用户名: 密码: 验证码:
乙型肝炎病毒X蛋白介导microRNA在原发性肝癌中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞癌(HCC)是世界常见的恶性肿瘤之一,流行病学调查发现数百万HCC患者合并有乙型肝炎病毒(HBV)的感染,而HBV患者发生HCC的几率比非HBV患者高100倍,乙型肝炎病毒(HBV)感染被认为是HCC发生最主要的原因。乙型肝炎病毒x蛋白(HBx)由HBV编码,在HBV相关肝癌的发生、发展、转移中具有重要作用,但由于很少有理想的动物模型来论证HBx在HCC发生发展中的作用,因此HBx在肿瘤发生发展过程中的分子机制并不完全清楚。幸运的是,p21-HBx转基因小鼠已经建立起来,它是通过同源重组和干细胞培养技术将HBx基因插入p21基因的第二外显子区域而建立的转基因动物模型。据报道该模型的p21-/-小鼠在2年以上的时间没有一只小鼠发生肿瘤,提示该模型小鼠的p21缺失不会增加小鼠发生HCC肿瘤的易感性。并且,HBx基因受PGK启动子(强启动子)的调控,因此,HBx蛋白能在该模型中的肝脏持续稳定的表达24个月以上,并且60%的该转基因小鼠在18个月左右能发展HCC,有些甚至发生了肿瘤转移,这现象与人类感染HBV后发展成HCC的病史相似。因此,p21-HBx转基因小鼠为我们研究HBx致HCC发生、发展、转移中可能的机制提供了理想的动物模型。
     MicroRNAs (miRNAs)是一种大小约21-23个碱基的非编码单链小分子RNA,在生物体内发挥重要作用,包括细胞增殖,凋亡,应激反应和肿瘤发生。最近研究显示miRNA在多种肿瘤中的表达水平发生了变化,可能在某些肿瘤的发生中发挥了重要作用。研究认为miRNA水平的变化常导致其靶基因的表达异常,从而影响了肿瘤的进程。许多肿瘤都涉及到了miRNA的变化,并且其变化程度还与肿瘤的分型分级以及预后密切相关,这提示我们miRNA在肿瘤发生发展中所发挥了重要作用,其表达的模式可作为肿瘤诊断/预后的分子标记。但现在很少有文献系统的研究与HBx特异相关的miRNA在HBx导致的HCC发生、发展、转移中的作用。
     目前普遍认为HBx是病毒反式作用因子,它通过与宿主的转录因子(如AP-1、AP-2、NF-κB、ATF2、CREB等)结合而发挥其生理功能,这种结合可以发生在宿主DNA的任何区域,从而导致宿主基因的不稳定性,而基因的这种不稳定性如果发生在原癌基因、抑癌基因或者miRNA基因等部位,就会改变这些基因的表达,从而导致肿瘤的发生。这就提示了,虽然目前一些已知的基因和蛋白能提供很多有用的信息,但是对miRNA研究的新发现也能为我们理解HBx致HCC发生、发展、转移机制提供新视角。因此,发现一个或一组与HBx特异相关的miRNA对我们具有重要意义,它能让我们更好的理解HCC的发生发展机制,做到早期诊断,改善治疗干预手段,防止HCC转移和复发,提高肝癌患者的存活率。
     基于上述发现,展开研究,利用real-time PCR技术对p21-HBx转基因小鼠和野生型小鼠肝脏的miRNA进行了表达水平分析,功能分析,并在HCC患者标本中进行验证,初步探讨了与HBx功能相关的miRNAs在HCC发生发展中的作用。通过实验我们发现,与野生型小鼠相比,转基因小鼠肝脏中有7个miRNA的表达水平发生变化,其中,5个上调的miRNA(miR-212, miR-23a,miR-155,miR-17-5p和miR-20a),2个下调的miRNA(miR-152和miR-200a),它们的变化趋势随着肿瘤的发展而表现的更为明显。随后,利用HBx敲入(将pEGFP-HBx转入HepG2细胞)和敲出(用adr HBx干扰HepG2.2.15细胞中HBx的表达)的细胞模型发现,筛选出的这7个特异性miRNA的表达水平与HBx的表达水平密切相关,它们呈剂量依赖关系。体外功能实验证明它们能调节细胞增殖、细胞凋亡和细胞侵袭的潜能,并可能在HCC发生发展中发挥作用:过表达的miR-212,miR-23a,miR-155,miR-17-5p和miR-20a能抑制细胞凋亡,而过表达的miR-152和miR-200a则能促进细胞凋亡;过表达的miR-212,miR-17-5p和miR-20a能促进细胞增殖,而过表达的miR-200a则能抑制细胞增殖;另外,过表达的miR-212,miR-23a,miR-17-5p和miR-20a能显著增强细胞侵袭和迁移的潜能;而过表达的miR-152和miR-200a则明显抑制了细胞侵袭和迁移的潜能,这些miRNAs的表达模式均在HCC患者标本中得以验证。我们的实验结果表明这组miRNA参与了HBx介导的HCC发生发展过程,因此可能是HBV相关HCC的标志物。
     同时,实验结果显示miR-143在10月龄的转基因小鼠肝脏(正常,未发现病变)中的表达水平明显降低,而在22月龄的转基因小鼠肝脏(发生HCC)中的表达水平明显上升,尤其是那些伴随肺转移的转基因小鼠,上调水平更明显,接着,HBV相关HCC患者标本中miR-143的表达模式也进一步验证了上述结果:miR-143在HBV相关HCC标本中显著上调,尤其是具有转移特点的HBV相关HCC标本中显著上调。体外功能实验发现miR-143并不能影响细胞的增殖和凋亡,却能显著提高细胞的侵袭能力,并且其促进细胞侵袭和迁移的能力是通过HBx调控途径而实现。进一步用软件分析和CHIP实验发现NF-κB可以直接结合到人mir-143基因上游的5kb左右位点,并且直接调控miR-143的表达。随后,利用TargetScan分析软件和荧光素报告酶系统筛选出其下游靶基因为FNDC3B(fibronectin type III domain containing 3B)。体内外实验均证明,受NF-κB调控的miR-143通过下调靶基因FNDC3B,从而参与了由HBx介导的HCC肿瘤转移的过程,这一发现为HBV相关性HCC的肿瘤转移网络补充了一条重要的信号通路——HBx/NF-κB/ miR-143/ FNDC3B。
     与HBx特异相关的miRNA及其在原发性肝细胞癌中的功能机制研究将为阐明HBV相关性HCC的发生发展分子机制提供许多有意义的新思路,为理解受HBx影响的纷繁复杂的信号通路提供一定的帮助,并为进一步早期诊断HCC,治疗HCC,防止HCC的转移和复发提供靶点。
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Epidemiological studies have shown that millions of people are chronically infected with hepatitis B virus (HBV), and an abundance of evidence has proved that HBV infection is one of the important causes of HCC, given that the incidence of HCC in chronically HBV infected individuals is approximately 100-fold higher than in the uninfected population. The HBV X protein (HBx), a protein encoded by HBV, is thought to play a key