用户名: 密码: 验证码:
纳/微米炭材料吸附去除水中重金属离子的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有独特结构和性质,不仅在微电子元器件、场发射材料、催化等领域应用前景广阔,而且作为吸附材料在储氢、污染物消除等方面的应用潜能也值得关注。本文系统研究了碳纳米管及煤基微米碳纤维对水溶液中低浓度金属离子镉、铁、镍、铜、锌的吸附性能,考察了吸附时间、吸附温度、溶液pH值以及离子浓度等参数对吸附的影响,综合运用扫描电镜、透射电镜、液氮物理吸附、傅立叶变换红外光谱、X射线光电子能谱、电位滴定等技术手段研究碳纳米/微米吸附材料的结构及表面化学性质,将吸附材料的孔隙结构、表面物理化学性质与其吸附性能进行了关联,探讨了一维纳米材料碳纳米管吸附金属离子的热力学和动力学特征。
     考察了镉离子在电弧放电及化学气相沉积两种碳纳米管上的吸附特征。发现氧化处理对化学气相沉积制备的碳纳米管吸附能力有显著影响。镉离子在两种碳管上的吸附行为可用Langmuir和Freundlich模型进行描述。碳纳米管的吸附量对碳表面pH值呈指数关系。不同pH下的q_m和K_F对在对应pH值下解离的官能团数量呈线性关系。以单位比表面积为单位进行比较,氧化后两种碳纳米管的吸附能力高于活性炭。
     研究了化学气相沉积法制备的碳纳米管吸附Fe(Ⅱ)和Fe(Ⅲ)离子的行为发现pH值对Fe(Ⅲ)离子在碳纳米管上的吸附影响比Fe(Ⅱ)大。相同的平衡浓度下,碳管对Fe(Ⅲ)离子的吸附能力高于Fe(Ⅱ)。动力学研究表明,两种吸附质在碳纳米管上的吸附均可用准二级吸附动力学模型加以描述。热力学研究表明,Fe(Ⅱ)和Fe(Ⅲ)离子在氧化碳纳米管上吸附是一个自发的、吸热、熵增过程。
     研究了多组分体系中镍、铜、锌及镉离子在碳纳米管表面竞争吸附规律,发现对于单组分和双组分体系,吸附量遵从如下顺序:Cu~(2+)>Ni~(2+)>Cd~(2+)>Zn~(2+);这和基于标准电极电势的离子氧化能力顺序一致。对于双组分、三组分和四组分体系,Langmuir模型可以较好地描述吸附剂对Cu~(2+)离子的吸附行为,而对于其他三种离子,吸附量出现了极大值。在三组分和四组分体中,除了Cu~(2+)离子外,其他三种离子的吸附量顺序如下:Cd~(2+)>Zn~(2+)>Ni~(2+)。多组分体系竞争吸附规律与离子的氧化还原特性及离子交换密切相关。
     考察了煤基微米碳纤维吸附水溶液中镉离子的性能,研究表明氧化处理可大幅度增加煤基微米碳纤维的表面含氧官能团数量,其吸附能力和氧化前比增加显著。以单位重量和单位比表面积为基准进行比较,其吸附能力都很大,明显高于文献报道中的活性炭、甘蔗飞灰、碳纳米管等。动力学吸附数据遵从准二级速率方程。酸性条件下,等温吸附数据均能用Langmuir和Freundlich模型拟合,而沉淀发生条件下可用表面沉淀模型描述。
Carbon nanotubes (CNTs), with unique morphologies and surface characteristics not only have great potential applications in electronics, field emission materials, catalysis, but also are of potential in hydrogen storage or wastewater treatment. This dissertation focuses on the investigation of adsorption of cadmium, iron, nickel, copper, and zinc ions from low concentration solution on the CNTs and coal-derived micro-size carbon fibers (CCFs). The effects of the adsorption time, temperature, pH value, and ion concentration on adsorption were investigated. A number of advanced techniques such as SEM, TEM, adsorption of nitrogen, FTIR, XPS, and potentiometric titration were used to characterize the structure and surface chemistry of adsorbents. The relationship between the surface properties of adsorbents and the adsorption capacity was analyzed. The kinetics and thermodynamics of adsorption were also studied.
     The comparative study of cadmium adsorption on different CNTs was carried out. Oxidation could significantly increase the cadmium adsorption capacity of the CNTs obtained from chemical vapor deposition (CVD) method. Both Langmuir and Freundlich models showed good agreement with the experimental data. The exponential relationship was found between the capacity of adsorbents for cadmium ions and their surface pH values, while the linear dependence was observed between the amounts adsorbed at certain pH on the number of groups dissociated at that pH. When the adsorption was analyzed based on the unit surface area of the adsorbents, the adsorption amounts were found to be comparable with those obtained on activated carbons.
     The adsorption of Fe (Ⅱ) and Fe (Ⅲ) ions using the oxidized CNTs obtained from CVD method was also studied. The results showed that the adsorption of Fe (Ⅲ) is more pH dependent than that of Fe (Ⅱ). The uptakes of Fe (Ⅲ) at the same equilibrium concentration were higher than those of Fe (Ⅱ). The study of kinetics showed that the pseudo-second-order kinetic adsorption model is suitable for describing the adsorption of Fe (Ⅱ) and Fe (Ⅲ) ions on the CNTs. The study of thermodynamics revealed that the adsorption process of Fe (Ⅱ) and Fe (Ⅲ) ions on the oxidized CNTs was spontaneous, endothermic and with an increase in entropy.
     The competitive adsorption of nickel, copper, zinc and cadmium ions from aqueous solutions was studied in single, binary, ternary and quaternary systems with the oxidized CNTs as an adsorbent. The uptakes in the single and binary systems at the same equilibrium concentration varied in the following order: Cu~(2+)(aq) > Ni~(2+)(aq) > Cd~(2+)(aq) > Zn~(2+)(aq). This order agreed with that of oxidation ability of ions based on the standard electrode potential. For the binary, ternary and quaternary system, the isotherms of the copper ions followed the Langmuir model while for the isotherms of other ions, a decrease in the amount adsorbed was observed at certain concentration. For the ternary and quaternary system, except copper ions, the order in the amount adsorbed was following: Cd~(2+)(aq) > Zn~(2+)(aq) > Ni~(2+)(aq). This particular behavior can be related to the complex redox properties and ion exchange processes.
     CCFs were also used to remove cadmium ions from the aqueous solution. Oxidation introduced a large quantity of functional groups which caused a remarkable increase in adsorption capacity. If compared based on the unit weight and the unit surface area, the adsorption ability of oxidized CCFs was higher than that of activated carbon, bagasse fly ash and carbon nanotubes reported in literature. The kinetic study showed that the adsorption followed the pseudo-second order kinetic adsorption model. Both Langmuir and Freundlich models described the adsorption isotherms well at pH<7.00, while the surface precipitation model showed good agreement with the experiment data when deposition occurred.
引文
[1] Kroto H W, Heath J R, Brien S C O. et al. C_(60).:Buckminsterfullerene. Nature, 1985, 318:162- 163.
    [2] Kratschraer W, Lamb L D, Fostiropoulos K. et al. Solid C60:A new form of carbon. Nature, 1990, 347(6291):354-358.
    
