用户名: 密码: 验证码:
中间相沥青基泡沫炭的可控制备及若干应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫炭具有独特的三维网状内部结构,呈现出密度小、孔隙率高、耐高温、耐腐蚀、易加工等突出性能,是近年来隔热、导热、吸波、导电、传质材料等领域的研究热点。本论文针对泡沫炭的结构控制、复合增强以及应用方面存在的共性科学难题或研究空白点,以中间相沥青为原料,采用自发泡法和超临界发泡法制得不同孔结构的泡沫炭,系统归纳了中间相沥青的物化性质、自发泡条件、超临界发泡条件与孔结构(孔形、孔径、韧带结构、开/闭孔)及材料力学性能之间的内在关系,分别阐明了自发泡机理和超临界发泡机理,揭示了石墨化泡沫炭微裂纹的产生共性机制,并探讨了泡沫炭在气-固催化反应以及生物污水处理中等新型领域的应用可能。
     本论文针对泡沫炭的孔结构控制和自发泡、超临界发泡机理以及石墨化泡沫炭微裂纹的产生机制,形成了较具特色的研究,并得出如下主要结论:
     1)以中间相沥青为原料,采用自发泡技术,制得结构可控的中大孔泡沫炭,系统考察了中间相沥青的性质、自发泡条件、炭化、石墨化工艺对泡沫炭孔结构的影响。通过对中间相沥青进行预氧化,结合沥青的簇组成及其粘-温特性,推断自发泡机理如下:在发泡温度下,中间相沥青中的轻组分或裂解气将优先在喹啉不溶物(QI组分)处成核、聚集和膨胀,然后形成泡孔;在升温至发泡温度的过程中,当沥青内部由裂解产生气体的压力高于外界压力时,部分气体在内外压差的作用下从沥青内部逸出,导致泡沫炭的开孔率较高。
     2)以甲苯为发泡剂,采用超临界发泡制得孔径为100-200μm的泡沫炭,并结合不同工艺条件对泡沫炭的结构进行了有效调控,推断发泡机理如下:在超临界条件下,当甲苯和中间相沥青形成均相体系后,在快速卸压过程中,溶解在中间相沥青中的甲苯处于过饱和状态,进而与熔融沥青分相:由于轻组分/QI界面处的Gibbs自由能比沥青主体相要低,于是甲苯则优先在轻组分/QI界面处成核,并逐渐扩散、聚集和膨胀,最终形成泡孔。
     3)通过调控不同程度萃取的中间相沥青的簇组成,考察不同石墨化泡沫炭微裂纹结构,推断其产生机制如下:泡沫炭在石墨化过程中,由于孔壁及韧带处存在热应力梯度分布,导致热应力的释放速度不同,进而产生微裂纹。其中,微裂纹的产生及其形状与石墨化过程中产生的热应力、热应力的释放速度和碳基体的物理性质有关。通过调节中间相沥青的族组成可以有效控制石墨化泡沫炭微裂纹的产生。
     4)协同超声和磁力搅拌分散功效,实现了CNTs在中间相沥青中的均匀分散,并成功自发泡制备出CNT增强的泡沫炭。当CNTs分散量为3.5wt.%时,所制泡沫炭孔结构的均一性最好,压缩强度达4.7MPa。
     5)泡沫炭经HNO3适当氧化后,孔壁表面形成新的中孔、大孔,并有效的改进了其界面的亲水性,从而有利于金属催化剂的均匀分散;通过化学气相沉积法,可以在改性泡沫炭表面均匀生长一层致密的纳米碳纤维,在不影响泡沫炭的孔结构和强度的同时,大大增强了材料的有效界面,从而有利于MnOx-CeO2纳米催化剂在泡沫炭界面的高度分散。MnOx-CeO2/CNFs-泡沫炭催化剂具有极高的NO的催化脱除能力,在180-220℃范围内,对NO的脱硝效率可以达到90%以上。
     6)泡沫炭经过HNO3氧化、水洗、生物接种、生物驯化之后,成功的在其表面生长出致密的高活性生物膜。生物菌种类和数量较多,对多种污水成分具有一定的普适性降解效果。其中,生物泡沫炭对COD、BOD和NH3-N等典型污染物降解率分别高达81%、81%和75%,明显优越于生物陶瓷颗粒,揭示了泡沫炭良好的生物相容性和作为微生物固定化载体的应用前景。
Carbon foams, which exhibit an interconnected structure and a large porosity made up of macrospores, are important in many areas of modern science and technology, including aerospace, heat exchanger, catalyst support and electrode material due to their remarkable properties, such as low density, high open-cell ratio, low coefficient of thermal expansion, resistance to corrosion, easy machining and other superior performances. However, the tailor of pore architecture and enforcement of mechanical performance of carbon foams for some special application were still a challenging task. This therefore, calls for research into more economic and effecitive ways to prepare high qulitiy carbon foams with controlled structure and porperties. In this thesis, we focused on these issues and developed two methods (self-foaming and supercritical foaming) to foam mesophase pitch. The pore texture (pore shape, pore size, ligament structure, and opening/closing pore) and mechanical properties have been systematically investigated by adjusting the physical chemistry parameters of mesophase pitch, self-foaming and supercritical foaming conditions. The mechanisms of self-foaming and supercritical foaming were clarified and the occurrence of micro-cracks in graphitized carbon foams was explained. Meanwhile, the applications of carbon foams in gas-solid catalysis and the water treatment were also preliminarily studied.
     The major innovations of the thesis were from three aspects:tailoring of pore structure (especially pore range from10to200μm), the mechanism of self-foaming and supercritical foaming and the foming mechanism for the micro-crack in the matrix. The main research contents are summaried as follows.
