用户名: 密码: 验证码:
部分雀形目鸟类的CoⅠ和Cytb基因序列测定及其系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雀形目(Passeriformes);是现存鸟类中种类最多、适应辐射最广的类群,其系统发育关系一直存有争议。已有学者采用采用线粒体DNA等分子标记对部分雀形目鸟类的分子系统发育关系进行了一些探讨,但种类有限。本文通过PCR扩增、直接测序或克隆测序,对来自四川地区的部分雀形目鸟类的线粒体DNA细胞色素b基因全序列(1143 bp)和CoⅠ基因部分序列(1176 bp)的组成特点及其系统发育关系进行了比较分析,尤其针对分类地位上目前还存在争议的鸫亚科、画眉亚科鸟类,分别以树麻雀(Passer montanus)、荒漠伯劳(Lanius isabellinus)和灰树鹊(Dendrocitta formosae)为外群构建它们的系统发生树,深入探讨了这两个亚科鸟类的系统发育关系及其分类地位。主要结果如下:
     1)获得了69种雀形目鸟类的Cytb基因全序列和CoⅠ基因部分序列,联合数据集序列长度为2319 bp,共有变异位点1000个,占总位点数的43.1%;简约信息位点923个,占变异位点数的92.3%;T、C、A、G碱基的平均含量分别为24.8%、32.2%、27.6%、15.4%。
     2)Sibley & Ahlquist分类系统中雀小目(Corvida)的莺总科(Sylvioidea)、鹟总科(Muscicapoidea)和雀总科(Pasesoridea)三个类群,以及鸦小目(Passerida)的鸦总科(Corvoidea),在本文中得到进一步验证,但莺总科为非单系类群。山雀属(Parus)为一单独类群;长尾山雀类与莺亚科鸟类的关系远比与山雀属鸟类的关系近,不是山雀科(Paridae)的一个属。攀雀科(Remizidae)应归属于莺总科。燕雀类与鹀类的分歧达到科级水平,分别归属为燕雀科和鹀科。
     3)鸫亚科鸟类为非单系,被分为2个支系,一个支系包括鸫属(Turdus)和地鸫属(Zoothera)。另一个支系包括红尾鸲属(Phoeicurus)、鸲属(Tarsiger)、燕尾属(Enicurus)和啸鸫属(Myiophonus)。宝兴歌鸫(Turdus mupinensis)独立于鸫属而与虎斑地鸫(Zoothera dauma)形成单独一个分支,宝兴歌鸫的分类地位独特。
     4)画眉亚科鸟类被分为2大支系,非单系。传统认为属于画眉科的鵙鹛属(Pteruthius)、鳞胸鹪鹛(Pnoepyga albiventer)和褐胁雀鹛(Alcippe dubia)与画眉亚科其他物种之间亲缘关系很远,而暗绿绣眼鸟(Zosterops japonicus)置于画眉亚科中,其分类地位需要重新认识。并证实噪鹛属(Garrulax)和雀鹛属(Alcippe)为多系类群。鸦雀属(Paradoxornis)属于画眉亚科,穗鹛(Stachyris)和钩嘴鹛(Pomatorhinus)具有较近的亲缘关系,联合数据集未能较好地反映希鹛属物种在形态上的差异。
     5)研究表明CoⅠ基因能够为重建鸟类系统发育关系提供足够的系统发育信息。基于与联合数据集的比较分析,COⅠ基因适合用于分析科内属间系统发育关系,当然它也能作为鉴别物种的分子标记,但不够稳定、准确,因此,本文建议应联合其他分子标记组合分析。
The birds of Passeriformes are the group which are the largest number and the broadest adaptive radiation of existent aves, their molecular phylogeny have been focused on for a long time. Former molecular phylogeny of the limited passerines had been studied by mitochondrial DNA. In this paper, by PCR amplification, direct sequencing or cloning and sequencing method, partion cytochrome oxidase subunitⅠgene (CoⅠ)and complete cytochrome b gene (Cytb) sequences of our samples in Sichuan were analyzed. We analyzed the sequences composition and characteristic of the combined sequences, and builted phylogenetic trees. Furthermore, Passer montanus, Lanius isabellinus and Dendrocitta formosae were respectively selected as outgroup, we deeply analysed their phylogenetic relationship to defecate the mistiness questions about tradition classify in the Turdinae and Timaliinae, and discussed the station of their species. The results showed as follow:
     1)The combined sequences of the Cytb and CoⅠgenes of 69 species from songbird (Aves:Passeriformes) resulted in an alignment of 2319 nucleotides. The variable sites were 1000,43.1% of all sites. The parsimony informative sites were 923,92.3% of the variable sites. The average composition of four bases T, C, A and G were 24.8%,32.2%,27.6%, 15.4%, respectively.