role in the molecular pathogenesis of initiation, development and metastasis of HBV related HCC. Since there are few ideal animal models that can be used to demonstrate the role of HBx in HCC development, the molecular mechanisms underlying HBx protein-mediated tumorigenesis are not fully understood. Fortunately, a p21-HBx transgenic mouse model has been established by introducing the HBx gene into the p21 locus. In this model established by Wang Y et al., none of mice homozygously null for p21 over a 2-year period developed HCC, suggesting that p21 deficiency does not directly increase the susceptibility to HCC. Furthermore, in this model, HBx gene is driven by its own promoter (PGK promoter, strong promoter) which could express persistently for at least 24 months in the liver. HCCs often develop when the transgenic mice are 18 months of age. What’s more, some of the transgenic mice can even develop to metastatic tumors. Thus, the HBx transgenic mouse model is an ideal model for screening for possible mechanisms by which HBx leads to the initiation/development/metastasis of HCC.
     MicroRNAs (miRNAs) are 21-23 nt long non-coding RNA sequences that are involved in various biological processes, including cell proliferation, cell death, stress resistance, and tumorigenesis. Recent studies indicate that miRNAs may play a role in several cancers. Altered miRNA levels can result in aberrant expression of gene products that may contribute to cancer biology, which suggests that expression profiling of miRNAs may significantly contribute to cancer development. Furthermore, it has also been shown that miRNA expression patterns have relevance to the biological and clinical behavior of human cancers. These and other data demonstrate that miRNAs play a substantial role in the pathogenesis of cancers, and that expression profiling of miRNAs can be used as potential diagnostic/prognostic markers. However, to date very limited information has been published about miRNAs that are specifically involved in the initiation/development/metastasis of HBx-related HCC.
     The HBx protein is a viral transcriptional transactivator. It can modulate many host cell functions through its integrations with a variety of host factors (such as AP-1, AP-2, NF-κB, ATF2, CREB). The presence of HBx gene fragments at many different locations within the host DNA can result in genetic instabilities. Genetic instabilities associated with integrations potentially alter the expression of oncogenes, tumor suppressor genes, and miRNAs that may contribute to tumorigenesis. This strongly indicates that although research on known genes and proteins has already yielded useful information, new discoveries about miRNA may also build insights into the initiation/development/metastasis of HCC in the context of HBx. Discovery of unique new target molecules is of paramount importance and will be essential if we are to understand the mechanisms and improve the prognoses associated with hepatic cancers as early as possible, therapeutic intervention and prevent from tumor invasion/metastasis and postsurgical recurrence. The result should be an increase in the likelihood of successful treatment.