    [3] Iijima S.Helical microtubules of graphitic carbon. Nature, 1991, 354(6348):56-58.
    [4] Baughman R H, Zakhidov A A, Deheer W A. Carbon nanotubes-the Route toward applications. Science,2002, 297:787-792.
    [5] Tans S J, Devoret M H, Dai H. et al. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624):474-477.
    [6] Yoshida A, Imoto K, Yoneda H. et al. An electric double-layer capacitor with high capacitance and low resistance. Transactions on Componentes, Hybrids, and Manufacturing Technology, 1992, 15(1):133-138.
    [7] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414:359-367.
    [8] Li W Z, Liang C H, Qiu J S. et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40:787-803.
    [9] Li W Z, Liang C H, Zhou W J. et al. Preparation and Characterization of Multi-wall Carbon Nanotubes Supported Platinum for Cathode Catalysts of Direct Mehtanol Fuel Cells. The Journal of Physical Chemistry B,2003,107:6292-6299.
    
    [10] Rinzler A G, Hafner J H, Nikolaev P. et al. Unraveling nanotubes: Field emission from an atomic wire. Science, 1995,269:1550-1553.
    
    [11] Lee C J, Park J, Kang S Y. et al. Growth and field electron emission of vertically aligned multiwalled carbon nanotubes.Chemical Physics Letter, 2000, 326:175-180.
    
    [12] Pan Z W, Au F C K, Lai H L. et al. Very low-field emission from aligned and opened carbon nanotube arrays. The Journal of Physical Chemistry B, 2001, 105(8):1519-1522.
    [13] Poncharal P, Wang Z L, Ugarte D. et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes.Science, 1999, 283:1513-1516.
    [14] Dillon A C, Jones K M, Bekkedahl T A. et al. Storage of hydrogen in single-walled carbon nanotubes.Nature, 1997, 386:377-379.
    [15] Ye Y, Ahn C C, Witham C. et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters,1999, 74(16):2307-2309.
    [16] Planeix J M, Coustel N, Coq B. et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. Journal of the American Chemical Society, 1994, 116(17): 7935-7936.
    
    
    [17] Zhang H Z, Qiu J S, Liang C H. et al.A novel approach to Co/CNTs catalyst via chemicalvapor deposition of organometallic compounds. Catalysis Letters, 2005, 101:211-214.
    
    [18] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation.Nature,1992,359:707-709.
    
    [19] Zhang G Y, Jiang X, Wang E G. Tubular graphite cones. Science, 2003, 300:472-474.
    
    [20] Liu J W, Lin W J, Chen X Y, et al. Fabrication of hollow carbon cones. Carbon, 2004, 42:669-671.
    
    [21] Krishnan A, Dujardin E, Treacy M M J. Graphitic cones and the nucleation of curved carbonsurface. Nature, 1997, 451:388-392.
    
    [22] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science, 2003,299:1361.
    
    [23] Colomer J F, Henrard L, Flahaut E, et al. Rings of double-walled carbon nanotubes. NanoLetter,2003, 3:685-689.
    
    [24] Qiu J S, Li Y F, Wang Y P. et al. A novel form of carbon micro-balls from coal. Carbon, 2003,41(4):767-772.
    
    [25] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon microtrees. Nature, 2000, 404:243-243.
    
    [26] Ebbesen T W, Takada T. Topological and sp3 defect structures in nanotubes. Carbon, 1995,33(7): 973-978.
    
    [27] Saito R, Dresselhaus M S, Dresselhaus G.Physical properties of carbon nanotubes.London, Imperial Cooege Press. 1998.
    
    [28]朱宏伟,吴德海,徐才录.碳纳米管(第一版).北京:机械工业出版社.2003.
    
    [29] Bethune D S, Kiang C H, De Vires M S, et al. Cobalt-catalysed growth of carbon nanotubeswith single-atomic-layer walls. Nature, 1993, 363(6430):605-607.
    
    [30] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992,358(6383):220-222.
    
    [31] Thess A, Lee R, Nikolaev P. et al. Crystalline ropes of metallic carbon nanotubes. Science,1996,273(5274):483-487.
    
    [32] Liu J, Dai H, Hafner J H. et al. Fullerene "crop circles". Nature, 1997, 385(6619) -.780-781.
    
    [33] Birkett P R, Cheetham A J, Eggen B R. et al. Transition metal surface decorated fullerenesas possible catalytic agents for the creation of single walled nanotubes of uniformdiameter. Chemical.Physics Letter, 1997, 281(1-3):111-114.
    
    [34] Cheng H M, Li F, Su G. et al. Large-scale and low-cost synthesis of single-walled carbonnanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters,1998,72(25):3282-3284.
    
    [35] Iijima S, Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter. Nature,1993, 363(6430):603-605.
    
    [36]李延辉,碳纳米管的制备及其在环境保护中的应用研究.2003,清华大学:北京.
    
    [37] Guo T, Nikolaev P, Rinzler A G. et al. Self-assembly of tubular fullerenes. Journal ofPhysical Chemistry,1995, 99(27):10694-10697.
    
    [38] Jose Yacamán M, Miki-Yoshida M, Rendon L. Catalytic growth of carbon microtubules withfullerene structure. Applied Physics Letters,1993, 62:202-204.
    
    [39] Hsu W K, Terrones M, Hare J P. et al. Electrolytic formation of carbon nanostructures.Chemical Physics Letters, 1996, 262(1-2):161-166.
    
    [40] Li Y L, Yu Y D, Liang Y. A novel method for synthesis of carbon nanotubes: Low temperaturesolid pyrolysis.Journal of Materials Research,1997, 12(7):1678-1680.
    
    [41] Li W Z, Xie S S, Qian L X. et al. Large-scale synthesis of aligned carbon nanotubes.Science, 1996, 274(5293):1701-1703.
    
    [42] Huang J Y, Yasuda H, Mori H. Highly curved carbon nanostructures produced byball-milling. Chemical Physics Letters,1999,303(1-2):130-134.
    
    [43] Vander Wal R L, Ticich T M, Curtis V E. Diffusion flame synthesis of single-walled carbonnanotubes. Chemical Physics Letters,2000, (3-4):217-223.
    
    [44] Yakobson B I, Smalley R E. Fullerene nanotubes:C1, 000, 000 and beyond. American Scientist,1997, 85 (4): 324-337.
    
    [45] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young' s modulus observed forindividual carbon nanotubes. Nature, 1996, 381(6584):678-680.
    
    [46] Li F, Cheng H M, Bai S. et al. Tensile strength of single-walled carbon nanotubes directlymeasured from their macroscopic ropes. Applied Physics Letters, 2000, 77(20) :3161-3163.
    
    [47] Cheng H M, Li F, Sun X. et al. Bulk morphology and diameter distribution of single-walledcarbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemicalphysics letter,1998,289(5-6):602-610.
    
    [48] Collins P G, Avouris P.Nanotubes for electronics. Scientific American, 2000,283(6):62-69.
    
    [49] Ajayan P M, Stephan O, Colliex C. et al. Aligned carbon nanotube arrays formed by cuttinga polymer resin-nanotube composite. Science,1994, 265(5176):1212-1214.
    