     1) Carbon foams with pore size of100to600μm were prepred by self-foaming approach, using mesophase pitches as precusors. The pore control has been systematically studied. The mechanisms of self-foaming have been revealed. Under the foaming temperature, the light molecular or pyrolysis gas released from the mesophase pitch were formed a core around the QI component, and then aggregated, grow up and finally became stable pores. During the further heating process, the interior pressure of pitch was higher than the exterior one, resulting in that some volatile materials would be driven and escape from the inner of molten pitch under the pressure difference. As a consequence, some closing pores would turn into opening pores. It was worthy to note that the pressure difference was determined by the amount and the generating rate of the light component.
     2) A series of carbon foams with pore size of20-200μm were prepared through supercritical toluene technique. Toluene and mesophase would firstly form a homogeneous phase at the supercritical toluene condition. When the pressure was relieved quickly, toluene should separated from the mixture phase owing to the supersaturate status. Besides the Gibbs freedom energy of interface between QI and light components was lower than that of pitch matrix, the toluene would prefer to form the core at the interface, then diffusion, coalescence, growing up and finally turned into pores.
     3) During the graphitization process, the thermal stress and its gradient distribution along the pore wall and ligament would lead to the occurrence of micro-cracks. The texture and shape of the micro-cracks was greatly detemined by the thermal stress, the release rate and the properties of the precursor carbons. The micro-cracks could be controlled to some content by adusting the composition of the precursor mesophase pitch.
     4) The homogenous dispersion of CNTs in the mesophase pitch was realized through the ultrasonic wave combined with magnetic stirring method. When the mass concentration of CNTs was3.5%, the as-prepared carbon foams owned uniform pore distribution, and the strength of pore wall was greatly enhanced and the amount of micro-cracks was greatly reduced. The compression strength was as high as4.7MPa.
     5) A certain amount of mesopore and macropore was created when the carbon foams were subjected to HNO3oxidaiton treatment. The oxidation could improve the hydrophilic properties, which was beneficial for the dispersion of metal catalysis. After impregnated with metal nanoparticles, carbon nanofiber could be grown on the surface of carbon foams through CVD technique, which could effectively increase the external surface area without the loss of the pore structure. MnOx-CeO2hybird oxides could be homogeneously supported on the CNFs/carbon foams composites for NO removal. When the temperature was in the range of180-220℃, the removal efficiency of NO was as high as90%.
     6) The hydrophilic surface of carbon foams would be obtained by mild HNO3oxidaiton. The active bacteria could be immobilized on the surface of oxidized carbon foams after the bacterination and domestication. Due to the large total bacterial count and high acitive, the immobilized microorganism exhibited high degradation efficiency for the COD, BOD and NH3-N, which was81%,81%and75%, respectively. The performance of carbon foams-based biofilm was superior to those of bioceramic particles significantly, revealing the good biocompatibility of carbon foams.