     Based on these findings, we screened candidate specific miRNA molecules in the livers of p21-HBx transgenic mice compared with wide-type mice, using real-time PCR in order to elucidate the possible underlying mechanisms which lead from chronic HBV infection to HCC. The functional effects of these miRNAs were then examined to elucidate the possible mechanisms of HCC. Finally, liver samples of HCC patients were analyzed to validate the expression patterns of the unique miRNAs. The results demonstrated that five upregulated miRNAs including miR-212, miR-23a, miR-155, miR-17-5p and miR-20a and two downregulated miRNAs including miR-152 and miR-200a that were selectively expressed in HBx-expressing livers of p21-HBx transgenic mice. The expression levels of these unique miRNAs were corrected with the expression of HBx, and displayed the mode of dose-dependent. The five upregulated and two downregulated miRNAs were identified by in vitro analysis as being involved in regulating cell apoptosis, proliferation and migration. Overexpression of miR-212, miR-23a, miR-155, miR-17-5p and miR-20a can significantly reduced cell apoptosis, while overexpression of miR-152 and miR-200a can induced the cell apoptosis. Overexpression of miR-212, miR-17-5p and miR-20a can significantly increase cell proliferation, but overexpression of miR-152 and miR-200a can reduced the cell proliferation. Furthermore, overexpression of miR-212, miR-23a, miR-17-5p and miR-20a can significantly increase cell migration, but overexpression of miR-152 and miR-200a can reduced the cell migration. Our results were validated in ectopic HBx-expressing HCC patients. Our data strongly suggest that these unique miRNAs be involved in tumorigenesis in the context of HBx, and thus may be useful in the prognosis of HBV-related HCC of tumor metastasis in HBV-HCC.
     Meanwhile, we have found that miR-143 was significantly down-regulated in livers of ten-month old transgenic mice while dramatically up-regulated after the HCC developed in the transgenic mice especially when accompanied by tumor metastasis to the lung. Next, we use the HBV-HCC patients to validate the results in humans, and also find that miR-143 was dramatically up-regulated after the HCC developed in HBV-HCC patients, especially when accompanied by tumor metastasis. Functional study performed in vitro demonstrated that miR-143 has no role in regulating cell proliferation and apoptosis, but has signifigant affect on cell migration. Furthermore, we have found that miR-143 is directly regulated by the transcription factor NF-κB, and its direct target gene is FNDC3B (fibronectin type III domain containing 3B). The study in vitro and in vivo we performed has demonstrated that upregulated miRNA-143 induced by NF-κB enhances hepatocarcinoma metastasis by repression of fibronectin. And the novel HBx/NF-κB/ miR-143/ FNDC3B pathway is an important complement to the network.
     Altered expression profling of miRNA mediated by HBx may sheds new insight into elucidating the molecular mechanism of the development and progression of HBV-HCC and a target for early diagnose, therapy and inhibiting tumor metastasis and recurrence of HCC.
引文
1. Tan A, Yeh SH, Liu CJ et al. Viral hepatocarcinogenesis: from infection to cancer. Liver Int 2008;28:175-88.
    2. Galibert F, Mandart E, Fitoussi F et al. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 1979;281:646-50.
    3. Feitelson MA, Duan LX. Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am J Pathol 1997;150:1141-57.
    4. Su Q, Schroder CH, Hofmann WJ et al. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology 1998;27:1109-20.
    5. Ren XR, Zhou LJ, Luo GB et al. Inhibition of hepatitis B virus replication in 2.2.15 cells by expressed shRNA. J Viral Hepat 2005;12:236-42.
    6. He Y, Yang F, Wang F et al. The upregulation of expressed proteins in HepG2 cells transfected by the recombinant plasmid-containing HBx gene. Scand J Immunol 2007;65:249-56.
    7. Wang Y, Cui F, Lv Y et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 2004;39:318-24.
    8. Pogribny IP, Tryndyak VP, Boyko A et al. Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 2007;619:30-7.
    9. Yu SL, Chen HY, Yang PC et al. Unique MicroRNA signature and clinical outcome of cancers. DNA Cell Biol 2007;26:283-92.
    10. Cheng AM, Byrom MW, Shelton J et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33:1290-7.
    11. Calin GA, Liu CG, Sevignani C et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004;101:11755-60.
    12. Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-61.
    13. Lu Z, Liu M, Stribinskis V et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-9.
    14. Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 2007;252:157-70.