    [50] Curran S A, Ajayan P M, Blau W J. et al. A composite from poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:A novel material for molecularmptoelectronics. Advanced Materials, 1998,10(14): 1091-1093.
    
    [51] Ma R Z, Wu J, Wei B Q. et al. Processing and properties of carbon nanotubes-nano-SiCceramic. Journal of Materials Science, 1998,33(21):5243-5246.
    
    [52] Ebbesen T W, Lezec H J, Hiura H. et al. Electrical conductivity of individual carbonnanotubes. Nature,1996,382(6586):54-56.
    [53] Dai H, Wong E W, Lieber C M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science,1996, 272(5261) :523-526.
    [54] Deheer W A, Bacsa W S, Cha□telain A. et al. Aligned carbon nanotube films: Production and optical and electronic properties. Science, 1995, 268(5212) :845-847.
    [55] Appenzeller J, Martel R, Avouris P. et al. Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Applied Physics Letters,2001, 78(21):3313-3315.
    
    [56] Collins P G, Zettl A, Bando H. et al. Nanotube nanodevice. Science, 1997,278:100-103.
    [57] Postma H W C, Teepen T, Yao Z. et al. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293(5527):76-79.
    [58] Kong J, Franklin N R, Zhou C. et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453):622-625.
    [59] Zhao Q, Wood J R, Wagner H D. Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors. Applied Physics Letters, 2001, 78(12):1748-1750.
    [60] Tombler T W, Zhou C, Alexseyev L. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 2000, 405(6788):769-772.
    [61] Rueckes T, Kim K, Joselevich E. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science,2000, 289(5476) :94-97.
    
    [62] 成会明.纳米碳管—制备、结构、物性及应用.北京:化学工业出版社.2002.
    
    [63] Kwo J L, Yokoyama M, Wang W C. et al. Characteristics of flat panel display using carbon nanotubes as electron emitters. Diamond and Related Materials, 2000, 9(3):1270-1274.
    [64] Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 2000, 38(2) :169-182.
    [65] Ajayan P M, Zhou O Z. Carbon Nanotubes:Synthesis, Structure, Properties and Applications. Dresselhaus M S, Dresselhaus G, Avouris P. Editor. 2001, Springer:New York.
    [66] Britto P J, Santhanam K S V, Ajayan P M.Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 1996, 41(1) :121-125.
    [67] Britto P J, Santhanam K S V, Rubio A. et al. Improved charge transfer at carbon nanotube electrodes. Advanced Materials, 1999, 11(2):154-157.
    [68] Che G, Lakshmi B B, Fisher E R. et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393(6683):346-349.
    [69] Hirata A, Igarashi M, Kaito T. Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribology International, 2004,37:899-905.
    [70] Zhi C Y, Bai X D, Wang E G. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Applied Physics Letters,2002, 81(9) :1690-1692.
    
    [71] Chang Y C, Sohn H J, Ku C H. et al. Anodic performance of mesocarbon microbeads(MCMB) prepared from synthetic naphthalene istropic pitch. Carbon, 1999, 37(8):1285-1297.
    
    [72]吴振军,陈宗璋,汤宏伟,等.钠离子电池研究进展.电池,2002,32(2):45-47.
    
    [73] Kocirik M, Brych J, Hradil J. Carbonization of bead-shaped polymers for application in adsorption and on composite membranes. Carbon, 2001, 39(8):1919-1928.
    
    [74] Yang R Z, Qiu X P, Zhang H R, et al. Mono-dispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon, 2005, 43(1):11-16.
    
    [75]李永峰.煤基纳米和微米炭材料的电弧法制备研究.2004,大连理工大学:大连.
    
    [76]杨全红,刘敏,成会明,等.纳米碳管的孔结构、相关物性和应用.材料研究学 报,2001,15(4):375-386.
    
    [77] Chen P, Wu X, Lin J. et al. High H2 uptake by alkali-doped carbon nanotubes under ambientpressure and moderate temperatures. Science, 1999, 285(5424):91-93.
    
    [78] Liu C, Fan Y Y, Liu M. et al. Hydrogen storage in single-walled carbon nanotubes at roomtemperature. Science, 1999, 286(5442):1127-1129.
    
    [79] Hou P X, Yang Q H, Bai S. et al. Bulk storage capacity of hydrogen in purified multiwalledcarbon nanotubes. Journal of Physical Chemistry B, 2002,106(5):963-966.
    
    [80] Dillon A C, Gennett T, Alleman J L. et al. Proceedings of the 2000 hydrogen Program Review.May 8-10,2000; NREL/CP-570-28890,2000.
    
    [81] Collins P G, Bradley K, Ishigami M. et al. Extreme Oxygen Sensitivity of ElectronicProperties of Carbon Nanotubes.Science,2000, 287:1801-1804.
    
    [82] Jhi S H, Louie S G, Cohen M L. Electronic properties of oxidized carbon nanotubes.Physical Review Letters, 2000,85(8):1710-1713.
    
    [83] Chang H, Lee J D, Lee S M. et al. Adsorption of NH3 and N02 molecules on carbon nanotubes.Applied Physics Letters, 2001,79(23):3863-3865.
    
    [84] Tanaka H, EI-Merraoui M, Steele W A, et al. Methane adsorption on single-walled carbonnanotube: a density functional theory model. Chemical Physics Letters, 2002,352:334-341.
    
    [85] Zhang X R, Wang W C. Methane adsorption in single-walled carbon nanotubes arrays bymolecular simulation and density functional theory. Fluid Phase Equilibria, 2002,194-197:289-295.
    
    [86] Trasobares S, Stephan O, Colliex C, et al. Electron beam puncturing of carbon nanotubecontainers for release of stored N2 gas. The European Physical Journal B-CondensedMatter, 2001, 22(1): 117-122.
    
    [87] Juntgen H, Kuhl H. Mechanisms and physical properties of carbon catalysts for flue gascleaning, chemisty and physics of carbon, ed. Thrower P A. New York:Dekker. 1990.
    
    [88] Knoblauch K, Richter E, Juntgen H. Application uf active coke in processes of S02 andNOx removal from flue gas. Fuel, 1981, 60:832-838.
    
    [89] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 2001, 123:2058-2059.
    
    [90]何升霞,姬相艳.利用废铁屑处理含铬废水试验研究.油气田环境保护,2002,10(2):36-37.
    
    [91]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京大学学 报,2003,30(2):19-22.
    
    [92]王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社.1993.
    
    [93]田颖.聚吡咯的电化学性质及对重金属还原性能研究.2007,大连理工大学.大连.
    
    [94] Leppert D. Heavy metal sorption with clinop tilolite zeolite: alternatives for treating contaminated soil and water. Mining Engineering, 1990, 42(6):604-608.
    
    [95]符若文,曾汉民,吴斌.活性碳纤维氧化还原特性的研究.水处理技术,1990,16(1):14-21.
    
    [96]符若文,曾汉民,刁金梅.活性碳纤维的竞争氧化还原反应.离子交换与吸附,1992,8(2): 164-170.
    
    [97] Fu R W, Zeng H M, Lu Y. Studies on the mechanism of the reaction of activated carbonfibers with oxidants. Carbon,1994, 32(4):593-598.
    