引文
[1]成会明,刘敏.泡沫炭概述[J].炭素技术,2003,108(3):30-32.
    [2]肖正浩,周颖,肖南,等.泡沫炭的研究进展[J].化工进展,2008,27(4):473-507.
    [3]Wang M. X., Wang C. Y., Li T. Q., et al. Preparation of mesophase-pitch-based carbon foam at low pressure [J]. Carbon,2008,46 (1):84-91.
    [4]Lafdi K., Mesalhy O., Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications [J]. Carbon,2008,46(1):159-168.
    [5]Maslov K., Kinra V. K. Damping capacity of carbon foam [J]. Materials Science and Engineering:A,2004,367 (1-2):89-95.
    [6]Gallego N. C., Burchell T. D., Kellt J W. Irradiation effects on graphite foam [J]. Carbon, 2006,44 (4):618-628.
    [7]Klett J., Hardy R., Romine E., et al. High thermal conductivity, mesophase pitch derived carbon foams:effect of precursor on structure and properties [J]. Carbon,2000,38 (7): 953-973.
    [8]Ford W. Method of making cellular refractory thermal insulating material [P]. US3121050.1964.
    [9]Klett J., Conway B. Thermal management solutions utilizing high thermal conductivity graphite foams [J]. Int SAMPLE Symp Exhib,2000,45 (2):1933-1943.
    [10]李凯,栾志强,叶平伟.新型轻质碳基泡沫炭材料研制[J].材料工程,2008,25(1):310-312.
    [11]张仁钦,罗瑞盈,李军,等.新型炭纤维/泡沫炭预制体的制备及致密化研究[J].炭素技术,2007,26(1):1-4.
    [12]林雄超,王永刚,杨慧君,等.CVI改性泡沫炭的研究[J].碳素技术,2007,26(5):1-5.
    [13]Chwastiak S., Lewis I. C. Solubility of mesophase pitch [J]. Carbon,1978,16 (2):156.
    [14]王小宪,李铁虎,魏宏艳,等.泡沫炭的制备和性能[J].材料导报,2005,19(5):11-13.
    [15]Fang Z. G., Cao X. M, Li C. S., et al. Investigation of carbon foams as microwave absorber [J]. Numerical prediction and experimental validation,2006,44 (15): 3368-3370.
    [16]Yang J., Shen Z. M., Hao Z. B. Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core [J]. Carbon,2004.42 (8-9):1882-1885.
    [17]Kelley, Kurtis C., Votoupal, et al. Battery including carbon foam current collectors [P]. US69795.2005.
    [18]Friedrich J. M., Ponce D. L., Reade G. W., et al. Reticulated vitreous carbon as an electrode material [J]. Journal of Electro Analytical Chemistry,2004,561 (1-2):203-217.
    [19]Googin J., Napier J., Scrivner M. Method for manufacturing foam carbon products [P]. US3345440.1967.
    [20]Klett R. D. High temperature insulating carbonaceous material [P]. US3914392.1975.
    [21]Jorge S. C., Chung D. L. Thermal mechanical behavior of a graphite foam [J]. Carbon, 2003,41 (6):1175-1180.
    [22]Patrick W., Wemakers A. M., John V. D., et al. "Hairy Foam":carbon nanofibers grown on solid carbon foam. A fully accessible, high surface area, graphitic catalyst support [J]. Journal of materials chemistry,2008,18 (6):2426-2436.
    [23]Kelly B. T., Taylor R. The thermal properties of graphite [J]. In Chemistry and Physics of Carbon,1973,10:114.
    [24]Gaies D., Faber K. T. Thermal properties of pitch-derived graphite foam [J]. Carbon, 2002,40:1131.
    [25]Klett J. W., MeMillan A. D., Gallego N. C, et al. Effects of heat treatment conditions on the thermal properties of mesophase pitch-derived graphitic foams [J]. Carbon,2004,42 (1):1859-1852.