     2) This verified four superfamilies, i.e. Sylvioidea, Muscicapoidea and Pasesoridea within Passerida and Corvoidea within Passerida from Sibley-Ahlquist taxonomy based on DNA hybridization studies, but The Sylvioidea was nonmonophyly among them. The Paridae was a individual group, the Remizidae was placed in the superfamily Sylvioidea, This study also found that Aegithalos concinnus was distantly related to the genera Parus in the Paridae birds, but closely related to the Sylviinae.Fringillids and Emberizids reached a familial level and should be listed into the families Fringillidae and Emberizidae, respectively.
     3)The Turdinae was nonmonophyly. In the phylogenetic trees, the species examined in the study were clustered into two clades. One clade included the genera Turdus and Zoothera. The other clade included the genera Phoenicurus, Enicurus, Tarsiger and Myiophonus. Turdus mupinensis was out of the genus Turdus, forming a single clade with Zoothera dauma, so its Taxonomic status was unusual.
     4) The Timaliinae was nonmonophyly too. The results indicated that it consisted of 2 lineages. And several species traditionally placed among the Timaliinae, two species from the genus Pteruthius, Pnoepyga albiventer and Alcippe dubia, were not related to the Timaliinae. Furthermore, the phylogenetic hypotheses inferred from molecular data suggested that the Timaliinae should include Zosterops japonicas. All topologies of the genera in this study were stable, and confirmed that the genera Garrulax and Alcippe were polyphyletic groups. The Paradoxornis was a genus of the Timaliinae. The genera Stachyris and Pomatorhinus were closely related. The combined data could not indicate the morphological difference of species from the genus Minla.
     5) Studies showed that the CoⅠgene was(suitable to identify the phylogenetic relationship of avian genus unit, and it can be used to identify avian species, but it was less stable and accurate than the combined sequences,so we suggested it should be analysed with other molecular makers.
引文
[1]黄原.分子系统学—原理,方法及应用[M].北京:中国农业出版社,1998.
    [2]Felsenstein, J. Phylogenies from molecular sequences:inference and reliability[J]. Annual Review of Genetics,1988,22(1):521-565.
    [3]张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    [4]王亚明,周开亚.PCR介导的DNA序列系统分析在系统动物学中的应用[J].动物学杂志,1996,31(003):54-60.
    [5]Saitou, N., M. Nei. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J].Mol Biol Evol,1987,4(4):406-425.
    [6]Fitch, W. Toward defining the course of evolution:minimum change for a specific tree topology[J]. Systematic Zoology,1971,20(4):406-416.
    [7]Holder, M., P.O. Lewis. Phylogeny estimation:traditional and Bayesian approaches[J].Nat Rev Genet,2003,4(4):275-284.
    [8]Felsenstein, J. Evolutionary trees from DNA sequences:a maximum likelihood approach[J].J Mol Evol,1981,17(6):368-376.
    [9]李涛,赖旭龙,钟扬.利用DNA序列构建系统树的方法[J].遗传,2004,26(2):205-210.
    [10]张原,陈之端.分子进化生物学中序列分析方法的新进展[J].植物学通报,2003,20(4):462-468.
    [11]雷富民.鸟类鸣声在鸟类系统学研究中的作用初探[J].动物分类学报,1999,24(4):461-466.
