用户名: 密码: 验证码:
过表达肌浆网钙ATP酶2a抑制缺氧诱导心肌细胞内质网应激及凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性心脏病是目前心力衰竭发生的主要原因之一,其发病率和死亡率呈逐年上升的趋势。随着细胞生物学和分子生物学的飞速进展,人们对缺血性心脏病发生、发展机制有了进一步认识,其防治措施也取得了较大进展。基因治疗作为一种新的治疗策略为缺血性心脏病的治疗提供了新的途径。近年来有关内质网应激(endoplasmic reticulum stress,ERS)的信号转导通路与效应的研究非常活跃。研究发现,ERS介导的细胞凋亡在心肌缺血、心力衰竭进展过程中起重要作用。有研究表明,主动脉缩窄引起的心脏压力过负荷可以诱导ERS,导致心肌细胞凋亡增多,而转基因高表达GRP78、GRP94等内质网分子伴侣可减轻甚至取消内质网应激、促进细胞存活。
     钙稳态失衡是诱导ERS发生的重要原因。在参与Ca~(2+)循环的各种Ca~(2+)调节蛋白中,肌浆网钙ATP酶2a(sarcoplasmic reticulum calcium ATPase 2a,SERCA2a)的蛋白水平和活化程度是细胞内Ca~(2+)稳态的决定性因素。SERCA2a表达降低和活化程度下降是心力衰竭心肌舒缩功能异常的关键环节。既往研究表明,转基因过表达SERCA2a可以提高心脏的泵血功能,改善血流动力学状况。最近有研究证实,过表达SERCA2a还可以延缓心肌梗死后心力衰竭的发生,但具体机制尚未阐明。基于以往研究及现有文献报道,我们推测过表达SERCA2a可能有助于减轻心肌缺血缺氧造成的内质网应激,具有保护心肌细胞的作用。本研究在离体细胞水平,观察缺氧情况下心肌细胞内质网应激的主要过程。以重组病毒rAd-SERCA2a为载体,观察过表达SERCA2a对缺氧诱导心肌细胞内质网应激及相关凋亡途径的影响。旨在为过表达SERCA2a的基因治疗方法应用于缺血性心力衰竭提供理论基础。
     首先,本研究利用人胚胎肾细胞(HEK293细胞)扩增重组腺病毒rAd-SERCA2a及rAd-GFP,并通过Touchdown-PCR鉴定,证实重组入腺病毒基因的正确性。利用携带报告基因的重组腺病毒rAd-GFP转染心肌细胞,以及利用乳酸脱氢酶(LDH)观察转染对心肌细胞损伤程度,确定最佳的MOI值。为开展基因靶向性转染心肌细胞打下基础。
     其次,将体外培养的心肌细胞进行缺氧处理,观察不同时间内心肌细胞发生内质网应激的情况。采用Western blot方法检测内质网应激标志性蛋白GRP78、CHOP、Caspase-12表达变化,DNA ladder及流式细胞术检测心肌细胞凋亡情况。结果显示,心肌细胞缺氧6h后GRP78蛋白表达水平逐渐升高,至缺氧24h达峰值,随后表达有所下降。说明缺氧能够诱导内质网分子伴侣GRP78表达升高,但其表达水平具有一定的时效性。即缺氧早期(24h内),GRP78蛋白表达丰度逐渐增加,其对细胞的保护作用也逐渐增强,而持续长时间缺氧(24h以上),GRP78表达相对下降,对细胞的保护作用减弱。缺氧12h后凋亡因子CHOP和Caspase-12蛋白表达逐渐增加,36h后表达水平显著升高。流式细胞术检测显示,随着缺氧时间的延长,心肌细胞凋亡率逐渐上升。提示缺氧诱导心肌细胞发生内质网应激,并且随着缺氧时间延长,内质网应激介导的细胞保护机制转向细胞损伤机制,心肌细胞最终发生凋亡。
     随后,以重组腺病毒载体过表达SERCA2a后,再给予缺氧或衣霉素刺激,观察过表达SERCA2a对内质网应激及细胞凋亡的影响。结果显示,与缺氧组比较,SERCA2a+缺氧组GRP78表达无明显变化,但是CHOP蛋白表达水平明显下降,而Caspase-3蛋白表达也较缺氧组降低39.7%。SERCA2a+缺氧组的细胞凋亡率较缺氧组明显降低(P<0.05)。提示过表达SERCA2a蛋白可减轻缺氧诱导心肌细胞内质网应激的强度,对内质网应激介导的心肌细胞损伤具有重要的防护作用。其作用机制:过表达SERCA2a虽然不能提高内质网应激分子伴侣GRP78等保护性蛋白的表达水平,但是可以抑制凋亡因子CHOP、Caspase-3等表达,进而减轻心肌细胞凋亡。
     最后,利用Fura-3和激光共聚焦显微镜观察细胞内游离Ca~(2+)的变化。结果显示,缺氧12h后心肌细胞胞浆内游离钙浓度显著增高,提示细胞内钙超载。过表达SERCA2a+缺氧组细胞内荧光强度较缺氧组显著降低,差异有统计学意义(P<0.05)。提示,过表达SERCA2a可增加肌浆网对Ca~(2+)的摄取能力,有利于缓解心肌细胞缺氧时胞浆内钙浓度的持续升高,从而抑制钙超载诱导的细胞凋亡。
Ischemic heart disease(IDH) is one of the leading contributors to the heart failure currently and the morbidity and mortality of IDH are increasing greatly. With the rapid development of in the field of cell biology and molecular biology, the mechanism of IDH was further elucidated and the effective prevention measures were discovered.As one of strategies for the treatment of IDH,Gen therapy is a new method.In recently years,the signaling and effect of endoplasmic reticulum stress(ERS) is extensively investigated.The apoptosis mediated by ERS play an important role in the progression of myocardial ischemia and heart failure.The heart's overloaded pressure by coarctation of aorta could induce ERS,and the more apoptosis of cardiac myocytes were discovered in myocardium as a consequence.The overexpression of molecular chaperones of endoplasmic reticulum such as glucose regulated protein 78(GRP78) and GRP94 could attenuate the level of ERS response,then more myocytes undergoing all kinds of stimuli survived.