    [98] Fu R W, Zeng H M, Lu Y. The reduction of Pt(Ⅳ) with activated carbon fibers-An XPSstudy. Carbon, 1995,33(5):657-661.
    
    [99] Li Y H, Wang S G, Wei J Q. et al.Lead adsorption on carbon nanotubes. Chemical PhysicsLetters, 2002, 357 (3-4) : 263-266.
    
    [100] Li Y H, Wang S G, Luan Z K. et al. Adsorption of cadmium from aqueous solution by surfaceoxidized carbon nanotubes.Carbon, 2003, 41(5) :1057-1062.
    
    [101] Li Y II, Luan Z K, Xiao X. et al. Removal of Cu~(2+) ions from aqueous solutions by carbonnanotubes. Adsorption Science and Technology, 2003, 21(5):475-486.
    
    [102] Li Y H, Ding J, Luan Z K. et al. Competitive adsorption of Pb~(2+), Cu~(2+) and Cd~(2+) ions fromaqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14) :2787-2792.
    
    [103] Li Y H, Zhu Y Q, Zhao Y M. et al.Different morphologies of carbon nanotubes effecton the lead removal from aqueous solution. Diamond & Related Materials, 2006, 15 :90-94.
    
    [104] Li Y H, Di Z C, Ding J. et al. Adsorption thermodynamic, kinetic and desorption studiesof Pb2+ on carbon nanotubes. Water Research,2005,39(4):605-609.
    
    [105] Di Z C, Li Y H, Luan Z K. et al. Adsorption of chromium(Ⅵ) ions from water by carbonnanotubes. Adsorption Science and Technology, 2004, 22(6):467-474.
    
    [106] Di Z C, Ding J, Peng X J. et al. Chromium adsorption by aligned carbon nanotubessupported ceria nanoparticles. Chemosphere, 2006, 62(5):861-865.
    
    [107] Peng X J, Luan Z K, Ding J. et al. Ceria nanoparticles supported on carbon nanotubesfor the removal of arsenate from water. Materials Letters, 2005, 59(4):399-403.
    
    [108] Peng X J, Luan Z K, Di Z C. et al. Carbon nanotubes-iron oxides magnetic compositesas adsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water. Carbon, 2005, 43(4) : 880-883.
    
    [109] Lu C, Chiu H. Adsorption of zinc (Ⅱ) from water with purified carbon nanotubes. ChemicalEngineering Science, 2006, 61(4):1138-1145.
    
    [110] Lu C, Chiu H, Liu C. Removal of zinc(Ⅱ) from aqueous solution by purified carbonnanotubes: Kinetics and equilibrium studies.Industrial and Engineering ChemistryResearch, 2006,45(8):2850-2855.
    
    [111] Lu C Y, Liu C T. Removal of nickel (Ⅱ) from aqueous solution by carbon nanotubes. Journalof Chemical Technology and Biotechnology, 2006,81:1932-1940.
    
    [112] Chen C L, Wang X K. Adsorption of Ni (Ⅱ) from aqueous solution using oxidized multiwallcarbon nanotubes. Industrial & Engineering Chemistry Research, 2006, 45(26):9144-9149.
    
    [113] Yang S H, Shin W H, Kang J K. Ni adsorption on Stone-Wales defect sites in single-wallcarbon nanotubes. Journal of Chemical Physics, 2006, 125(8):art. no. 084705.
    
    [114] Liang P, Liu Y, Guo L,et al. Multiwalled carbon nanotubes as solid-phase extractionadsorbent for the preconcentration of trace metal ions and their determination byinductively coupled plasma atomic emission spectrometry. Journal of Analytical AtomicSpectrometry,2004,19:1489-1492.
    
    [116] Li Y H, Wang S G, Cao A Y. et al. Adsorption of fluoride from water by amorphous aluminasupported on carbon nanotubes. Chemical Physics Letters, 2001, 350(5-6):412-416.
    
    [116] Li Y H, Wang S G, Zhang X F. et al. Removal of fluoride from water by carbon nanotubessupported alumina. Environmental Technology,2003,24:391-398.
    
    [117] Li Y H, Wang S G, Zhang X F. et al. Adsorption of fluoride from water by aligned carbonnanotubes.Materials Research Bulletin, 2003,38(3):469-476.
    
    [118] Cai Y Q, Jiang G B, Liu J F, et al. Multiwalled carbon nanotubes as a solid-phaseextraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol,and4-tert-octylphenol. Analytical chemistry,2003,75(10):2517-2521.
    
    [119] Cai Y Q, Jiang G B, Liu J F, et al. Multi-walled carbon nanotubes packed cartridge forthe solid-phase extraction of several phthalate esters from water samples and theirdetermination by high performance liquid chromatography. Analytica Chimica Acta, 2003,494(1-2):149-156.
    
    [120]孔明礼,成荣明.碳纳米管对酚类物质的吸附研究.东北师大学报(自然科学版),2004, 364:71-75.
    
    [121] Liu G H, Wang J L, Zhu Y F, et al. Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Analytical Letters, 2004, 37 (14): 3085-3104.
    
    [122] Peng X J, Li Y H, Luan Z K. et al. Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 2003, 376(1 2) : 154-158.
    
    [123] Fagan S B, Souza Filho A G, Lima J O G, et al. 1, 2-Dichlorobenzene interaction with carbon nanotubes. Nano Letter,2004,4:1285-1288.
    
    [124]耿成怀,成荣明,徐学诚.等.苯胺在碳纳米管上的吸附特征.化学研究与应用,2004,05:97-97.
    
    [125]耿成怀,成荣明,徐学诚.等.碳纳米管对苯胺的吸附行为.应用化学,2004,07:93-95.
    
    [126] Lu C Y, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbonnanotubes.Water Reaseach, 2005, 39:1183-1189.
    
    [127] Lu C Y, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies oftrihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials, 2006,138:304-310.
    
    [128] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials. Environmental Science & Technology, 2006, 40:1855-1861.
    
    [129] Chen W, Duan L, Zhu D Q. Adsorption of polar and nonpolar organic chemicals to carbonnanotubes.Environmental Science & Technology, 2007, 41:8295-8300.
    
    [130] Wang X L, Lu J L, Xing B S. Sorption of organic contaminants by carbon nanotubes:Influence of adsorbed organic matter. Environmental Science & Technology, 2008, 42:3207-3212.
    
    [131]李权龙,袁东星.多壁碳纳米管用于富集水样中有机磷农药残留的研究.厦门大学学报(自然科 学版),2004,43(4):531-536.
    
    [132] Cantalini C, Valentini L, Armentano I. et al. Carbon nanotubes as new materials forgas sensing applications. Journal of the European Ceramic Society, 2004, 24:1450-1480.
    
    [133] Cantalini C, Valentini L, Lozzi L.et al. N02 gas sensitivity of carbon nanotubesobtained by plasma enhanced chemical vapor deposition. Sensors and Actuators BChemical, 2003,93:333-337.
    
    [134] Cantalini C, Valentini L, Armentano I. et al. Sensitivity to NO2 and cross - sensitivityanalysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared byPECVD. Sensors and Actuators B Chemical,2003, 95:195-202.
    