    [26]White L., Sheaffer P. M. Effects of heat treatment conditions on the thermal properties of mesophase pitch-derived graphitic foams [J]. Carbon,1989,27 (5):697-707'.
    [27]李同起,王成扬.中间相沥青基泡沫炭的制备与结构表征[J].无极材料学报,2005,20(6):1438-1444
    [28]Yang J., Shen Z. M., Hao Z. B. Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core [J]. Carbon,2004,42 (8-9):1882-1885.
    [29]Min Z. H., Cao M., Zhang S., et al. Effect of precursor on the pore structure of carbon foams [J]. New carbon materials,2007,22 (1):75-79.
    [30]Li S. Z., Song Y. Z., Song Y., et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch [J]. Carbon,2007, 45 (10):2092-2097.
    [31]Li S. Z., Guo Q. G., Song Y., et al. Carbon foams with high compressive strength derived from mesophase pitch treated by toluene extraction [J]. Carbon,2007,45 (14): 2843-2845.
    [32]邱介山,李平,等.由中间相沥青制备泡沫炭:Fe(N03)3的影响[J].新型炭材料,2005.20(3):193-197.
    [33]Li J., Wang C., Zhan L., et al. Carbon foams prepared by supercritical foaming method [J]. Carbon,2009,47(4):1204-1206.
    [34]Bruncton E., Tallaron C., Naulin G., et al. Evolution of the structure and mechanical behavior of a carbon foam[J]. Carbon,2002,40 (11):1919-1927.
    [35]王爱平,康飞宇,郭占成,黄正宏.铸型炭化法制备多孔炭材料的研究进展[J].化工进展,2006,25(3):254-258.
    [36]姚七妹,谭镇,周颖,等.模板法制备多孔炭材料的研究进展[J].炭素技术,2005,24(4):15-21.
    [37]广贵,刘振辉,荣海琴,等.模板法中孔炭材料的制备与表征[J].炭素技术,2006,25(1):10-14.
    [38]Inagaki M., Morishita T., Kuno A., et al. Carbon foams prepared from polyimide using urethane foam template [J]. Carbon,2004,42 (3):497-502.
    [39]Knox J. H., Gilbert M. T. Preparation of porous carbon [P]. US4263268.1981.
    [40]陈峰,张红波,熊翔,等.炭泡沫的制备、性能及应用[J].材料导报,2008,22(3):68-71.
    [41]Klett J., Conway B.. Thermal management solutions utilizing high thermal conductivity graphite foams [J]. Carbon,2000,45 (11):1933-1943.
    [42]Young J., Nancy J. D., Terry N. T., et al. Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries [J]. Journal of Power Sources, 2006,161 (2):1392-1399.
    [43]Zhang Q. W., Zhou X., Yang H. S. Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution [J]. Journal of Power Sources,2004,125 (1):141-147.
    [44]Masaya K., Junya Y., Yasushi S., et al. Preparation and electrochemical characteristics of N-enriched carbon foam [J]. Carbon,2007,45 (5):1105-1136.
    [45]Lukens W. W., Stucky G. D. Synthesis of mesoporous carbon foams templated by organic colloids [J]. Chemistry of Materials,2002,14 (4):1665-1670.
    [46]Lee J, Sohn K., Hyeon T. Fabrication of novel mesocellular carbon foam with uniform ultralarge mesophase [J]. Am. Chem Soc,2001,123 (21):5146-5147.
    [47]Wang X. Y., Zhong J. M., Wang Y. M., et al. A study of the properties of carbon foam reinforced by clay [J]. Carbon,2006,44(8):1560-1564.
    [48]张仁钦,罗瑞盈,李军,等.新型炭纤维/泡沫炭预制体的制备及致密化研究[J],炭素技术,2007,26(1):1-4.
    [49]Wan Q. L., Hong B. Z., Xiang X., et al. Influence of fiber content on the structure and properties of short carbon fiber reinforced carbon foam [J]. Materials Science and Engineering:A,2010,57 (27-28):7274-7278.
    [50]Vignoles G. L., Gaborieau C., Delettrez S., et al. Reinforced carbon foams prepared by chemical vapor infiltration:A process modeling approach [J]. Surface and coatings technology,2008,203 (5-7):510-515.