     The homeostasis of calcium is one of very important inducers for ERS.In the regulatory proteins involving the cycling of calcium,the level and activity of sarcoplasmic reticulum calcium ATPase 2a(SERCA2a) plays a key role for the homeostasis of calcium.The reduced level and activity of SERCA2a is the to critical to the normal contraction and relaxation of heart.Previous studies showed that overexpression of SERCA2a by transgene technique improved the pumping function of heart and hemodynamics.Recent research identified that overexpression of SERCA2a delayed the occurrence of heart failure induced by cardio infarction,but the exact mechanism was not clarified until now.Here we supposed that overexpression of SERCA2a attenuate the effect of ERS induced by myocardial ischemia and protect the cardiac myocytes from stressors.We observed the process of ERS under the ischemic conditions and the influence of SERCA2a overexpression on ERS and the associated apoptosis in cardiomyocytes.
     Firstly,HEK293 cells were used to the amplification of recombinant adenovirus and the target gene was identified by polymerase chain reaction(PCR). The rAd-GFP vector and LDH was utilized to determine the appropriate multiplicity of infection.
     Secondly,cultured myocytes were treated under hypoxia.The protein immunoblotting was used to measure the change of expression of Glucose Regulated Protein 78 and CHOP and Caspase-12.The techniques of DNA ladder and flow cytometry were occupied to examine the apoptosis of cardiomyocytes. The results showed that the expression of GRP78 protein increased in 6 hours and approached the highest level in 24 hours in hypoxia.A decreased trend of GRP78 expression was observed after 24 hours.Those observations indicated that hypoxia could induce the time-limited expression of GRP78 in cardiomyocytes. With the prolonged hypoxia,the protein of CHOP and Caspase-12 expressed increasingly and the cell's apoptosis rate was higher and higher.We conclude that hypoxia could induce ERS in cardiomyocytes.The protective effect of ERS could not counteract the insulted effect with prolonged hypoxia.Finally,the apoptosis of cardiomyocytes was observed.
     Thirdly,although the level of GRP78 did not change significantly,CHOP and Caspase-3 decreased by 52.7%and 39.7%respectively in SERCA2a+hypoxia group compared with the hypoxia group.The apoptosis rate of cardiomyocytes decreased by 66%compared with the hypoxia group.Those results indicated that overexpression SERCA2a could attenuate the level of ERS induced by hypoxia. The role of overexpression of SERCA2a can protect the cardiomyocytes from stimulus such as hypoxia.