    [12]Desjardins, P., R. Morais. Sequence and gene organization of the chicken mitochondrial genome:A novel gene order in higher vertebrates[J].Journal of Molecular Biology,1990,212(4):599-634.
    [13]Nishibori, M., T. Hayashi, M. Tsudzuki, et al. Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species[J].Animal Genetics,2001,32(6):380-385.
    [14]Dittmann, D., R. Zink. Mitochondrial DNA variation among phalaropes and allies[J].Auk,1991, 108(4):771-779.
    [15]李庆伟,林津,文伟等.鸮形目8种鸟类线粒体DNA多态性研究[J].动物学报,1998,44(1):94-101.
    [16]李庆伟,李爽,田春宇等.雀形目10种鸟类线粒体的DNA变异及分子进化[J].动物学报,2002,48(5):625-632.
    [17]Sun, Y.,F. Ma, B.Xiao, et al.The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis[J].Science in China Series C:Life Sciences,2004,47(6): 510-520.
    [18]Bensch, S.Mitochondrial genomic rearrangements in songbirds[J].Mol Biol Evol,2000,17(1): 107-113.
    [19]Mindell, D.,M. Sorenson,D. Dimcheff. Multiple independent origins of mitochondrial gene order in birds[J].Proc Natl Acad Sci USA,1998,95(18):10693-10697.
    [20]Marshall, H., A. Baker. Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris)[J].Mol Biol Evol,1997, 14(2):173-184.
    [21]Haddrath, O., A. Baker. Complete mitochondrial DNA geonome sequences of extinct birds:ratite phylogenetics and the vicariance biogeography hypothesis[J].Philos Trans R Soc Lond B Biol Sci, 2001,268(1470):939-945.
    [22]Boore, J. L., W. M. Brown. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool[J].Curr Opin Genet Dev,1998,8(6):668-674.
    [23]Hajibabaei, M., D. H. Janzen, J. M. Burns, et al.DNA barcodes distinguish species of tropical Lepidoptera[J].Proc Natl Acad Sci USA,2006,103(4):968-971.
    [24]Schindel, D., S. Miller. DNA barcoding a useful tool for taxonomists[J].Nature,2005,435(7038): 17.
    [25]肖金花,肖晖,黄大卫.生物分类学的新动向—DNA条形编码[J].动物学报,2004,50(5):852-855.
    [26]Hebert, P.D., T. R. Gregory. The promise of DNA barcoding for taxonomy[J].Syst Biol,2005, 54(5):852-859.
    [27]Arnot, D.,C.Roper, R. Bayoumi. Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates[J]. Molecular and biochemical parasitology,1993,61(1):15-24.
    [28]Hebert, P., A.Cywinska, S. Ball,et al.Biological identifications through DNA barcodes[J].Philos Trans R Soc Lond B Biol Sci,2003,270(1512):313-321.
    [29]Hebert, P.,M. Stoeckle, T. Zemlak, et al.Identification of birds through DNA barcodes[J].PLoS Biology,2004,2(10):1657-1663.
    [30]Webb, D., W.Moore. A phylogenetic analysis of woodpeckers and their allies using 12S, Cyt b, and COI nucleotide sequences (class Aves; order Piciformes)[J].Mol Phylogenet Evol,2005,36(2): 233-248.
    [31]Zhang, W., F. Lei, G. Liang, et al.Taxonomic status of eight Asian shrike species (Lanius): phylogenetic analysis based on Cyt b and Col gene sequences[J].Acta Ornithologica,2007,42(2): 173-180.
    [32]雷忻,廉振民,雷富民等.基于线粒体COI基因探讨鹟亚科部分属和种的分类地位[J].动物学研究,2007,28(3):291-296.
    [33]梁刚,李涛,尹祚华等.利用CoI基因序列对雀科鸟类的分子系统发育关系初探[J].动物学研究,2008,29(5):465-475.