    [135] Chen R J, Franklin N R, Kong J, et al. Molecular photodesorption from single-walledcarbon nanotubes. Applied Physics Letters, 2001, 79(14):2258-2260.
    
    [136] Varghese O K, Kichambre P D, Gong D. et al.Gas sensing characteristics of multi-wallcarbon nanotubes. Sensors and Actuators B Chemical, 2001, 81:32-41.
    
    [137] Wang S G, Zhang Q, Yang D. et al. Multi-walled carbon nanotube-based gas sensors for .NH3 detection. Diamond & Related Materials, 2004, 13:1327-1332.
    
    [138] Goldoni A, Larciprete R, Petaccia L, et al. Single-wall carbon nanotube interactionwith gases: Sample contaminants and environmental monitoring. Journal of the AmericanChemical Society, 2003,125(37):11329-11333.
    
    [139] Lawrence N S, Deo R P, Wang J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Analytica Chimica Acta, 2004, 517(1-2):131-137.
    
    [140]王若曦,张东菊,武剑,等.硼氮掺杂的碳纳米管对硫化氢气敏性能的理论研究.化学学报,2007, 65:107-110.
    
    [141]陈金霞,郭淼,陈文菊,等.基于多壁纳米碳管的传感器对甲苯的气敏性研究.传感技术学 报,2005,18(1):39-42.
    
    [142]郭淼,潘敏,陈金霞,等.室温下镀钯多壁碳纳米管对苯的气敏响应特性.分析化学研究简 报,2006,34:1755-1758.
    
    [143]何琼,常艳兵,张承聪.双酚A在多壁碳纳米管修饰电极上电化学性质及其测定研究.云南 大学学报(自然科学版),2004,26(1):70-74.
    
    [144]吕少仿.水中微量苯酚的碳纳米管化学修饰电极测定法.环境与健康杂志,2004,21 (2):104-106.
    
    [145]陈朝平,刘文霞,何晓英.多壁碳纳米管修饰电极对对苯二酚的催化作用.四川师范学院学报 (自然科学版),2003,24(2):177-181.
    
    [146]邓晓峰.碳纳米管修饰电极测定邻苯二酚的研究.绵阳师范学院学报,2005,24(5):77-79.
    
    [147]李明齐,何晓英.碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研究.分析科学学报,2006, 22(3):299-302.
    
    [148]李玉萍.硝基苯在碳纳米管修饰电极上的电化学行为及其分析应用.环境化学,2005,24 (3):315-317.
    
    [149]王晓岗,樊雅娟,张希胜,等.痕量2,4-二硝基苯酚的电化学检测及其反应机理的研究.黑 龙江大学自然科学学报,2007,24(2):164-167.
    
    [150]瞿万云.α-萘胺在多壁碳纳米管-DHP膜修饰电极上的电化学行为及其测定.分析科学学 报,2006,22(1):55-59.
    
    [151]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器.分析实验 室,2007,29(9):9-12.
    
    [152] Zeng Y, Zhu Z H, Wang R X, et al. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode. Electrochimica Acta, 2005,51 (4):649-654.
    
    [153] Liu P F, Hu J H. Carbon nanotube powder microelectrodes for nitrite detechtion. Sensors and Actuators B Chemical, 2002, 84:194-199.
    
    [154]胡军福,刘丹萍.碳纳米管修饰电极在酸性溶液中对NO2-的检测.郧阳师范高等专科学校学 报,2001,21(6):52-54.
    
    [155] Sun H D, Tang Z K, Chen J, et al. Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of A1P04-5 crystals. Applied Physics A-Materials Science & Processing, 1999, 69(4):381-384.
    
    [156]向伟,李将渊,王玉晋,等.MWNT-石墨糊电极阳极溶出伏安法测定铅.西华师范大学学报(自 然科学版),2006,27(2):209-213.
    
    [157] Wu K B, Hu S S, Fei J J, et al. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Analytica Chimica Acta, 2003, 489(2):215-221.
    
    [158]肖亦,潘献晓,晋玉秀,等.碳纳米管修饰玻碳电极同时测定土壤中的铜和镉.商丘师范学院 学报,2006,22(2):121-1224.
    
    [159] DePena Y P, Gallego M, Valcarcel M. Fullerene: A sensitive and selective sorbent for the continuous preconcentration and atomic absorption determination of cadmium. Journal of Analytical Atomic Spectrometry, 1997,12 (4):453-457.
    
    [160] Silva M M, Arruda M A Z, Krug F J, et al. On-line separation and preconcentration of cadmium, lead and nickel in a fullerene (C-60) minicolumn coupled to flow injection tungsten coil atomic absorption spectrometry. Analytica Chimica Acta, 1998, 368 (3): 255-263.
    
    [161] Gonzalez M M, Gallego M, Valcarcel M. Effectiveness of fullerene as a sorbent for the determination of trace amounts of cobalt in wheat flour by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1999, 14(4): 711-716.
    
    [162] baena J R, Gallego M, Valcarcel M. Speciation of inorganic lead and trialkyllead compounds by flame atomic absorption spectrometry following continuous selective preconcentration from aqueous solutions. Spectrochimica Acta Part B-Atomic Spectroscopy,1999,54(13):1869-1879.
    
    [163] Serrano A, Gallego M. Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration. Journal of Separation Science, 2006, 29(1): 33-40.
    
    [164]姜兆华,孙德智,邵光杰.应用表面化学与技术:哈尔滨工业大学出版社.2002.
    
    [165]顾惕人,马季铭,戴乐蓉.表面化学.北京:科学出版社.1999.
    
    [166] James R O, Healy T W. Adsorption of hydrolysable metal ions at the oxide-water interface I. Co (Ⅱ) adsorption on Si02 and Ti02 as model system; Ⅱ. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(Ⅱ), La(Ⅲ) and Th(Ⅳ) as model systems; Ⅲ. A thermodynamic model of adsorption. Journal of Colloid and Interface Science,1972, 40:42-93.
    
    [167] James R O, Stiglich R J, Healy T W. Analysis of models of adsorption of metal ions at oxide-water interface. Faraday Discussions of the Chemical Society, 1975,59: 142-156.
    
    [168] James R O. Characterization of colloids in aqueous systems. Advances in Ceramics, 1987, 21:349-410.
    [169] Anderson M A, Rubin A J. Adsorption of inorganics at solid-liquid interface. London: Ann Arber Science.1981.
    [170] Davis J A, Lechie J O. Speciation of adsorbed ions at the oxide/water interface.In Jenne E A, ed. Chemical Model in Aqueous System. Journal of the American Chemical Society, 1979,93:299-320.
    [171] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria Rates in Natural Waters. New York: Wiley. 1996.
    [172] Zhang Z B, Liu L S. Theory of Interfacial Stepwise Ion/coordination Particles Exchange and it's Applications.Beijing:China Ocean press. 1979.
    [173] Chang C P, Liu L S. A study of the theory of stepwise equilibrium of inorganic ion exchange in seawater II. The theory of distribution equilibrium of inorganic ion exchange in seawater. Collected Oceanic Works,1982, 5(1):67-80.
    