     Finally,the level of cellular free calcium was measured by Fluo-3 and confocal microscopy.The elevated calcium concentration was observed in 12 hours under hypoxia conditions.The overload of calcium in cardiac myocytes was decreased with overexpression of SERCA2a.Those results indicated that overexpression SERCA2a could augment the ability of endoplasmic reticulum to uptake calcium and the apoptosis was depressed.
引文
1.Symes J F,Losordo DW,Vale PR,et al.Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease.Ann thorac surg.1999,68(3):830-836.
    2.Laugwitz KL,Ungerer M,Schultz G,et al.Adenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes.Circulation.1999,99(7):925-933.
    3.Schwartz LB,Moawad J.Gene therapy for vascular disease.Ann Vasc Surg.1997,11:189-199.
    4.LI Huiqin,Chavin KD,Yao Zhongding.Adenovirus-mediated gene transfer to biral IL-10 gene prolongs murine cardiac allograft survival J.Immunol.1996,156(6):2316-2323.
    5.Kremer EJ,Perrricaudet M.Adenovirus and adenoassociated virus mediated gene transfer.British Med Bull.1995,51:31-34.
    6.Boviatsis EJ,Chase M,Wei MX,et al.Gene transfer into experimental brain tumors mediated by adenovirus,Herpes simplex virus,and retrovirus vector.Human Gene Therapy.1994,5:181-191.
    7.Matthews DA,Cummings D,Evelegh C,et al.Development and use of a 293cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein.J Gen Virol.1999,80:345-353.
    8.Langer SJ,Schaack J.293 cell lines that inducibly express high levels of adenovirus type 5 precursor terminal protein.Virology.1996,221(1):172-179.
    9.Brough DE,Lizonova A,Hsu C,et al.A gene transfer vector-cell line system for complete functional complementation of adenovirus early retions El and E4.J Virol.1996,70(9):6497-6501.
    10.万兵,闫杰,李明春,等.一种优化的PCR方法-降落PCR扩增目的基因.江苏临床医学杂志.2002,6(2):127-129.
    11.张贵星,袁保梅,许培荣,等.改良的降落PCR与普通PCR结果比较.郑州大学学报(医学版).2003,38(3):352-354.
    12.季策,张立军,阮燕晔,等.应用降落PCR和正交设计优化AtSUC9PCR反应体系.生物技术.2007,17(4):39-42.
    1.Travers KJ,Patil CK,Wodicka L,et al.Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation.Cell.2000,101:249-258.
    2.Ellgaard L,Helenius A.Quality control in the endoplasmic reticulum.Nat Rev Mol Cell Biol.2003,4:181-191.
    3.Kaufman RJ.Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls.Genes Dev.1999,13:1211-1233.
    4.Ron D.Translational control in the endoplasmic reticulum stress response.J Clin Invest.2002,110:1383-1388.
    5.Berridge MJ.The endoplasmic reticulum:a multifunctional signaling organelle.Cell Calcium.2002,32:235-249.
    6.Kaufman RJ.Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls.Genes Dev.1999,13:1211-1233.
    7.Harding HP,Ron D.Endoplasmic reticulum stress and the development of diabetes:a review.Diabetes.2002,51:S455-S461.
    8.Imai Y,Soda M,Inoue H,et al.An unfolded putative transmembrane polypeptide,which can lead to endoplasmic reticulum stress,is a substrate of Parkin.Cell.2001,105:891-902.
    9.Paschen W,Frandsen A.Endoplasmic reticulum dysfunction-a common denominator for cell injury in acute and degenerative diseases of the brain?J.Neurochem.2001,79:719-725.
    10.DeGracia DJ,Kumar R,Owen CR,et al.Molecular pathways of protein synthesis inhibition during brain reperfusion:implications for neuronal survival or death.J Cereb Blood Flow Metab.2002,22:127-141.
    11.Patil C,Walter P.Intracellular signaling from the endoplasmic reticulum to the nucleus:the unfolded protein response in yeast and mammals.Curr Opin Cell Biol.2001,13:349-355.