    [34]梁刚,张卫,雷富民等.雀形目15种鸟类CoI与Cytb基因序列的比较[J].动物分类学报,2007,32(3):613-620.
    [35]Chase, M.W.,N.Salamin, M. Wilkinson, et al.Land plants and DNA barcodes:short-term and long-term goals[J].Philos Trans R Soc Lond B Biol Sci,2005,360(1462):1889-1895.
    [36]Irwin, D.,T. Kocher,A.Wilson.Evolution of the cytochrome b gene of mammals[J].Journal of Molecular Evolution,1991,32(2):128-144.
    [37]Gray, M. W. Origin and evolution of mitochondrial DNA[J]. Annu Rev Cell Biol,1989,5:25-50.
    [38]Moore, W., V.DeFilippis. The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b[J]. Avian molecular evolution and systematics,1997,83-119.
    [39]Harlid, A.,A. Janke, U. Arnason. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds[J]. Mol Biol Evol,1997,14(7):754-761.
    [40]Sheldon,F., L. Whittingham, D. Winkler. A comparison of cytochrome b and DNA hybridization data Bearing on the phylogeny of swallows (Aves:Hirundinidae)[J]. Mol Phylogenet Evol,1999, 11(2):320-331.
    [41]潘巧娃,雷富民,杨淑娟等.基于细胞色素b的鸫亚科部分鸟类的系统进化[J].动物学报,2006,52(1):87-98.
    [42]向余劲攻,杨岚.白腹锦鸡和红腹锦鸡的遗传分化[J].遗传,2000,22(4):225-228.
    [43]Edwards, S.V., W. Bryan Jennings, A. M. Shedlock. Phylogenetics of modern birds in the era of genomics[J]. Proc Biol Sci,2005,272(1567):979-992.
    [44]郑光美.世界鸟类分类与分布名录[M].北京:科学出版社,2002.
    [45]郑宝赉.中国动物志-鸟纲(第九卷)[M].北京:科学出版社,1985.
    [46]郑作新.中国鸟类系统检索[M].北京:科学出版社,2002.
    [47]郑光美.中国鸟类分类与分布名录[M].北京:科学出版社,2005.
    [48]赵洪峰,雷富民.雀形目高级阶元分类与起源研究概况[J].动物分类学报,2004,29(2):188-193.
    [49]Cracraft, J. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event[J].Proc Biol Sci,2001,268(1466):459-469.
    [50]Edwards, S.V.,W. E. Boles. Out of Gondwana:the origin of passerine birds[J].Trends in Ecology & Evolution,2002,17(8):347-349.
    [51]Ericson, P.G., L. Christidis, A.Cooper, et al.A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens[J].Proc Biol Sci,2002,269(1488):235-241.
    [52]Sheldon, F.,F. Gill. A reconsideration of songbird phylogeny, with emphasis on the evolution of titmice and their sylvioid relatives[J].Syst Biol,1996.45(4):473-495.
    [53]Ames, P. The morphology of the syrinx in passerine birds[M].Peabody Museum of Natural History, Yale University,1971.
    [54]Mayr, E.,D. Amadon. A classification of recent birds[M].Am.Mus.Novit,1951,1-42.
    [55]常家传,马金生,鲁长虎.鸟类学[M].哈尔滨:东北林业大学出版社,1998.
    [56]Sibley, C.,J. Ahlquist. Phylogeny and classification of birds[M].Yale University Press New Haven, 1990.
    [57]Irestedt, M.,J.Fjeldsa,U.S. Johansson, et al.Systematic relationships and biogeography of the tracheophone suboscines (Aves:Passeriformes)[J].Mol Phylogenet Evol,2002,23(3):499-512.
    [58]Ericson, P. G. P.,L. Christidis, M.Irestedt, et al.Systematic affinities of the lyrebirds (Passeriformes:Menura), with a novel classification of the major groups of passerine birds[J].Mol Phylogenet Evol,2002,25(1):53-62.