    [174] 张正斌,陈镇东,刘莲生,等.海洋化学原理和应用—中国近海的海洋化学.北京:海洋出版社. 1999.
    [175] Pan G, Liss P S. Metastable equilibrium adsorption theory I. Theoretical. Journal of Colloid and Interface Science, 1998, 201:71-76.
    [176] Pan G, Liss P S. Metastable equilibrium adsorption theory II. Experimental. Journal of Colloid and Interface Science, 1998, 201:77-85.
    [177] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898,24(4):1-39.
    [178] Namasivayam C, kadirvelu K. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid byproduct:coirpith. Carbon, 1999,37:79-84.
    [179] Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 2002,54: 47-58.
    [180] Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud an aluminium industry waste. Water Research, 2001, 35:1125-1134.
    [181] Rao M M, Ramesh A, Rao G P C, et al. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous materials,2006, 129:123-129.
    [182] Ho Y S, Mckay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process safety and Environmental Protechtion.1998, 76B:183-191.
    [183] Ekinci E, Budinova T, Yardim F. et al. Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals. Fuel Processing Technology, 2002, 77-78:437-443.
    [1] Li Y F, Qiu J S, Zhao Z B. et al. Bamboo-shaped carbon tubes from coal. Chemical Physics Letters, 2002,366(5-6):544-550.
    
    [2] Qiu J S, Li Y F, Wang Y P. et al. A novel form of carbon micro-balls from coal. Carbon, 2003, 41(4):767-772.
    [3] Qiu J S, Li Y F, Wang Y P. Novel fluffy carbon balls obtained from coal which consist of short curly carbon fibres. Carbon, 2004,42(11):2359-2362.
    [4] Lopez-Ramon M V, Stoeckli F, Moreno-Castilla C. et al. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999,37:1215-1221.
    [5] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938,60(2):309-319.
    
    [6] Jaroniec M. Access to Nanoporous Materials. New York: Plenum Press. 1995.
    [7] Gregg S J, Sing K S W. Adsorption, surface area and porosity. London:Aademic. 1982.
    [8] Lastoskie C, Gubbins K E, Quirke N. Pore size distribution analysis of microporous carbon:a density functional thery approach. the Journalof Physical Chemistry,1993, 97(18):4786-4796.
    [9] Olivier J P. Modeling physical adsorptionon porous and nonporous solids using density functional theory, the Journal of Porous Materials, 1995, 2(1):9-17.
    
    [10] Jagiello J, Bandosz T J, Schwarz J A. Carbon surface characterization in terms of its acidity constant distribution. Carbon,1994,32:1026-1028.
    
    [11] Salame I I, Bandosz T J. Comparison of the surface features of two wood-based activated carbons. Industrial and Engineering Chemistry Research, 2000, 39:301-306.
    
    [12] Jagiello J. Stable numerical solution of the adsorption integral equation using splines. Langmuir,1994,10:2778-2785.
    [13] Dubinin M M. In Chemistry and Physics of Carbon, Walker P L, Editor. 1966, M. Dekker: New York, 51-120.
    [1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348):56-58.
    [2] Li Y H, Wang S G, Wei J Q. et al. Lead adsorption on carbon nanotubes. Chemical Physics Letters,2002,357(3-4):263-266.
    [3] Li Y H, Wang S G, Luan Z K. et al. Adsorption of cadmium from aqueous solution by surface oxidized carbon nanotubes.Carbon, 2003, 41(5):1057-1062.
    [4] Lu C, Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science,2006,61 (4):1138-1145.
    [5] Lu C, Chiu H, Liu C. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial and Engineering Chemistry Research, 2006, 45(8):2850-2855.
    [6] Li Y H, Zhu Y Q, Zhao Y M. et al. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond & Related Materials, 2006, 15:90-94.
    [7] Chen M, Yu H W, Chen J H, Koo H S. Effect of purification treatment on adsorption characteristics of carbon nanotubes. Diamond and Related Materials, 2007, 16(4-5): 1110-1115.
    [8] Ito T, Sun L, Crooks R M.Electrochemical etching of individual multiwall carbon nanotubes. Electrochemical and Solid State Letters, 2003, 6(1):C4-C7.
    [9] Li J, Bai R B. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 2002, 18:9765-9770.
    
    [10] Zhang X, Bai R B.Deposition/Adsorption of colloids to surface-modified granules: effect of surface interactions. Langmuir, 2002, 18:3459-3465.
    
    [11] Bai R B, Zhang X. Polypyrrole-coated granules for humic acid removal. Journal of Colloid and Interface Science,2001, 243:52-60.
    
    [12] Zhang X, Bai R B. Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6 granules. Journal of Materials Chemistry, 2002, 12:2733-2739.
    [13] Bulusheva L G, Okotrub A V, Asanov I P. et al. Comparative study on the electronic structure of arc-discharge and catalytic carbon nanotubes. Journal of Physical Chemistry B, 2001, 105:4853-4859.
    [14] Sanchez-Polo M, Rivera-Utrilla J. Adsorbent-Adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons. Environmental Science and Technology, 2002, 36:3850-3854.
    [15] Rivera-Utrilla J, Sdnchez-Polo M. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ-cation interactions. Water Reaseach, 2003, 37:3335-3340.
    
    
    [16] El-Hendawy A A. Influence of HNO_2 oxidation on the structure and adsorptive propertiesof corncob-based activated carbon. Carbon, 2003,41 (4):713-722.
    
    [17] Yue Z R, Jiang W, Wang L. et al. Adsorption of precious ions onto electrochemicallyoxidized carbon fibers.Carbon, 1999, 37(10):1607-1618.
    
    [18] Kortum G, Vogel W, Andrussow K.Dissociation constants of organic acids in aqueoussolutions. London: Burtterworth. 1961.
    
    [19] Kelemen S R, Freund H. XPS characterization of glassy-carbon surfaces oxidized by O_2,CO_2 and HNO_3. Energy Fuels, 1988, 2:111-118.
    
    [20] Gardner S D, Singamsetty C S K, Booth G L. et al. Surface charactorization of carbonfibers using angle-resolved XPS and ISS.Carbon, 1995, 33:587-595.
    
    [21] Park S II, McClain S, Tian Z R. et al. Surface and bulk measurements of metals depositedon activated carbon. Chemical Materials, 1997,9:176-183.
    
    [22] Darmstadt H, Roy C, Kaliaguine S. ESCA characterization of commercial carbon blacksand of carbon blacks from vacuum pyrolysis of used tires. Carbon, 1994,32:1399-1406.
    
    [23] Lee, W. H., Lee, J. G. , Reucroft, P. J. XPS study of carbon fiber surfaces treated bythermal oxidation in a gas mixture of O_2/(O_2+N_2). Applied Surface Science, 2001,171:136-142.
    
    [24] Hilttinger K J, Zielke U, Hoffman W P.Surface-oxidized carbon fibers: I. surfacestructure and chemistry. Carbon, 1996, 34:983-998.
    
    [25] Jagiello J, Bandosz T J, Schwarz J A. Carbon surface characterization in terms of itsacidity constant distribution. Carbon, 1994, 32:1026-1028.
    
    [26] Salame I I, Bandosz T J. Comparison of the surface features of two wood-based activatedcarbons. Industrial and Engineering Chemistry Research, 2000, 39:301-306.
    
