用户名: 密码: 验证码:
塔中54井区奥陶系碳酸盐岩裂缝系统预测与识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔中54井区位于塔中低凸起Ⅰ号坡折带和中央隆起带之间宽缓构造区。目前,上奥陶统良里塔格组礁滩复合体是该区块主要勘探目的层之一。通过前人研究,良里塔格组储层具有:①储层主要为孔洞型、裂缝型和裂缝-孔洞型,其中裂缝型及裂缝-孔洞型储层占到60%以上;②属低孔、低渗储层,基质孔隙度一般小于2%,渗透率小于0.5×10~(-3)μm~2;③裂缝主要有构造缝、溶蚀缝和成岩缝,以构造缝为主,占80%以上。
     研究区构造平缓,整体褶曲系数低于0.01,褶皱裂缝欠发育,以断层相关裂缝为主,因此,断层裂缝对裂缝性储层发育有直接控制作用,断层裂缝研究是该地区储层研究的关键。
     本文利用54井区的岩心、测井及三维地震资料,通过制作合成记录标定层位,进行了相干体分析,完成了良里塔格组断裂系统的精细解释,包括小断层和层间小断层的闭合解释,编制了其顶底面断裂系统图。在精细解释基础之上,以断面脱空理论为指导,对区内断层相关裂缝进行地震剖面上的定性识别,从而展示裂缝系统的宏观发育分布特征,编制了规模较大的断层裂缝平面分布图,根据断层裂缝系统的规模将断层裂缝分为3级,从宏观上刻画断层裂缝的发育分布特征。然后,利用VSD技术对中古3井小区块进行断层裂缝的精细描述,其步骤为:①地震精细解释;②构造几何学参数提取;③时深转换与构造形变平衡处理;④VSD定量计算;最后得到小区块断层裂缝的平面分布图。
     在上述工作基础之上,进行了裂缝系统的综合研究与评价,得到以下认识:
     1)研究区断层裂缝定性识别结果与钻井结果吻合。
     2)研究区主要发育4个裂缝带,与研究区4个断裂系统相对应。其中B裂缝带(沿一号坡折带发育)和C裂缝带(沿研究区中部走滑断裂带发育)最大,并且在中古2井附近交汇,形成一个面积约为20平方公里的裂缝发育带。而A裂缝带对应于研究区西部的走滑断裂带,仅有小块区域裂缝相对发育。D裂缝带位于A、B、C裂缝带之间,局部裂缝发育,但为多个独立裂缝单元。
     3)VSD定量计算结果表明,中古3井VSD计算结果与井实际情况相符;除中古3井北西方向有一个独立构造带裂缝发育外,整个小区块断层裂缝不发育。
     综上,该地区的裂缝性储层主要受断层控制,利用VSD技术方法可以较好地反映裂缝的发育分布情况。
The well 54 area, between the No. 1 Faulted Slope Break and the Central Uplift area, Tazhong Lower Uplift, is a broad gentle structure region, in which, at present, the reef flat complex of the Lianglitage Formation (Upper Ordovician) is one of the major exploration targets. Previous studies on the reservoir of the Lianglitage Formation had revealed that:(1)major reservoir types comprise cavity type, fractured and fractured-cavity type, but the latter two ones are predominant accounting for more than 60%; (2)this reservoir belongs to low porosity and low permeability one, with commonly matrix porosity less than 2% and permeability less than 0.5×10~(-3)μm~2; (3)the tectonic fractures, dissolution-fractures and diagenetic-fractures are the 3 major types, but the tectonic fractures are predominant accounting for more than 80%.
     In the studied area, the structure is so gentle that the folding coefficient is almost less than 0. 01% resulting in the less development of fold-related fracture. Thus, these fractures occurred widely herein are mainly fault-related fracture, fault-related fracture has the direct control on the fractured-reservoir and researchers on the fault-related fracture is the most key issue for oil and gas exploration in the studied area.