    12.Oyadomari S,Koizumi A,Takeda K,et al.Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes.J Clin Investig.2002,109:525-532.
    13.Harding HP,Calfon M,Urano F,et al.Transcriptional and translational control in the mammalian unfolded protein response.Annu Rev Cell Dev Biol.2002,18:575-599.
    14.Patterson C,Cyr D.Welcome to the machine:a cardiologist's introduction to protein folding and degradation.Circulation.2002,106:2741-2746.
    15.Bring OHL.Hypothesis:apoptosis may be a mechanism for the transition to heart failure with chronic pressure overland.J Mol Cell Cardiol.1994,26:943-948.
    16.Sharov V G,Sabbah H N,Shimoyama H,et al.Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heartfailure.Am J Pathol.1996,148:147-149.
    17.Olivetti G,Abbi R,Quaini F,et al.Apoptosis in the failing human heart.N Engl J Med.1997,336:1131-1141.
    18.Peter MK,Seigo I.Apoptosis and heart failure:a critical review of the literature.Circ Res.2000,86:1107-1113.
    19.Kaufman RJ.Orchestrating the unfolded protein response in health and disease.J Clin Invest.2002,110:1389-1398.
    20.Kaufman RJ.Orchestrating the unfolded protein response in health and disease.J Clin Invest.2002,110:1389-1398.
    21.Ferri KF,Kroemer G Organelle-specific initiation of cell death pathways.Nat Cell Biol.2001,3:E255-E263.
    22.Ken-ichiro O,Tetsuo M,Yoshitane T,et al.Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis.Circulation.2004,110:705-712.
    23.Oyadomari S,Araki E,Mori M.Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells.Apoptosis.2002,7:335-345.
    24.McCullough KD,Martindale JL,Klotz LO,et al.Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state.Mol Cell Biol.2001,21:1249-1259.
    25.Stefan JM,Chi YY,Seiichi O.CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.Genes Dev.2004,18:3066-3077.
    26.Wang XZ,Lawson B,Brewer JW,et al.Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein(CHOP/GADD153).Mol Cell Biol.1996,16:4273-4280.
    27.Helene Z,Masahiko,XiaoZ W,et al.CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.Genes Dev.1998,12:982-995.
    28.Nakagawa T,Zhu H,Morishima N,et al.Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature.2000,403:98-103.
    29.Maron BJ,Ferrans VJ,Roberts WC.Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.Am J Pathol.1975,79:387-434.
    30.Cameron VA,Ellmers LJ.Minireview:natriuretic peptides during development of the fetal heart and circulation.Endocrinology.2003,144:2191-2194.
    31.Wencker D,Chandra M,Nguyen K,et al.A mechanistic role for cardiac myocyte apoptosis in heart failure.J Clin Invest.2003,111:1497-1504.
    32.Joshua J.M,Rayne F,Donna T,et al.Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6.Circ.Res.2006,98:1186-1193.
    1.Fabiato A,Fabiato F.Calcium and cardiac excitation-contraction coupling.Annu Rev Physiol 1979,41:473-484.
    2.Bers DM.Cardiac excitation-contraction coupling.Nature.2002,415:198-205.
    3.Lederer WJ,Berlin JR,Cohen NM,et al.Excitation-contraction coupling in heart cells.Roles of the sodium-calcium exchange,the calcium current,and the sarcoplasmic reticulum.Ann N Y Acad Sci.1990,588:190-206.
    4.Bers DM.Macromolecular complexes regulating cardiac ryanodine receptor function.J Mol Cell Cardiol.2004,37:417-429.
    5.Arai M,Alpert NR,MacLennan DH,et al.Alterations in sarcoplasmic reticulum gene expression in human heart failure.A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium.Circ Res.1993,72:463-469.
    6.Zarain-Herzberg A,MacLennan DH,Periasamy M.Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2(t)-ATPase gene.J Biol Chem.1990,265:4670-4677.
    7.Arai M,Otsu K,MacLennan DH,Periasamy M.Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development.Am J Physiol.1992,262:C614-C620.
    8.Anger M,Samuel JL,Marotte F,et al.In situ mRNA distribution of sarco(endo)plasmic reticulum Ca(2t)-ATPase isoforms during ontogeny in the rat.J Mol Cell Cardiol.1994,26:539-550.