    [51]井强山,骆定法,郑小明,等.流化床CH4部分氧化-CO2重整Ni/CeO2-SiO2催化剂的研究[J].石油化工,2007,36(2):122-126.
    [52]Minhee H. Extrusion of PEPS blends with supercritical carbon dioxide [J]. Polymer Engineering Science,1998,38 (7):1112-1123.
    [53]Minhee L.. Measurements and Modeling of PS/Supercritical CO2 Solution Viscosities [J]. Polymer Engineering Science,1999,39 (1):99-110.
    [54]Xiao N., Zhou Y., Qiu J. S., et al. Preparation of carbon nanofibers/carbon foam monolithic composite from coal liquefaction residue [J]. Fuel,2010,89 (15):1169-1171.
    [55]Li J., Wang C., Zhan L., et al. Preparation and performance of mesophase pitch based graphite foam [J]. Journal of Materials Science and Engineering,2008,2 (12):13-18.
    [56]陈惠晴,杨小民,杨基础.超临界CO2的溶剂特性及其对酶催化反应的影响[J].第二届全国超临界流体技术学术及应用研讨会论文集.1998,205-208.
    [57]王进.超临界CO2制备微孔聚合物.中国科学院化学所博士学位论文[D].2002,7-32.
    [58]Lee L. J., Zeng C. C., Cao X., et al. Polymer nanocomposite foams [J]. Composites Science and Technology,2005,65 (15-16):2344-2363.
    [59]Adams P M, Katzman H A, Rellick G S. Aligned graphitic carbon foams from mesophase pitch [J]. Carbon,1998,36 (30):159-318.
    [60]Raquel V., Cristina S. A., Javier C. G., et al. Physical properties of silicone foams filled with carbon nanotubes and functionalized grapheme sheets [J]. European Polymer Journal,2008,44 (9):2790-2797.
    [61]Coleman J. N., Khan U., Gunko Y. K., et al. Mechanical reinforcement of polymers using carbon nanotubes [J]. Advanced Material,2006,18 (6):689-706.
    [62]Wu X. W., Luo R. Y., Ni Y. F., et al. Microstructure and mechanical properties of carbon foams and fibers reinforced carbon composites densified by CLVI and pitch impregnation [J]. Composites:Part A,2009,40 (2):225-231.
    [63]Verdejo R., Stampfli R., Lainez A. M., et al. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes [J]. Composites Science and Technology,2009,69 (10):1564-1569.
    [64]纪立军,叶超,梁吉.多壁纳米碳管-炭复合泡沫炭材料的制备和吸附特性[J].无机化学学报,2007,23(12):2007-2012.
    [65]杨继年,李子全,王静.短纤维混杂增强PP复合泡沫材料的力学性能[J].复合材料学报,2007,24(4):1-7.
    [66]Stemmet C. P., Jongmans J. N., Schaaf V. D., et al. Solid foam packings for multiphase reactors modeling of liquid holdup and mass transfer [J]. Institution of chemical Engineers trans IchemE, Part A,2006,84 (A 12):1134-1141.
    [67]Jitendra K. C., Johannes H. B., Leon L. Thin layer of carbon-nano-fibers (CNFs) as catalyst support for fast mass transfer in hydrogenation of nitrite [J]. Applied catalysis A: General,2010,383 (1-2):24-32.
    [68]Wenmakers P. W. A. M, Meeuwse M., Croon M. H. J. M, et al. Transient gas-liquid mass transfer model for thin liquid films on structured solid packings [J]. Chemical Engineering Research and Design,2010,88 (3):270-289.
    [69]Stemmet C. P., Jongmans J. N., Schaaf V. D., et al. Hydrodynamics of gas-liquid counter current flow in solid foam packings [J]. Chemcal Engineering Science,2005,60 (22): 6422-6429.
    [70]Stemmet C. P., Schaaf V. D., Kuster J., et al. Solid foams for multiphase reactions [J]. EP216009 patent pending.2004.
    [71]Seijer G. F., Oudshoorn O. L., Boekhorst A., et al. Selective catalytic reduction of NOx over zeolite-coated structured catalyst packings [J]. Chemical Engineering Science,2001, 56 (3):849-857.