     Based on the cores, well logging and 3-D seismic data, first, the author has calibrated the geologic horizons to seismic sections by making synthetic seismogram, and carried out fine seismic interpretation of the fault systems of the Lianglitage Formation, including the closure interpretation of minor faults within the interval, with the help of the seismic coherence techniques, followed by compiling its fault systems map of the top and bottom surfaces of the Lianglitage Formation. On the basis of above fine interpretation, under the guidance of the theory of fault detachment void space, qualitative identification on any fault-related fracture on seismic profiles has been carried out in the studied area in order to show the macro-development and distribution characteristics of the fracture systems, followed by mapping the planar distribution of those fault-related fracture which have relative large-scale. Then, well ZG3 area was chosen to conduct fine description of fault-related fracture applying the VSD (Void Space Description) technique, which involves 4 steps including (1) the fine interpretation of seismic data, (2)extracting of structural geometry parameters, (3)balance modulating on structural deformation and time-depth conversion, (4)quantitative calculation of the VSD. Lastly, the planar distribution of the fracture systems within the well ZG3 area was mapped.
     Based on the above-mentioned studies, comprehensive research and evaluation are conducted, main understandings are as follows:
     1) The result of the qualitative identification shows a good agreement with the drilling results.
     2) 4 fracture zones, designated as A, B, C and D, are developed in the studied area, corresponding to the 4 fault systems, respectively. The two fracture zones of B (occurring along the No. 1 Faulted Slope Break) and C (occurring along the central strike-slip fault-damaged zone) are the larger-scale ones, merging into one in the vicinity of the well ZG2, with a total area of 20 square kilometers. However, only a small extent of relative-developed fracture is developed in the A fracture zone, which is within a strike-slip fault-damaged zone west of the studied area. The D is among these 3 zones, fractures are developed partially; most of them are single fracture unit.
     3) The VSD result of well ZG3 area indicates that the quantitative calculation result is consistent with the actual drilling results, i. e., the fractures are poorly developed in the whole well ZG3 area except for a single fault zone NW of well ZG3.
     In a word, the fractured reservoir in the studied area is mainly controlled by faulting; the VSD technique is a rather good method to outline the development and distribution of fault-related fracture.
引文
[1]蔡正旗,等.碳酸盐岩裂缝-孔隙型储集层综合预测方法研究-以用东大池干井构造带T1j22储集层预测为例.石油勘探与开发,2005,32(5):65-67.
    [2]蔡正旗,等.铜罗峡构造中南段长兴组裂缝性储层综合预测.石油学报,2003,24(3):342-45.
    [3]曹毅民,等.裂缝性储层电成像测井孔隙度定量评价方法研究.测井技术,2006,30(3):237-239.
    [4]戴弹申,裂缝圈闭及其勘探方法.天然气工业.1990,10(4):1-6.
    [5]邓攀.火山岩储层构造裂缝的测井识别及解释.石油学报.2002,23(6):32-36.
    [6]高如曾,何光明,刘开时,王域辉,廖素淑.断层系的分维及储层裂缝发育带的预测技术.四川地质学报,1996,16(2):180-185.
    [7]顾家裕,方辉,蒋凌志.塔里木盆地奥陶系生物礁的发现及其意义[J].石油勘探与开发,2001,28(4):1-3.
    [8]顾家裕等.沉积相与油气.北京:石油工业出版社,1994.
    [9]黄捍东,魏修成,叶连池.碳酸盐岩裂缝性储层研究的地质物理基础[J].石油地球勘探2001,36(5):591-596.
    [10]胡明,秦启荣.贵州赤水地区构造特征及与裂缝发育关系研究.西南石油学院学报28(1):13-17.
    [11]胡明,秦启荣.断层应力效应分析及其在裂缝性储层研究中的作用.新疆石油地质,1992,13(3):280-284.
    [12]贾承造,魏国齐,姚慧君,等.盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995.159-160.
    [13]贾承造,姚慧君等.塔里木盆地板块构造演化和主要构造单元地质构造特征.见:童晓光,梁狄刚主编.塔里木盆地油气勘探论文集.乌鲁木齐:新疆科技卫生出版社,1992
    [14]李国全.电阻率的泥质校正与应用.国外测井技术,1990,5(2):114-120.
    [15]李建良.裂缝信息的测井识别与高分辨率地震反演.测井技术,2006,30(3):213-216.
    [16]李会军.港深78井裂缝发育影响因素、成因及其在油气勘探中的意义.断块油气田,2004,11(3):27-29.
    [17]李淑恩.构造应力场数值模拟分析技术及其应用.油气地质与采收率.2001,8(6):38-40.
    [18]李素杰,李喜海.测井技术在曙光低潜山带碳酸盐岩裂缝型储层评价中的应用.特种油气藏,2000,7(3):8-10.