    15. Castoldi M, Schmidt S, Benes V et al. A sensitive array for microRNA expressionprofiling (miChip) based on locked nucleic acids (LNA). Rna 2006;12:913-20.
    16. Lu Y, Thomson JM, Wong HY et al. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-53.
    17. Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33:e179.
    18. Bandres E, Cubedo E, Agirre X et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29.
    19. Li S, Wang C, Wang M et al. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 2007;80:1373-81.
    20. Cheng AS, Wong N, Tse AM et al. RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer Lett 2007;253:43-52.
    21. Kawasaki H, Taira K. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 2003;423:838-42.
    22. Martin MM, Lee EJ, Buckenberger JA et al. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 2006;281:18277-84.
    23. Sethupathy P, Borel C, Gagnebin M et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007;81:405-13.
    24. Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007;179:5082-9.
    25. Dorsett Y, McBride KM, Jankovic M et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008;28:630-8.
    26. Maddika S, Ande SR, Panigrahi S et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 2007;10:13-29.
    27. Helin K, Holm K, Niebuhr A et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc Natl Acad Sci U S A 1997;94:6933-8.
    28. Baldi A, Esposito V, De Luca A et al. Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer. Clin Cancer Res 1996;2:1239-45.
    29. O'Connell RM, Taganov KD, Boldin MP et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007;104:1604-9.
    30. Gottwein E, Mukherjee N, Sachse C et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007;450:1096-9.
    31. Turner M, Vigorito E. Regulation of B- and T-cell differentiation by a single microRNA. Biochem Soc Trans 2008;36:531-3.
    32. Neiman PE, Elsaesser K, Loring G et al. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis. PLoS Genet 2008;4:e1000132.
    33. He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33.
    34. O'Donnell KA, Wentzel EA, Zeller KI et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839-43.
    35. Murakami Y, Yasuda T, Saigo K et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006;25:2537-45.
    36. Garzon R, Fabbri M, Cimmino A et al. MicroRNA expression and function in cancer. Trends Mol Med 2006;12:580-7.
    37. Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-58.
    38. Wang Y, Weng T, Gou D et al. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics 2007;8:29.
    1.Huang Y,Wang Z,An S,Zhou B,Zhou Y,Chan HL,Hou J.Role of hepatitis B virusgenotypes and quantitative HBV DNA in metastasis and recurrence of hepatocellularcarcinoma.J Med Virol 2008;80:591-597.
    2.Lara-Pezzi E,Gomez-Gaviro MV,Galvez BG,Mira E,Iniguez MA,Fresno M,Martinez AC,et al.The hepatitis B virus X protein promotes tumor cell invasion byinducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression.JClin Invest 2002;110:1831-1838.
    3.Tan A,Yeh SH,Liu CJ,Cheung C,Chen PJ.Viral hepatocarcinogenesis:frominfection to cancer.Liver Int 2008;28:175-188.
    4.Tang ZY.Hepatocellular carcinoma--cause,treatment and metastasis.World JGastroenterol 2001;7:445-454.
    5.Balsano C,Alisi A.Viral hepatitis B:established and emerging therapies.Curr MedChem 2008;15:930-939.
    6.Feitelson MA,Duan LX.Hepatitis B virus X antigen in the pathogenesis of chronicinfections and the development of hepatocellular carcinoma.Am J Pathol1997;150:1141-1157.
    7.Galibert F,Mandart E,Fitoussi F,Tiollais P,Charnay P.Nucleotide sequence of thehepatitis B virus genome(subtype ayw)cloned in E.coli.Nature 1979;281:646-650.
    8.Su Q,Schroder CH,Hofmann WJ,Otto G,Pichlmayr R,Bannasch P.Expression ofhepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas.Hepatology 1998;27:1109-1120.
    9.Jung JK,Arora P,Pagano JS,Jang KL.Expression of DNA methyltransferase 1 isactivated by hepatitis B virus X protein via a regulatory circuit involving thep16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway.Cancer Res 2007;67:5771-5778.
    10.Ou DP,Tao YM,Tang FQ,Yang LY.The hepatitis B virus X protein promoteshepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases.Int JCancer 2007;120:1208-1214.
    11.Yu SL,Chen HY,Yang PC,Chen JJ.Unique MicroRNA signature and clinicaloutcome of cancers.DNA Cell Biol 2007;26:283-292.
    12.Pogribny IP,Tryndyak VP,Boyko A,Rodriguez-Juarez R,Beland FA,Kovalchuk O.Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure.Mutat Res 2007;619:30-37.
    13.Cheng AM,Byrom MW,Shelton J,Ford LP.Antisense inhibition of human miRNAsand indications for an involvement of miRNA in cell growth and apoptosis.Nucleic AcidsRes 2005;33:1290-1297.