    [72]Richardson J. T., Peng Y., Remue D., et al. Properties of ceramic foam catalyst supports: pressure drop [J]. Applied Catalysis, A:General,2000,204 (1):19-32.
    [73]Richardson J. T., Remue D., Hung J. K., et al. Properties of ceramic foam catalyst supports:mass and heat transfer [J]. Applied Catalysis, A:General,2003,250 (2): 319-329.
    [74]Chinthaginjala J. K., Lefferts L. Influence of hydrogen on the formation of a thin layer of carbon nanofibers on Ni foam [J]. Carbon,2009,47 (6):3175-3183.
    [75]Ouzzine M., Cifredo G. A., Gatica J. M., et al. Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-tmperature SCR of NO:Effects of preparation variables [J]. Applied catalysis A:General,2008,342 (6):150-158.
    [76]Maria C., Oliver K., Martin E. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR [J]. Applied Catalysis B:Environmental,2009,88 (3-4): 413-419.
    [77]Liu Z. M., Li J. H., Hao J. M. Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst [J]. Chemical Engineering Journal,2010,165 (2):420-425.
    [78]William S., Epling, Aleksey Y., et al. The effects of regeneration conditions on NOx and NH3 release from NOx storage/reduction catalysts [J]. Applied Catalysis B: Evironmental,2007,74 (1-2):117-129.
    [79]Min K., Eun D. P., Ji M. K., et al. Manganese oxide catalysts for NOx reduction with NH3 [J]. Applied Catalysis A:General,2007,327 (2):261-269.
    [1]Harikrishnan G, Patro T U, Khakhar D V. Reticulated vitreous carbon from polyurethane foam-clay composite [J]. Carbon,2007,45 (3):531-535.
    [2]张伟,王成扬,王妹先,张晓林.石油系中间相沥青基泡沫炭的制备与结构研究[J].炭素技术.2006,25(5):22-27.
    [3]李同起,王成杨.中间相沥青基泡沫炭的制备与结构表征[J].无机材料学报.2005,20(6):1438-1444.
    [4]Adams P M, Katzman H A, Rellick G S. Aligned graphitic carbon foams from mesophase pitch [J]. Carbon,1998,36 (30):159-318.
    [5]Dutta D, Hill C S, Anderson D P. Processing, structure, and morphology of graphitic carbon foams produced from anisotropic pitch [J]. MRS Pittsburgh,1994,653-658.
    [6]StillerAH, Stansberry PG, Zondlo Jw, Method of Malting A Carbon Foam Material and Resultant Product. US patent 5888469,1999.
    [7]Nidia C. Gallego, James W Klett, April D. McMillan. Effect of Processing Conditions on Properties of Graphite Foams. Carbon Materials Technology Group, Oak Ridge National Laboratory, USA.
    [8]Klett JW, Process for Making Carbon Foam. US Patent 6033506,2000.
    [9]Klett J. Pitch-Based Carbon Foam and Composites. US Patent 6261485,2001.
    [10]邱介山,李平,等.由中间相沥青制备泡沫炭:Fe(NO3)3的影响[J].新型炭材料.2005,20(3):193-197.
    [11]Klett James, Hardy Rommie, Ernie Romine, et al. High-thermal-conductivity, Mesophase-pitch-derived carbon foams:effect of precursor on structure and properties [J]. Carbon,2000,38:953-973.
    [12]李同起,王成扬.中间相沥青基泡沫炭的制备与结构表征[J].无机材料学报,2005,11:1438-1444.
    [13]郁铭芳,王依民,王燕萍,等.一种碳泡沫沥青的制备方法[P].CN,1587033A,2005.
    [14]Klett J. W, MeMillan A. D, Gallego N. C, et al. Effects of heat treatment conditions on the thermal properties of mesophase pitch-derived graphitic foams [J]. Carbon.2004,42 (1):1859-1852.
    [1]Bond D. R., Holmes D. E., Tender L., et al. Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments [J]. Science,2002,295:483-485.
    [2]Allen R. M., Bennetto H. P. HP Microbial fuel-cells Electricity production from carbohydrates [J]. Appl. Biochero. Biotechnol,1993,39:27-40.