    [19]刘忠宝,孙华,于炳松.裂缝对塔中奥陶系碳酸盐岩储集层岩溶发育的控制.新疆石油地质,2007.6,28(3):289-291.
    [20]刘兴刚,张旭.测井裂缝参数估算方法研究.天然气工业,2003,23(1):31-34.
    [21]李善军,肖承文,汪涵明等.裂缝双侧向测井响应的数学模型及裂缝孔隙度的定量解释.地球物理学报.1996,39(6):845-852.
    [22]李善军,肖承文.碳酸盐岩地层中缝孔隙度的定量解释.测井技术.1997,21(3):205-214.
    [23]罗贞耀.用侧向资料计算裂缝张开度的初步研究.地球物理测井,1990,14(2):83-92.
    [24]苗继军,贾承造,邹才能,等.塔中地区下奥陶统岩溶风化壳储层特征与勘探领域[J].天然气地球科学,2007,18(4):497-500..
    [25]钱一雄,邹远荣,陈强路,等.塔里小盆地塔中西北部多期、多成因岩溶作用地质一 地球化学表征[J].沉积学报,2005,23(4):596-602.
    [26]秦启荣.全直径样品分析在测井解释裂缝孔隙度中的应用研究-以克拉玛依油田百31井区二叠系油藏为例.天然气地球科学,2005,16(5):637-640.
    [27]秦启荣.川中油气区东缘大安寨储层裂缝成因机制初探[J].天然气工业,1998,18(3):90-92.
    [28]秦启荣.裂缝孔隙度数值评价技术[J].天然气工业,2002,22(6):117-118.
    [29]疏壮志,秦启荣.贵州宝元构造嘉五1储层裂缝预测.天然气工业,2004,24(3):61-64.
    [30]宋惠珍,贾承造,欧阳健著.裂缝性储集层研究理论与方法.北京:石油工业出版社,2001.
    [31]苏陪东,秦启荣.储层裂缝预测研究现状与展望.西南石油学院学报,27(5):14-17.
    [32]孙焕泉.地下构造裂缝分布规律及其预测.大庆石油学报,2000,24(3):83-85.
    [33]孙庆和,和玺,李长禄.特低渗透微缝特征对注水开发效果的影响[J].石油学报,2002,21(4):52-57.
    [34]王允诚等.裂缝性致密油气储集层.北京:地质出版社,1992.
    [35]王拥军.低孔-裂缝性碳酸盐岩储层常规测井研究.西南石油学院学报,2002,24(4):9-12.
    [36]王端平,张敬轩.胜利油田埕北 30 潜山储集性裂缝预测方法.石油实验地质,2000,22(3):250-255.
    [37]王祥,等.成像测井技术在川西侏罗系储层中的应用.石油天然气学,2005,27(1):56-18.
    [38]汪涵明,张庚骥,李善军等.单一倾斜裂缝的双侧向测井响应.石油大学学报,1995,19(6):12-24.
    [39]汪涵明,张庚骥.倾斜地层的双侧向测井响应.测井技术,1994,18(6):408-412.
    [40]魏涛,李先鹏.用岩心资料刻度测井响应以确定裂缝孔隙度.测井技术,1993,17(4):279-281.
    [41]邬光辉,黄广建,王振宇.塔中奥陶系生物礁地震识别与预测.天然气工业.2007,40-42.
    [42]邬光辉,李建军.塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨.石油学报,1999,20(4):19-23.
    [43]邬光辉,李启明,张宝收,等.塔中工号断裂坡折带构造特征及勘探领域[J].石油学报,2005,26(1):27-30.
    [44]习尧,钱一雄,陈跃,等.塔中地区中下奥陶统划分与对比[J].新疆石油地质,2007,28(3):292-295.
    [45]谢晓安,吴奇之,卢华复.塔里木盆地古生代构造格架与沉积特征.沉积学报,1996,15(14).152-155
    [46]徐国强.模型正演与川中二叠系中小断层精细地质解释.石油物探.1993,32(1):74-81.
    [47]徐开礼,朱志澄.构造地质学.北京:地质出版社,1984.
    [48]徐兵.塔里木盆地塔中地区断裂分形特征.油气地质与采收率,2007,14(4)
    [49]徐国强,刘树根等.断层相关裂隙的一种定量计算方法.地质学报,2006.80(2):192-195.