    14.Hagen JW,Lai EC.microRNA control of cell-cell signaling during development anddisease.Cell Cycle 2008;7:2327-2332.
    15.Budhu A,Jia HL,Forgues M,Liu CG,Goldstein D,Lam A,Zanetti KA,et al.Identification of metastasis-related microRNAs in hepatocellular carcinoma.Hepatology2008;47:897-907.
    16.Wang Y,Cui F,Lv Y,Li C,Xu X,Deng C,Wang D,et al.HBsAg and HBx knockedinto the p21 locus causes hepatocellular carcinoma in mice.Hepatology 2004;39:318-324.
    17.Akao Y,Nakagawa Y,Kitade Y,Kinoshita T,Naoe T.Downregulation ofmicroRNAs-143 and-145 in B-cell malignancies.Cancer Sci 2007;98:1914-1920.
    18.Slaby O,Svoboda M,Fabian P,Smerdova T,Knoflickova D,Bednarikova M,NenutilR,et al.Altered expression of miR-21,miR-31,miR-143 and miR-145is related toclinicopathologic features of colorectal cancer.Oncology 2007;72:397-402.
    19.Wang X,Tang S,Le SY,Lu R,Rader JS,Meyers C,Zheng ZM.Aberrant expressionof oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancercell growth.PLoS ONE 2008;3:e2557.
    20.Murakami Y,Yasuda T,Saigo K,Urashima T,Toyoda H,Okanoue T,Shimotohno K.Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma andnon-tumorous tissues.Oncogene 2006;25:2537-2545.
    21.Tominaga K,Kondo C,Johmura Y,Nishizuka M,Imagawa M.The novel gene fad104,containing a fibronectin type III domain,has a significant role in adipogenesis.FEBS Lett2004;577:49-54.
    22.Bandres E,Cubedo E,Agirre X,Malumbres R,Zarate R,Ramirez N,Abajo A,et al.Identification by Real-time PCR of 13 mature microRNAs differentially expressed incolorectal cancer and non-tumoral tissues.Mol Cancer 2006;5:29.
    23.He Y,Yang F,Wang F,Song SX,Li DA,Guo YJ,Sun SH.The upregulation ofexpressed proteins in HepG2 cells transfected by the recombinant plasmid-containing HBxgene.Scand J Immunol 2007;65:249-256.
    24.Tili E,Michaille JJ,Cimino A,Costinean S,Dumitru CD,Adair B,Fabbri M,et al.Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alphastimulation and their possibleroles in regulating the response to endotoxin shock.JImmunol 2007;179:5082-5089.
    25.Li S,Wang C,Wang M,Li W,Matsumoto K,Tang Y.Antidepressant like effects ofpiperine in chronic mild stress treated mice and its possible mechanisms.Life Sci2007;80:1373-1381.
    26.Ma L,Teruya-Feldstein J,Weinberg RA.Tumour invasion and metastasis initiated bymicroRNA-10b in breast cancer.Nature 2007;449:682-688.
    27.Cheng AS,Wong N,Tse AM,Chan KY,Chan KK,Sung JJ,Chan HL.RNAinterference targeting HBx suppresses tumor growth and enhances cisplatinchemosensitivity in human hepatocellular carcinoma.Cancer Lett 2007;253:43-52.
    28.Feitelson MA,Lee J.Hepatitis B virusintegration,fragile sites,andhepatocarcinogenesis.Cancer Lett 2007;252:157-170.
    29.Urtreger AJ,Werbajh SE,Verrecchia F,Mauviel A,Puricelli LI,Kornblihtt AR,Bal deKier Joffe ED.Fibronectin is distinctly downregulated in murine mammaryadenocarcinoma cells with high metastatic potential.Oncol Rep 2006;16:1403-1410.
    30.Szafranska AE,Davison TS,John J,Cannon T,Sipos B,Maghnouj A,Labourier E,etal.MicroRNA expression alterations are linked to tumorigenesis and non-neoplasticprocesses in pancreatic ductal adenocarcinoma.Oncogene 2007;26:4442-4452.
    31.Bloomston M,Frankel WL,Petrocca F,Volinia S,Alder H,Hagan JP,Liu CG,et al.MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normalpancreas and chronic pancreatitis.Jama 2007;297:1901-1908.
    32.Akao Y,Nakagawa Y,Naoe T.MicroRNAs 143 and 145 are possible commononco-microRNAs in human cancers.Oncol Rep 2006;16:845-850.
    33.Nakajima G,Hayashi K,Xi Y,Kudo K,Uchida K,Takasaki K,Yamamoto M,et al.Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponseto S-1 in Colon Cancer.Cancer Genomics Proteomics 2006;3:317-324.