    [59]Ericson, P.,U. Johansson,T. Parsons. Major divisions in oscines revealed by insertions in the nuclear gene c-myc:a novel gene in avian phylogenetics[J]. Auk,2000,117(4):1069-1078.
    [60]Ericson, P.G. P.,U.S. Johansson. Phylogeny of Passerida;(Aves:Passeriformes) based on nuclear and mitochondrial sequence data[J].Mol Phylogenet Evol,2003,29(1):126-138.
    [61]Barker, F.K., G. F. Barrowclough, J. G. Groth. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data[J].Proc Biol Sci,2002,269(1488):295-308.
    [62]Barker, F. K.,A. Cibois, P.Schikler, et al. Phylogeny and diversification of the largest avian radiation[J].Proc Natl Acad Sci USA,2004,101(30):11040-11045.
    [63]Alstrom, P., P. G. Ericson, U. Olsson, et al. Phylogeny and classification of the avian superfamily Sylvioidea[J]. Mol Phylogenet Evol,2006,38(2):381-397.
    [64]Cibois, A.,M. Kalyakin, H. Lian-Xian, et al.Molecular phylogenetics of babblers (Timaliidae): revaluation of the genera Yuhina and Stachyris[J].Journal of Avian Biology,2002,33:380-390.
    [65]Whittingham, L. A.,B.Slikas, D. W.Winkler, et al.Phylogeny of the Tree Swallow Genus, Tachycineta (Aves:Hirundinidae), by Bayesian Analysis of Mitochondrial DNA Sequences[J].Mol Phylogenet Evol,2002,22(3):430-441.
    [66]Zink, R., J. Weckstein. Recent evolutionary history of the fox sparrows (genus:Passerella)[J].Auk, 2003,120(2):522-527.
    [67]Luo, X.,Y. Qu, L. Han, et al.A phylogenetic analysis of laughingthrushes (Timaliidae:Garrulax) and allies based on mitochondrial and nuclear DNA sequences[J].Zoologica Scripta,2008,38(1): 9-22.
    [68]马玉堃,国会艳,牛黎明.雀形目38种鸟类线粒体cytb的引物设计PCR优化[J].林业科技,2005,30(6):29-32.
    [69]Saetre, G., T. Borge, J.Lindell, et al. Speciation, introgressive hybridization and nonlinear rate of molecular evolution in flycatchers[J]. Molecular Ecology,2001,10(3):737-749.
    [70]Sorenson, M., J. Ast, D. Dimcheff, et al. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates[J].Mol Phylogenet Evol,1999,12(2):105-114.
    [71]Sambrook, J.,E. Fritsch, T. Maniatis.分子克隆实验指南[M].北京:科学出版社,1992.
    [72]Tamura, K.,J.Dudley, M.Nei,et al.MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J].Mol Biol Evol,2007,24(8):1596-1599.
    [73]Cunningham, C.Can three incongruence tests predict when data should be combined[J]?Mol Biol Evol,1997,14(7):733-740.
    [74]Swofford, D. PAUP*:phylogenetic analysis using parsimony(*and other methods), version 4.0 b10[M].Sunderland, MA:Sinauer Associates,2002.
    [75]Farris, J.,M.Kallersjo, A.Kluge, et al.Constructing a significance test for incongruence[J].Syst Biol,1995,44(4):570.
    [76]吕宝忠,钟扬,高莉萍.分子进化与系统发育[M].北京:高等教育出版社,2002.
    [77]Posada, D., K. A. Crandall. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics,1998,14(9):817-818.
    [78]Huelsenbeck, J. P.,F.Ronquist. MRBAYES:Bayesian inference of phylogenetic trees[J]. Bioinformatics,2001,17(8):754-755.
    [79]Nei, M., S. Kumar. Molecular evolution and phylogenetics[M].Oxford University Press, USA, 2000.
    [80]Bollback, J. P.Bayesian model adequacy and choice in phylogenetics[J]. Mol Biol Evol,2002, 19(7):1171-1180.
    [81]Posada, D., K. A. Crandall. Selecting the best-fit model of nucleotide substitution[J].Syst Biol, 2001,50(4):580-601.