    [3]Liu H., Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environ. Sci. Technol,2004,38:4040-4046.
    [4]Schroer U., Niessen J., Scholz F. Angew. Chem. Int. Ed.,2003,42:2880-2883.
    [5]Wagner M., Amann R., Lemmer H., et al. Probing Activated Sludge with Oligonueleotides Specific for Proteohacteria:Inadequacy of Culture-dependent Methods for Descri·bing Microbial Community Structure [J]. Appl Environ Mierobiol,1993,59: 1520-1525.
    [6]Kowalchu K., Stephen J., Boer W., et al. Analysis of Ammonia-oxidizing Bacteria of the Subdivision of the Class Proteobacteria in Coastal Sand Dunes by Denaturing Gradient Gel Electrophoresis and Secluendng of PCR Amplified 16S Riboeomal DNAFragnmnts [J]. Appl Environ Mierobiol,1997,63:1489-1497.
    [7]Liu M. X., Gan L. H., Zhao F. Q., et al. Carbon foams prepared by an oil-in-water emulsion method [J]. Carbon,2007,45 (13):2710-2712.
    [8]Chen Y., Chen B. Z., Shi X. C., et al. Preparation of pitch-based carbon foam using polyurethane foam template [J]. Carbon,2007,45 (10):2132-2134.
    [9]牟文杰.动态条件对微孔塑料用超临界CO2发泡成核的影响[D].华南理工大学博士学位论文.2003.
    [10]Zhai W. T., Yu J., Wu C., et al. Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams [J]. Polymer,2006,47(21): 7580-7589.
    [11]陈维编著.超临界流体萃取的原理和应用[M].北京:化学工业出版社,1998,1-18.
    [1]Hammel E, Tang X, Trampert M, et al. Carbon nanofibers for composite applications [J]. Carbon,2004,42(5-6):1153-1158.
    [2]Ge M, Shen Z M, Chi W D, et al. Anisotropy of mesophase pitch-derived carbon foams [J]. Carbon,2007,45(1):141-145.
    [3]Wang M X, Wang C Y, Li T Q, et al. Preparation of mesophase-pitch-based carbon foams at low pressures [J]. Carbon,2008,46(1):84-91.
    [4]Li S Z, Song Y Z, Song Y, et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch [J]. Carbon,2007,45 (10):2092-2097.
    [5]Stemmet C P, Schaaf J V D, Kuster B F M, etc. Zirconium Phosphate Coating on Aluminum Foams by Electrophoretic Deposition for Acidic Catalysis [J]. Chem Eng R, 2006,84:1134-1141.
    [6]Stemmet C P, Jongmans J N, Schaaf J V D, etc. Hydrodynamics of gas-liquid counter-current flow in solid foam packing [J]. Chem Eng Sci,2005,60:6422-6429.
    [7]Peng Y, Richardson J T. Properties of ceramic foam catalyst supports:one-dimensional and two-dimensional heat transfer correlations [J]. Appl Catal A,2004,266:235-244.
    [8]Venugopal G, Balaji C, Venkateshan S P. Int J Therm Sci,2010,49:340-348.
    [9]Chang W S, Hong S W, Park J Y. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Process Biochem,2002,37:693-698.
    [10]Hong D R, Kim D K, Lim H E, etc. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system [J]. Process Biochem,2008, 43:729-735.
    [11]Qiu L P, Zhang S B, Wang G W, etc. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media [J]. Bioresource Technol,2010,101:7245-7251.
    [12]魏在山,孙珮石等.固定化细胞处理废气的应用研究[J].环境与可持续发展.2006,1:48-51.
    [13]黄霞,俞毓馨.固定化细胞技术在废水处理中的应用[J].环境科学.1993,14(1):41-48.
    [14]于霞,柴立元.细胞固定化技术及其在废水处理中的应用研究[J].工业水处理.2001,21(10):9-12.
    [15]肖亦,钟飞,潘献晓.固定化微生物技术在废水处理中的应用研究进展[J].环境科学与管理.2009,34(6):82-84.
    [16]张黎 魏炜 袁雅姝 冯思琦.固定化微生物技术处理含酚废水的研究现状[J].环境保护与循环经济.2009,29(8):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700