    9.Lompre AM,Anger M,Levitsky D.Sarco(endo)plasmic reticulum calcium pumps in the cardiovascular system:function and gene expression.J Mol Cell Cardiol.1994,26:1109-1121.
    10.Lompre AM,Lambert F,Lakatta EG,et al.Expression of sarcoplasmic reticulum Ca(2t)-ATPase and calsequestrin genes in rat heart during ontogenic development and aging.Circ Res.1991,69:1380-1388.
    11.Reed TD,Babu GJ,Ji Y,et al.The expression of SR calcium transport ATPase and the Na~+/Ca~(2+) Exchanger are antithetically regulated during mouse cardiac development and in Hypo/hyperthyroidism.J Mol Cell Cardiol.2000,32:453-464.
    12.Periasamy M,Huke S.SERCA pump level is a critical determinant of Ca~(2+) homeostasis and cardiac contractility.J Mol Cell Cardiol.2001,33:1053-1063.
    13.Mork HK,Sjaastad I,Sande JB,et al.Increased cardiomyocyte function and Ca transients in mice during early congestive heart failure.J Mol Cell Cardiol.2007,43:177-186.
    14.Simmerman HK,Jones LR.Phospholamban:protein structure,mechanism of action,and role in cardiac function.Physiol Rev.1998,78:921-947.
    15.Zhang P,Toyoshima C,Yonekura K,et al.Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution.Nature,1998:392(6678):835-839.
    16.Luss I,Boknik P,Jones LR,et al.Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species.J Mol Cell Cardiol.1999,31:1299-1314.
    17.Koss KL,Ponniah S,Jones WK,et al.Differential phospholamban gene expression in murine cardiac compartments.Molecular and physiological analyses.Circ Res.1995,77:342-353.
    18.Jiang MT,Moffat MP,Narayanan N.Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle.Circ Res.1993,72:102-111.
    19.Lakatta EG..Myocardial adaptations in advanced age.Basic Res.Cardiol.1993,88:125-133.
    20.Cain BS,Meldrum DR,Joo KS,et al.Human SERCA2a levels correlate inversely with age in senescent human myocardium.J Am Coll Cardiol. 1998,32:458-467.
    21.Schmidt U,del Monte F,Miyamoto MI,et al.Rosenzweig A et al.Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca~(2+)-ATPase.Circulation.2000,101:790-796.
    22.del Monte F,Hajjar RJ,Harding SE.Overwhelming evidence of the beneficial effects of SERCA gene transfer in heart failure.Circ Res.2001,88:E66-E67.
    23.del Monte F,Harding SE,Schmidt U,et al.Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a.Circulation.1999,100:2308-2311.
    24.Pei JM,Gennadi M.K,Song W,et al.Calcium homeostasis in rat cardiomyocytes during chronic hypoxia:a time course study.Am J Physiol Cell Physiol.2003,285:1420-1428.
    25.Maack C,O'Rourke B.Excitation-contraction coupling and mitochondrial energetics.Basic Res Cardiol.2007,102:369-392.
    26.Meyer M,Keweloh B,Guth K,et al.Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations.J Mol Cell Cardiol.1998,30:1459-1470.
    27.Ingwall JS,Weiss RG Is the failing heart energy starved?On using chemical energy to support cardiac function.Circ Res.2004,95:135-145.
    28.Miyamoto MI,del Monte F,Schmidt U,et al.Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure.Proc Natl Acad Sci USA.2000,97:793-798.
    29.del Monte F,Williams E,Lebeche D,et al.Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca~(2+)-ATPase in a rat model of heart failure.Circulation.2001,104:1424-1429.
    30.Susumu S,Djamel L,Naoya S,et al.Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts.Am J Physiol Heart Circ Physiol.2007,292:2356-2363.
    31.Nitisha H,Tepmanas BI,Paul M,et al.SERCA overexpression reduces hydroxyl radical injury in murine myocardium.Am J Physiol Heart Circ Physiol,2006,291:3130-3135.
    32.Berridge MJ.The endoplasmic reticulum:a multifunctional signaling organelle.Cell Calcium.2002,32:235-249.
    33.Michallak M,Robert Parker JM,Opas M.Ca signaling and calcium binding chaperones of the endoplasmic reticulum,cell calcium.2002,32:269-278.