    [27] Jagiello J. Stable numerical solution of the adsorption integral equation using splines.Langmuir, 1994,10:2778-2785.
    
    [28] Kadiryelu K, Namasivayam C. Activated carbon from coconut coirpith as metal adsorbent:adsorpioton of Cd (Ⅱ) from aqueous solution. Advance in Environmental Research, 2003, 7:471-478.
    
    [29] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria Rates in Natural Waters. NewYork: Wiley. 1996.
    
    [30] Snoeyink V L, Jenkins D.Water chemistry. New York: Wiley.1980.
    
    [31]李延辉,碳纳米管的制备及其在环境保护中的应用研究.2003,清华大学:北京.
    
    [32] Choi W W, Chen K Y. The removal of fluoride from wastes by adsorption. Journal AWWA, 1979,71 (10):562-570.
    
    [33] Moulder J F, Stickle W F, Sobol P E.et al. In: Chastin J,editor, Handbook of X-rayphotoelectin spectroscopy.Eden Prairie:MN:Perkin-Elmer Corp.1992.
    [34] Rao M M, Ramesh A, Rao G P C. et al. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials,2006, 129:123-129.
    [35] Li Y H, Di Z C, Ding J. et al. Adsorption thermodynamic, kinetic and desorption studies of Pb~(2+) on carbon nanotubes. Water Research, 2005, 39(4):605-609.
    [36] Li Y H, Di Z C, Ding J. et al. Removal of heavy metals from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies. Journal of Environmental Science,2004,16 (2): 208-211.
    [37] Dzombak D A, Morel F M M. Surface complexation modeling. Hydrous ferric oxide. New York: Wiley. 1990.
    [38] Hingeston F J, A review of anion adsorption; Kinniburgh DG. Cation adsorption by Hydrous Metal Oxides and Clay. in Adsorption of inorganics at solid-liquid interfaces, Anderson M A, Rubin A J, Editor. 1981, Ann Arbor Science Publishers. 45-139.
    [39] Sanchez-Polo M, Rivera-Utrilla J. Adsorbent-Adsorbate interactions in the adsorption of Cd (II) and Hg (II) on ozonized activated carbons. Environmental Science and Technology,2002, 36:3850-3854.
    [40] Goel J, Kadirvelu K, Rajagopal C, Garg V K. Cadmium(II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Industrial and Engineering Chemistry Research, 2006, 45(19) :6531-6537.
    [41] Mohan D, Singh K P. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Reaseach, 2002, 36: 2304-2318.
    [42] Ucer A, Uyanik A, Aygun S F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 2006, 47(3):113-118.
    [43] Ulmanu M, Maranon E, Fernandez Y, et al. Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, and Soil Pollution,2003,142(1-4):357-373.
    [44] Babic B M, Milonjic S K, Polovina M J, et al. Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 2002, 40(7) : 1109-1115.
    [1] Li Y H, Wang S G, Wei J Q. et al.Lead adsorption on carbon nanotubes. Chemical Physics Letters, 2002, 357(3-4):263-266.
    
    [2] Li Y H, Wang S G, Luan Z K. et al. Adsorption of cadmium from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5):1057-1062.
    [3] Di Z C, Li Y H, Luan Z K. et al. Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorption Science and Technology, 2004, 22(6):467-474.
    [4] Lu C, Chiu H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4):1138-1145.
    [5] Ramesh A, Lee D J, Wong J W C. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents. Journal of Colloid and Interface Science, 2005,291 (2):588-592.
    [6] Ozcan A, ozcan A S, Tunali S. et al. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicum annuum. Journal of Hazardous materials,2005,124(1-3):200-208.
    [7] Romero-Gonzalez J, Peralta-Videa J R, Rodriiguez E. et al. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. Journal of Chemical Thermodynamics, 2005, 37(4):343-347.
    [8] Li Y H, Di Z C, Ding J. et al. Adsorption thermodynamic, kinetic and desorption studies of Pb~(2+) on carbon nanotubes. Water Research, 2005, 39(4):605-609.
    [9] Tahir S S, Rauf N. Thermodynamic studies of Ni (II) adsorption onto bentonite from aqueous solution. Journal of Chemical Thermodynamics, 2003, 35(12):2003-2009.
    [10] Segal B G. Chemistry - Experiment and Theory. New York:John Wiley and Sons. 1985.
    [11] Kanno H, Hiraishi J A.Raman study of aqueous solutions of ferric nitrate, ferrous chloride and ferric chloride in the glassy state. Journal of Raman Spectroscopy, 1982, 12: 224-227.
    
    [12] Apted M J, Waychunas G A, Brown G E. Structure and specification of iron complexes in aqueous solutions determined by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 1985,49(10):2081-2089.
    [13] Koplitz L V, McClure D S, Crerar D A. Spectroscopic study of chloroiron(II) complexes in LiCl-DCl-D_2O solutions. Inorganic Chemistry, 1987, 26:308-313.
    [14] Heinrich C A, Seward T M. A spectrophotometric study of aqueous chloride complexing from 25℃ to 200℃. Geochimica et Cosmochimica Acta, 1990, 54:2207-2221.
    [15] Standley C L, Kruh R F. On the structure of ferric chloride solutions. Journal of Chemical Physics, 1961, 34:1450-1451.
    [16] Ngah W W S, Ghani S A, Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 2005,96:443-450.
    [17] Liu C Q, Wu J H, Yu W H. Controls of interactions between iron hydroxide colloid and water on REE fractionations in surface waters: Experimental study on pH-controlling mechanism. Science in China Series D-Earth Sciences, 2002, 45(5):449-458.
    [18] Ekinci E, Budinova T, Yardim F. et al. Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals. Fuel Processing Technology, 2002, 77- 78:437-443.
    [19] Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous materials,2005, 123(1-3): 223-231.
    [20] Niwas R, Gupta U, Khan A A. et al. The adsorption of phosphamidon on the surface of styene supported zirconium tungstophophate: a thermodynamic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 164:115-119.
    [1] Li Y H, Wang S G, Wei J Q. et al. Lead adsorption on carbon nanotubes. Chemical Physics Letters,2002,357(3-4):263-266.
    
    [2] Li Y H, Wang S G, Luan Z K. et al. Adsorption of cadmium from aqueous solution by surface oxidized carbon nanotubes. Carbon,2003,41 (5):1057-1062.
    [3] Di Z C, Ding J, Peng X J. et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere,2006,62(5):861-865.
    [4] Di Z C, Li Y H, Luan Z K. et al. Adsorption of chromium(VI) ions from water by carbon nanotubes.Adsorption Science and Technology, 2004, 22(6):467-474.
    [5] Lu C, Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4):1138-1145.
    [6] Lu C, Chiu H, Liu C. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial and Engineering Chemistry Research, 2006, 45(8):2850-2855.
    [7] Li Y H, Ding J, Luan Z K. et al. Competitive adsorption of Pb~(2+), Cu~(2+) and Cd~(2+) ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41 (14) :2787-2792.
    [8] Bautista-Toledo I, Rivera-Utrilla J, Ferro-Garcia M A. et al. Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid. Carbon, 1994, 32(1):93-100.
    [9] Li Y H, Zhu Y Q, Zhao Y M. et al. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution.Diamond & Related Materials, 2006, 15:90-94.
    [10] Jia Y F, Thomas K M. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 2000, 16:1114-1122.
    