    34.Wang Y,Weng T,Gou D,Chen Z,Chintagari NR,Liu L.Identification of ratlung-specific microRNAs by micoRNA microarray:valuable discoveries for thefacilitation of lung research.BMC Genomics 2007;8:29.
    35.Esau C,Kang X,Peralta E,Hanson E,Marcusson EG,Ravichandran LV,Sun Y,et al.MicroRNA-143 regulates adipocyte differentiation.J Biol Chem 2004;279:52361-52365.
    36.He L,Thomson JM,Hemann MT,Hernando-Monge E,Mu D,Goodson S,Powers S,et al.A microRNA polycistron as a potential human oncogene.Nature 2005;435:828-833.
    37.O'Donnell KA,Wentzel EA,Zeller KI,Dang CV,Mendell JT.c-Myc-regulatedmicroRNAs modulate E2F1 expression.Nature 2005;435:839-843.
    38.Kim SY,Kim JC,Kim JK,Kim HJ,Lee HM,Choi MS,Maeng PJ,et al.Hepatitis Bvirus X protein enhances NFkappaB activity through cooperating with VBP1.BMB Rep2008;41:158-163.
    39.Schottelius AJ,Dinter H.Cytokines,NF-kappaB,microenvironment,intestinalinflammation and cancer.Cancer Treat Res 2006;130:67-87.
    40.Beach S,Tang H,Park S,Dhillon AS,Keller ET,Kolch W,Yeung KC.Snail is arepressor of RKIP transcription in metastatic prostate cancer cells.Oncogene2008;27:2243-2248.
    41.Fu Z,Kitagawa Y,Shen R,Shah R,Mehra R,Rhodes D,Keller PJ,et al.Metastasissuppressor gene Raf kinase inhibitor protein(RKIP)is a novel prognostic marker inprostate cancer.Prostate 2006;66:248-256.
    42.Miyamoto S,Teramoto H,Coso OA,Gutkind JS,Burbelo PD,Akiyama SK,YamadaKM.Integrin function:molecular hierarchies of cytoskeletal and signaling molecules.JCell Biol 1995;131:791-805.
    43.Brandi G,Pantaleo MA,Biasco G,Paterini P.Activated NF-kB in colorectal cancer:predictive or prognostic factor?J Clin Oncol 2008;26:1388-1389;author reply 1389-1390.
    44.Matos P,Jordan P.Rac1,but not Rac1B,stimulates RelB-mediated gene transcriptionin colorectal cancer cells.J Biol Chem 2006;281:13724-13732.
    45.Roll JD,Rivenbark AG,Jones WD,Coleman WB.DNMT3b overexpressioncontributes to a hypermethylator phenotype in human breast cancer cell lines.Mol Cancer2008;7:15.
    46.Schmidt WM,Sedivy R,Forstner B,Steger GG,Zochbauer-Muller S,Mader RM.Progressive up-regulation of genes encoding DNA methyltransferases in the colorectaladenoma-carcinoma sequence.Mol Carcinog 2007;46:766-772.
    47.Wang J,Walsh G,Liu DD,Lee JJ,Mao L.Expression of Delta DNMT3B variants andits association with promoter methylation of p16 and RASSF1A in primary non-small celllung cancer.Cancer Res 2006;66:8361-8366.
    48.Park IY,Sohn BH,Yu E,Suh DJ,Chung YH,Lee JH,Surzycki SJ,et al.Aberrantepigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein.Gastroenterology 2007;132:1476-1494.
    1. Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 1979;281:646-650.
    2. Kwee L, Lucito R, Aufiero B, Schneider RJ. Alternate translation initiation on hepatitis B virus X mRNA produces multiple polypeptides that differentially transactivate class II and III promoters. J Virol 1992;66:4382-4389.
    3. Hoare J, Henkler F, Dowling JJ, Errington W, Goldin RD, Fish D, McGarvey MJ. Subcellular localisation of the X protein in HBV infected hepatocytes. J Med Virol 2001;64:419-426.
    4. Lin-Marq N, Bontron S, Leupin O, Strubin M. Hepatitis B virus X protein interferes with cell viability through interaction with the p127-kDa UV-damaged DNA-binding protein. Virology 2001;287:266-274.
    5. Nag A, Datta A, Yoo K, Bhattacharyya D, Chakrabortty A, Wang X, Slagle BL, et al. DDB2 induces nuclear accumulation of the hepatitis B virus X protein independently of binding to DDB1. J Virol 2001;75:10383-10392.
    6. Wentz MJ, Becker SA, Slagle BL. Dissociation of DDB1-binding and transactivation properties of the hepatitis B virus X protein. Virus Res 2000;68:87-92.
    7. Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 2007;252:157-170.