    34.Miyamoto MI,del Monte F,Schmidt U,et al.Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure.Proc Natl Acad Sci USA.2000,97:793-798.
    35.Hajjar RJ,Schmidt U,Matsui T,et al.Modulation of ventricular function through gene transfer in vivo.Proc Natl Acad Sci USA.1998,95:5251-5256.
    36.Hajjar RJ,del Monte F,Matsui T,et al.Prospects for gene therapy for heart failure.Circ Res.2000,86:616-621.
    37.Hajjar RJ.The promise of gene therapy as a therapeutic modality in heart failure.J Med Liban.2000,48:86-88.
    38.del Monte F,Kizana E,Tabchy A,et al.Targeted gene transfer in heart failure:implications for novel gene identification.Curr Opin Mol Ther.2004,6:381-394.
    39.del Monte F,Lebeche D,Guerrero JL,et al.Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling.Proc Natl Acad Sci USA.2004,101:5622-5627.
    40.Meyer,Susanne UT,Wolfgang FB,et al.Impaired sarcoplasmic reticulum function leads to contractile dysfunction and cardiac hypertrophy.Am J Physiol Heart Circ Physiol.2001,280:2046-2052.
    1.Shannon TR,Bers DM.Integrated Ca management in cardiac myocytes.Ann NY Acad Sci,2004,1015:28.
    2.Berridge MJ.The endoplasmic reticulum:a multifunctional signaling organelle.Cell Calcium,2002,32(5-6):235.
    3.Xu C,Bailly-Maitre B,Reed JC.Endoplasmic reticulum stress:cell life and death decisions.J Clin Invest,2005,115(10):2656.
    4.Lai E,Teodoro T,Volchuk A.Endoplasmic reticulum stress:signaling the unfolded protein response.Physiology,2007,22(3):193.
    5.Wek RC,Cavener DR.Translational control and the unfolded protein response.Antioxid Redox Signal,2007,9(12):2357.
    6.Colgan SM,Tang D,Werstuck GH,et al.Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2.Int J Biochem Cell Biol,2007,39(10):1843.
    7.Okada Ken,Minamino T,Tsukamoto Y,et al.Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis.Circulation,2004,110(6):705.
    8.Oyadomari S,Mori M.Roles of CHOP/GADD153 in endoplasmic reticulum stress.Cell Death Differ,2004,11(4):381.
    9.Reddy RK,Mao C,Baumeister P,et al.Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation.J Biol Chem,2003,278(23):20915.
    10.Marchetti P,Bugliani M,Lupi R,et al.The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients.Diabetologia,2007,50(12):2486.
    11.Azfer A,Niu J,Rogers LM,et al.Activation of endoplasmic reticulum stress response during the development of ischemic heart disease.Am J Physiol Heart Circ Physiol,2006,291(3):H1411.
    12.Thuerauf D J,Marcinko M,Gude N,et al.Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes.Circ Res,2006,99(3):275.
    13.Terai K,Hiramoto Y,Masaki M,et al.AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress.Mol Cell Biol,2005,25(21):9554.
    14.马青变,高炜,郭艳红,等.缺氧复氧诱导大鼠心肌细胞内质网应激反应.北京大学学报(医学版),2005,37(4):386.
    15.Kaminski KA,Bonda TA,Korecki J,et al.Oxidative stress and neutrophil activation-the two keystrones of ischemia/reperfusion injury.Int J Cardiol,2002,86(1):41.
    16.Talukder MA,Yang F,Nishijima Y,et al.Reduced SERCA2a converts sub-lethal myocardial injury to infarction and affects postischemic functional recovery.J Mol Cell Cardiol,2009,46(2):285.
    17.Szegezdi E,Logue SE,Gorman AM,et al.Mediators of endoplasmic reticulum stress-induced apoptosis.EMBO Rep,2006,7(9):880.
    18.Tanaka M,Ito H,Adachi S,et al.Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes.Circ Res,1994,75(3):426.
    19.Saraste A,Pulkki K,Kallajoki M,et al.Apoptosis in human acute myocardial infarction.Circulation,1997,95(2):320.
    20.Kajstura J,Cheng W,Reiss K,et al.Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats.Lab Invest,1996,74(1):86.