    [11] Lopez-Gonzalez J D, Moreno-Castilla C, Guerrero-Ruiz A. et al. Effect of carbon-oxygen and carbon-sulphur surface complexes on the adsorption of mercuric chloride in aqueous solutions by activated carbons. Journal of Chemical Technology and Biotechnology, 1982, 32(5):575-579.
    [12] Ucer A, Uyanik A, Aygun S F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 2006, 47 (3) :113-118.
    [13] Leon y Leon C A, Radovic L R, Interfacial chemistry and electrochemistry of carbon surfaces., in Chemistry and Physics of Carbon, Thrower P A, Editor, Dekker: New York. 213-294.
    [14] Bandosz T J, Jagiello J, Schwarz A. Effect of surface chemical groups on energetic heterogeneity of activated carbons.Langmuir, 1993, 9(10):2518-2522.
    [15] Bandosz T J, Ania C O. Surface chemistry of activated carbons and its characterization., in Activated carbon surfaces in environmental remediation. Interface Science and Technology, Bandosz T J,Editor. 2006, Elsevier. 159-229.
    [16] Kadirvelu K, Namasivayam C. Activated carbon from coconut coirpith as metal adsorbent: adsorpioton of Cd (II) from aqueous solution. Advance in Environmental Research, 2003, 7: 471-478.
    [17] Jia Y F, Steele C J, Hayward I P. et al. Mechanism of adsorption of gold and silver species on activated carbons. Carbon,1998,36(9):1229-1308.
    [18] Fu R W, Zeng H M, Lu Y. The reduction property of activated carbon fibers. Carbon, 1993, 31 (7) : 1089-1094.
    [19] Huang C P, Blankenship D W. The removal of mercury (II) from dilute aqueous solution by activated carbon. Water Reaseach, 1984, 18(1):37-46.
    [20] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria Rates in Natural Waters. New York: Wiley. 1996.
    [21] Seco A, Marzal P, Gabaldon C, et al. Study of adsorption of d and Zn onto an activated carbon: influence of pH, cation concentration, and adsorbent concentration. Separation Science and Technology,1999,34:1577-1593.
    [22] Mohan D, Singh K P. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Reaseach, 2002, 36: 2304-2318.
    [23] Kortum G, Vogel W, Andrussow K. Dissociation constants of organic acids in aqueous solutions. London: Burtterworth. 1961.
    [24] Dzombak D A, Morel F M M. Surface complexation modeling. Hydrous ferric oxide. New York:Wiley. 1990.
    [25] Hingeston F J, A review of anion adsorption; Kinniburgh DG. Cation adsorption by Hydrous Metal Oxides and Clay. in Adsorption of inorganics at solid-liquid interfaces, Anderson M A, Rubin A J, Editor. 1981, Ann Arbor Science Publishers.45-139.
    [26] Segal B G. Chemistry - Experiment and Theory. New York:John Wiley and Sons. 1985.
    [27] Park S J, Kim Y M. Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers. Materials Science and Engineering A, 2005,391 (1-2):121-123.
    [28] Michael H J, Ayebaemi I S. Effect of metal ion concentration on the biosorption of Pb~(2+) and Cd~(2+) by Caladium bicolor (wild cocoyam). African Journal of Biotechnology,2005,4 (2): 191-196.
    [29] Kobya M, Demirbas E, Senturk E. et al.Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresourcc Technology, 2005, 96(13):1518-1521.
    [30] Zielke U, Huttinger K J, Hoffman W P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 1996, 34:983-998.
    [31] Yue Z R, Jiang W, Wang L.et al. Adsorption of precious ions onto electrochemically oxidized carbon fibers.Carbon, 1999, 37(10) :1607-1618.
    [32] Darmstadt H, Roy C, Kaliaguine S. ESCA characterization of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires. Carbon, 1994, 32:1399-1406.
    [33] Xiao B, Thomas K M. Competitive Adsorption of Aqueous Metal Ions on an Oxidized Nanoporous Activated Carbon. Langmuir, 2004, 20(11) :4566-4578.
    [34] Gabaldon C, Marzal P, Ferrer J. et al.Single and competitive adsorption of Cd and Zn onto a granular activated carbon. Water Reaseach, 1996,30(12):3050-3060.
    [35] Allen S J, Brown P A. Isotherm analyses for single component and multi-component metal sorption onto lignite. Journal of Chemical Technology and Biotechnology,1995,62 (1): 17-24.
    [36] Paras T, Lisa A, James D. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and Surfaces A,2001,191(1-2):107-121.
    
    
    [1]沈曾民.新型碳材料.北京:化学工业出版社.2003.
    
    [2]李永峰,煤基纳米和微米炭材料的电弧法制各研究.2004,大连理工大学:大连.
    
    [3] El-Hendawy A A. Influence of HNO_3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 2003, 41(4):713-722.
    
    [4]贺福.碳纤维及其应用技术.北京:化学工业出版社.2004.
    
    [5] Rao M M, Ramesh A, Rao G P C. et al. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006,129:123-129.
    
    [6] Li Y H, Di Z C, Ding J. et al. Adsorption thermodynamic, kinetic and desorption studiesof Pb~(2+) on carbon nanotubes. Water Research, 2005,39(4):605-609.
    
    [7] Li Y H, Di Z C, Ding J. et al.Removal of heavy metals from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies. Journal of Environmental Science, 2004, 16: 208-211.
    
    [8] Rivera-Utrilla J, Sánchez-Polo M. Adsorption of Cr(III) on ozonised activated carbon.Importance of Cπ-cation interactions. Water Reaseach,2003, 37:3335-3340.
    
    [9] Hingeston F J. A review of anion adsorption; Kinniburgh D G. Cation adsorption by Hydrous Metal Oxides and Clay, in Adsorption of inorganics at solid-liquid interfaces, Anderson M A, Rubin A J, Editor. 1981,Ann Arbor Science Publishers. 45-139.
    
    [10] Dabrowski A. Adsorption and its Applications in Industry and EnvironmentalProtection. Amsterdam:Elsevier. 1999.
    
    [11] Segal B G. Chemistry - Experiment and Theory. New York:John Wiley and Sons. 1985.
    
    [12] Lutzenkirchen J, Behra Ph. On the surface precipitation model for cation sorption atthe (hydr)oxide water interface. Aquatic Geochemistry, 1996, 1(4):375-396.
    
    [13] Farley K L, Dzombak D A, Morel F M M. A surface precipitation model for the sorption of cations on metal oxides.Journal of Colloid and Interface Science, 1985, 106(1): 226-242.
    
    [14] Srivastava V C, Mall I D, Mishra I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 2006, 117(1): 79-91.
    
    [15] Li Y H, Wang S G, Luan Z K. et al. Adsorption of cadmium from aqueous solution by surfaceoxidized carbon nanotubes. Carbon, 2003, 41(5):1057-1062.
    
    [16](?)cer A, Uyanik A, Aygun S F. Adsorption of Cu(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) ions by tannic acid immobilised activated carbon. Separation and Purification Technology,2006,47 (3):113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700