    [82]Beresford, P., F. Barker, P.Ryan, et al.African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary'enigmas'[J]. Proceedings of the Royal Society B, 2005,272(1565):849-858.
    [83]Fuchs, J., J. Fjelds,R. Bowie, et al.The African warbler genus Hyliota as a lost lineage in the Oscine songbird tree:Molecular support for an African origin of the Passerida[J].Mol Phylogenet Evol,2006,39(1):186-197.
    [84]Johansson, U. S., J. Fjeldsa, R. C. K. Bowie. Phylogenetic relationships within Passerida (Aves: Passeriformes):A review and a new molecular phylogeny based on three nuclear intron markers[J]. Mol Phylogenet Evol,2008,48(3):858-876.
    [85]Barker, F., G.Barrowclough, J. Groth. A phylogenetic hypothesis for passerine birds:taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data[J].Philos Trans R Soc Lond B Biol Sci,2002,269(1488):295-308.
    [86]Spicer, G. S., L. Dunipace. Molecular phylogeny of songbirds (Passeriformes) inferred from mitochondrial 16S ribosomal RNA gene sequences[J].Mol Phylogenet Evol,2004,30(2):325-335.
    [87]Voelker, G.,G. M. Spellman. Nuclear and mitochondrial DNA evidence of polyphyly in the avian superfamily Muscicapoidea[J]. Mol Phylogenet Evol,2004,30(2):386-394.
    [88]Yuri, T.,D.P. Mindell.Molecular phylogenetic analysis of Fringillidae, "New World nine-primaried oscines" (Aves:Passeriformes)[J].Mol Phylogenet Evol,2002,23(2):229-243.
    [89]郑作新,龙泽虞,卢汰春.中国动物志-鸟纲(第十卷)[M].北京:科学出版社,1995.
    [90]潘巧娃,雷富民,尹祚华等.基于核基因c-mos的鸫亚科部分鸟类系统发生关系[J].动物分类学报,2006,31(4):686-691.
    [91]Vaurie, C. Systematic notes on Palearctic birds[M].American Museum Novitates,1955.1-30.
    [92]Cibois, A.Mitochondrial DNA phylogeny of babblers (Timaliidae)[J].Auk,2003,120(1):35-54.
    [93]Gelang, M.,A.Cibois, E. Pasquet, et al.Phylogeny of babblers (Aves, Passeriformes):major lineages, family limits and classification[J].Zoologica Scripta,2009,38(3):225-236.
    [94]Zhang, S.,L. Yang, X.Yang, et al.Molecular phylogeny of the yuhinas (Sylviidae:Yuhina):a paraphyletic group of babblers including Zosterops and Philippine Stachyris[J].Journal of Ornithology,2007,148(4):417-426.
    [95]Harrison, C. A reassessment of the affinities of some small Oriental babblers Timaliidae[J]. Forktail,1986,1:81-83.
    [96]Collar, N., C. Robson. Family Timaliidae (babblers)[M]. Handbook of the birds of the world,2007, 70-291.
    [97]Reddy, S., J. Cracraft. Old World Shrike-babblers (Pteruthius) belong with New World Vireos (Vireonidae)[J].Mol Phylogenet Evol,2007,44(3):1352-1357.
    [98]Pasquet, E., E. Bourdon, M. Kalyakin, et al. The fulvettas (Alcippe, Timaliidae, Aves):a polyphyletic group[J].Zoologica Scripta,2006,35(6):559-566.
    [99]Berlioz, J. Revision systematique du genre Garrulax Lesson[M].L'Oiseau,1930,1-27.
    [100]Seutin, G., E. Bermingham.Rhodinocichla roseals an Emberizid (Aves; Passeriformes) Based on Mitochondrial DNA Analyses[J]. Mol Phylogenet Evol,1997,8(2):260-274.
    [101]Hebert, P.D., S. Ratnasingham, J. R. deWaard. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species[J].Proc Biol Sci,2003,270(1):96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700