    8. Doria M, Klein N, Lucito R, Schneider RJ. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. Embo J 1995;14:4747-4757.
    9. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol 2004;78:12725-12734.
    10. Cheong JH, Yi M, Lin Y, Murakami S. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. Embo J 1995;14:143-150.
    11. Haviv I, Shamay M, Doitsh G, Shaul Y. Hepatitis B virus pX targets TFIIB in transcription coactivation. Mol Cell Biol 1998;18:1562-1569.
    12. Lin Y, Nomura T, Cheong J, Dorjsuren D, Iida K, Murakami S. Hepatitis B virus X protein is a transcriptional modulator that communicates with transcription factor IIB and the RNA polymerase II subunit 5. J Biol Chem 1997;272:7132-7139.
    13. Murakami S, Cheong J, Ohno S, Matsushima K, Kaneko S. Transactivation of human hepatitis B virus X protein, HBx, operates through a mechanism distinct from protein kinase C and okadaic acid activation pathways. Virology 1994;199:243-246.
    14. Kumar V, Jayasuryan N, Kumar R. A truncated mutant (residues 58-140) of the hepatitis B virus X protein retains transactivation function. Proc Natl Acad Sci U S A 1996;93:5647-5652.
    15. Shih WL, Kuo ML, Chuang SE, Cheng AL, Doong SL. Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 2000;275:25858-25864.
    16. Lee YI, Kang-Park S, Do SI, Lee YI. The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 2001;276:16969-16977.
    17. Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 1998;273:25510-25515.
    18. Majano P, Lara-Pezzi E, Lopez-Cabrera M, Apolinario A, Moreno-Otero R, Garcia-Monzon C. Hepatitis B virus X protein transactivates inducible nitric oxide synthase gene promoter through the proximal nuclear factor kappaB-binding site: evidence that cytoplasmic location of X protein is essential for gene transactivation. Hepatology 2001;34:1218-1224.
    19. Su F, Theodosis CN, Schneider RJ. Role of NF-kappaB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol 2001;75:215-225.
    20. Kim WH, Hong F, Jaruga B, Hu Z, Fan S, Liang TJ, Gao B. Additive activation of hepatic NF-kappaB by ethanol and hepatitis B protein X (HBX) or HCV core protein: involvement of TNF-alpha receptor 1-independent and -dependent mechanisms. Faseb J 2001;15:2551-2553.
    21. Diao J, Khine AA, Sarangi F, Hsu E, Iorio C, Tibbles LA, Woodgett JR, et al. X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 2001;276:8328-8340.
    22. Livezey KW, Negorev D, Simon D. Increased chromosomal alterations and micronuclei formation in human hepatoma HepG2 cells transfected with the hepatitis B virus HBX gene. Mutat Res 2002;505:63-74.
    23. Forgues M, Difilippantonio MJ, Linke SP, Ried T, Nagashima K, Feden J, Valerie K, et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 2003;23:5282-5292.
    24. Ahn JY, Chung EY, Kwun HJ, Jang KL. Transcriptional repression of p21(waf1) promoter by hepatitis B virus X protein via a p53-independent pathway. Gene 2001;275:163-168.
    25. Su Q, Schroder CH, Hofmann WJ, Otto G, Pichlmayr R, Bannasch P. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology 1998;27:1109-1120.
    26. Lee SG, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 2000;19:468-471.
    27. Ahn JY, Jung EY, Kwun HJ, Lee CW, Sung YC, Jang KL. Dual effects of hepatitis B virus X protein on the regulation of cell-cycle control depending on the status of cellular p53. J Gen Virol 2002;83:2765-2772.
    28. Kim YC, Song KS, Yoon G, Nam MJ, Ryu WS. Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis. Oncogene 2001;20:16-23.
    29. Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. Embo J 2003;22:2104-2116.
    30. Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999;232:97-106.
    31. Nozawa K, Maehara K, Isobe K. Mechanism for the reduction of telomerase expression during muscle cell differentiation. J Biol Chem 2001;276:22016-22023.
    32. Lee YI, Lee S, Lee Y, Bong YS, Hyun SW, Yoo YD, Kim SJ, et al. The human hepatitis B virus transactivator X gene product regulates Sp1 mediated transcription of an insulin-like growth factor II promoter 4. Oncogene 1998;16:2367-2380.
    33. Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 2001;294:2376-2378.
    34. Chami M, Ferrari D, Nicotera P, Paterlini-Brechot P, Rizzuto R. Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J Biol Chem 2003;278:31745-31755.
    35. Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yanez-Mo M, Carretero M, Furthmayr H, et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 2001;33:1270-1281.
    36. Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, Mira E, Iniguez MA, Fresno M, Martinez AC, et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest 2002;110:1831-1838.
    37. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. Rna 2003;9:175-179.
