]. European Polymer Journal 2002,38:2133-2141
    172 Miao Q, Xu D, Wang Z, Xu L, Wang T, Wu Y. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents [J]. Biomaterials,2010, 31(28):7364-7375
    173刘鹏飞,彭静,吴季兰.辐射交联制备改性CMC水凝胶的溶胀行为研究[J].高分子学报,2002,(6):756-759
    174黄健,黄志明,包永忠,单国荣,翁志学.非离子型凝胶球在水中的溶胀行为[J].高校化学工程学报,2006,20(6):864-868
    175 Ping I. Lee. Kinetics of drug release from hydrogel matrices. J. Control. Release.1985, 2:277-288
    176樊鑫,任芳,沈晓华等.紫外分光光度法测定氯霉素软膏的含量[J].宁夏医学杂志,2005,27(8):569
    177崔英德,黎新明.PVP水凝胶制备与应用研究进展[J].化工科技,2002,(2):43-47
    178 Xinming Li, Yingde Cui. Study on synthesis and chloramphenicol release of poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogel [J]. Chinese Journal of Chemical Engineering,2008,16 (4):640-645
    179 Alfredo Alexander-Katz, Ludwik Leibler. Controlling polyelectrolyte equilibria and structure via counterion- solvent interactions [J]. Soft Matter,2009.5:2198-2207
    180 J Haleblian, R Runkel, N Mueller, J Christopherson. Steroid release from silicone elastomer containing excess drug in suspension. Journal of Pharmaceutical Sciences, 1971,60(4):541-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700