    21.王显刚,殷惠军,史大卓.蒺藜总皂苷对缺氧复氧损伤心肌细胞凋亡及凋亡相关基因bcl-2与bax表达的影响.解放军医学杂志,2006,31(10):983.
    22.祝筱梅,刘秀华,蔡莉蓉,等.p38丝裂素活化蛋白激酶介导低氧预处理诱导的内质网应激相关的心肌细胞保护.生理学报,2006,58(5):463.
    23.Zhang PL,Lun M,Teng J,et al.Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury.Ann Clin Lab Sci,2004,34(4):449.
    24.祝筱梅,刘秀华,蔡莉蓉.缺氧后处理对缺氧/复氧心肌细胞的保护作用及其机理研究.中国微循环,2007,11(4):223.
    1.李小鹰,王洁,王全义,等.周围动脉硬化闭塞症在老年血脂异常人群中的现患率调查.中华老年心脑血管病杂志.2005,1:3-6.
    2.Diehm C,Schuster A,Allenberg JR,et al.High prevalence of peripheral arterial disease and comorbidity in 6880 primary care patients:cross-sectional study.Atherosclerosis.2004,172:95-105.
    3.Alan T,Ziv J,Norman R,et al.ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease(Lower Extremity,Renal,Mesenteric,and Abdominal Aortic).J Am Coll Cardiol.2006:47:1-192.
    4.Hiatt WP.Medical treatment of peripheral arterial disease and chudication,N Engl Med.2001.344:1608-1621.
    5.McDermott MM,Greenland P,Liu Kiang,et al.The ankle brachial index is associated with leg function and physical activity:the walking and leg circulation study.Aan Intern M ed.2002,136:873-883.
    6.Sikkink CJ,van Asten WN,van' t HofMA,et al.Decreased ankle/brachial indices in relation to morbidity and mortality in patients with peripheral arterial disease.Vasc Med.1997,2:169-173.
    7.Papamichael CM,Lekakis JP,Stamatelopoulos KS,et aI.Ankle-braehial index as a predictor of the extent of coronary atherosclerosis and cardiOvascular events in patients with coronary artery disease.Am J Cardiol.2000,86:615-618.
    8.Hooi JD,Stoffers HE,Kester AD,et al.Peripheral arterial occlusive disease:prognostic value of signs,symptoms and the ankle-braehial pressure index.Med Decis Making.2002,22:99-107.
    9.Otah KE,Madan A,Otah E,et al.Usefulness of an abnormal ankle-braehial index to predict presence of coronary artery disease in African-Americans[J].Am J Cardiol.2004,93:481-483.
    10.Kroger K,Stewen C,Santosa F,et al.Toe pressure measurements compared to ankle artery pressure measurements.Angiology.2003,54(1):39.
    11.McPhail IR,Spittell PC,Weston SA,et al.Intermittent claudication:an objective office-based assessment.J Am Coll Cardiol.2001,37:1381-1385.
    12.de Vries SO,Hunink MG,Polak JF.Summary receiver operating characteristic curves as a technique for meta-analysis of the diagnostic performance of duplex ultrasonography in peripheral arterial disease.Acad Radiol.1996,3:361-369.
    13.Proia RR,Walsh DB,Nelson PR,et al.Early results of infragenicular revascularization based solely on duplex arteriography.J Vasc Surg.2001,33:1165-1170.
    14.Willmann JK,Mayer D,Banyai M,et al.Evaluation of peripheral arterial bypass grafts with multi-detector row CT angiography:comparison with duplex US and digital subtraction angiography.Radiology.2003,229:465-74.
    15.Nelemans PJ,Leiner T,de Vet HC,et al.Peripheral arterial disease:meta-analysis of the diagnostic performance of MR angiography.Radiology.2000,217:105-14.
    16.Visser K,Hunink MG.Peripheral arterial disease:gadolinium enhanced MR angiography versus color-guided duplex US-a meta-analysis.Radiology.2000,216:67-77.
    17.Dorweiler B,Neufang A,Kreitner KF,et al.Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus.J Vasc Surg.2002,35:766-772.
    18.Loewe C,Cejna M,Lammer J,et al.Contrast-enhanced magnetic resonance angiography in the evaluation of peripheral bypass grafts.Eur Radiol.2000,10:725-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700