    38. Maatouk D, Harfe B. MicroRNAs in development. ScientificWorldJournal 2006;6:1828-1840.
    39. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001;294:797-799.
    40. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding forsmall expressed RNAs. Science 2001;294:853-858.
    41. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862-864.
    42. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-862.
    43. Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003;17:438-442.
    44. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004;5:R13.
    45. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006;5:29.
    46. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 2005;33:e17.
    47. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004;1:47-53.
    48. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004;1:155-161.
    49. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005;123:819-831.
    50. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361-52365.
    51. Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. Rna 2004;10:544-550.
    52. Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol 2004;2:E98.
    53. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33:1290-1297.
    54. Zeng Y, Cai X, Cullen BR. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 2005;392:371-380.
    55. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102:13944-13949.
    56. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004;36:1079-1083.
    57. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005;102:18081-18086.
    58. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004;304:594-596.
    59. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787-798.
    60. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004;18:1165-1178.
    61. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500.
    62. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 2005;1:e13.
    63. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002;16:1616-1626.
    64. Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002;12:1484-1495.
    65. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003;113:25-36.
    66. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003;13:790-795.
    67. Kawasaki H, Taira K. Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Res Suppl 2003:243-244.
    68. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, et al. Frequent deletionsand down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-15529.
    69. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006;66:11590-11593.
    70. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-453.
    71. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303:83-86.
    72. Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002;297:2053-2056.
    73. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.
    74. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-838.
    75. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004;101:11755-11760.
    76. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.
    77. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397-402.
    78. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Jama 2007;297:1901-1908.
    79. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-3756.
    80. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-9632.
    81. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-7070.
    82. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004;39:167-169.
    83. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-833.
    84. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839-843.
    85. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-6033.
    86. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-647.
    87. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-198.
    88. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006;124:1169-1181.
    89. Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, et al. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun 2006;348:229-237.
    90. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006;25:2537-2545.
    91. Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, Aburatani H. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 2006;384:51-61.
    92. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006;99:671-678.
    93. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004;1:106-113.
    94. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNAabundance by a liver-specific MicroRNA. Science 2005;309:1577-1581.
    95. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007;67:6092-6099.
    96. Tanaka S, Diffley JF. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev 2002;16:2639-2649.
    97. Reimer CL, Borras AM, Kurdistani SK, Garreau JR, Chung M, Aaronson SA, Lee SW. Altered regulation of cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem 1999;274:11022-11029.
    98. Perez R, Wu N, Klipfel AA, Beart RW, Jr. A better cell cycle target for gene therapy of colorectal cancer: cyclin G. J Gastrointest Surg 2003;7:884-889.
    99. Baek WK, Kim D, Jung N, Yi YW, Kim JM, Cha SD, Bae I, et al. Increased expression of cyclin G1 in leiomyoma compared with normal myometrium. Am J Obstet Gynecol 2003;188:634-639.
    100. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-658.
    101. Pogribny IP, Tryndyak VP, Boyko A, Rodriguez-Juarez R, Beland FA, Kovalchuk O. Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 2007;619:30-37.
    102. Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, Li J, et al. Analysis of sequence variations in 59 microRNAs in hepatocellular carcinomas. Mutat Res 2008;638:205-209.
    103. Liu Y, Zhao JJ, Wang CM, Li MY, Han P, Wang L, Cheng YQ, et al. Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J (Engl) 2009;122:10-14.
    104. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, et al. Identification of virus-encoded microRNAs. Science 2004;304:734-736.
    105. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 2006;80:5499-5508.
    106. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005;2:269-276.
    107. Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, et al. Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 2006;80:8778-8786.
    108. Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 2005;79:12095-12099.
    109. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. Rna 2006;12:733-750.
    110. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 2005;102:5570-5575.
    111. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005;435:682-686.
    112. Sano M, Kato Y, Taira K. Sequence-specific interference by small RNAs derived from adenovirus VAI RNA. FEBS Lett 2006;580:1553-1564.
    113. Bennasser Y, Le SY, Yeung ML, Jeang KT. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 2004;1:43.
    114. Appel N, Bartenschlager R. A novel function for a micro RNA: negative regulators can do positive for the hepatitis C virus. Hepatology 2006;43:612-615.
    115. Couturier JP, Root-Bernstein RS. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. J Theor Biol 2005;235:169-184.
    116. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007;13:1241-1247.
    117. Omoto S, Fujii YR. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 2005;86:751-755.
    118. Jin WB, Wu FL, Kong D, Guo AG. HBV-encoded microRNA candidate and its target. Comput Biol Chem 2007;31:124-126.
    119. Yeung ML, Bennasser Y, Jeang KT. miRNAs in the biology of cancers and viral infections. Curr Med Chem 2007;14:191-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700