    [50]杨涌林.鄯善油田裂缝体系及对注水开发效果的影响.西北大学学报(自然科学版).2004,34(1):97-100.
    [51]叶庆全.油气田开发地质.北京:石油工业出版社,1999.
    [52]尹志军.裂缝性油气储层定量综合评价.石油与天然气地质,2001,22(3):340-343.
    [53]尤建军.多测井信息在安棚地区深层系裂缝研究中的应用.江汉石油学院学报,2002,24(4):45-47
    [54]曾联波,张建英,张跃明.辽河盆地静北潜山油藏裂缝发育规律[J].中国海上油气(地质),1998,12(6):381-385.
    [55]曾文冲.油气藏储集层测井评价技术.北京:石油工业出版社,1991.
    [56]曾联波,田崇鲁,刘刚.松辽盆地南部低渗透砂岩储层裂缝及开发特征[J].石油大学学报,1998,22(2):11-13.
    [57]张友生.低阻油层双侧向测井的反演研究.地球物理学进展,2003,18(1):85-89.
    [58]张树东.复杂高电阻率碳酸盐岩储层深浅双侧向的解释探讨.测井技术,2005,29(1):33-36.
    [59]张庚骥.电法测井(下册).北京:石油工业出版社,1984.
    [60]张敬轩,金强.山东莱芜地区太古界露头裂缝特征及其油气储层意义.石油实验地质,2003,25(4):371-373.
    [61]张景和,孙宗欣.地应力裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001.
    [62]张筠,徐炳高.成像测井在川西碎屑岩解释中的应用.测井技术,2005,29(2):129-132。
    [63]赵树栋.任丘碳酸盐岩油藏[M].北京:石油工业出版社,1997:11-14.
    [64]赵志刚.吐哈盆地巴喀油田低渗透砂岩储层裂缝研究.西南石油学院学报,1998,21(1):6-10.
    [65]赵宗举,贾承造,周新源,等.塔里木盆地塔中地区奥陶系油气成藏主控因素及勘探选区[J].中国石油勘探,2006,11(4):6-15.
    [66]周文著.裂缝性油气储集层评价方法.成都:四川科学技术出版社,1998.
    [67]周新源,王招明,杨海军,等.塔中奥陶系大型凝析气田的勘探和发现[J].海相油气地质,2006,11(1):45-51.
    [68]周文.泌阳凹陷安棚油田核三段储层天然裂缝特征研究.矿物岩石,2003,23(3):57-60.
    [69]周文.埕岛中东部潜山带古生界和太占界储层裂缝分布评价.矿物岩石,2000,20(1):52-56.
    [70]周新桂,孙宝珊,李跃辉.辽河张强凹陷科尔康油田储层裂隙预测研究.地质力学学报,1998,4(3):70-75.
    [71]Annette G.McGrath.Damage Zone Geometry Around Fault Tips.Journal of Structural Geology.1995,17(7):1011-1024.
    [72]Agust Gudmundsson.Fracture Dimensions,Displacements and Fluid Transport.Journal of Structural Geology.2000,22:1221-1231.
    [73]A.M.Sibbit,Q.Faivre The dual laterolog response in fractured rocks.SPWLA 26th Annual Logging Symposiμ m.Dallas,Texas,1985,17-20.
    [74]Huang Q.Angelier J.Fracture spacing and its relation to bed thickness[J].Tectonophysis,1989,126(4):355-362.
    [75]Matthew A.d' Alessio,Stephen J.Martel.Fault Terminations and Barriers to Fault Growth.Journal of Structural Geology.2004,26:1885-1896.
    [76]Murray,G.H.,Jr.,Quantitative Fracture Study-Spanish Poll.Mckenzie Co.,North Dakota."Am.Assoc.Petrol.Geol.Bull.,1968(52):57-65.
    [77]Narr W,Suppe J.Jiont spacing in sedimentary rocks[J].J Struct Geol,1991,13(9):1037-1048.
    [78]Ronald A.Nelson.Geologic Analysis of Naturally Fracture Reservoirs.Gulf Professional Publishing,2001.
    [79]Ronald A.Nelson,柳广第、朱筱敏译.天然裂缝性储集层地质分析.北京:石油工业出版社,1991.
    [80]Stephen J.Martel.Effects of Cohesive Zones on Small Faults and Implications for Secondary Fracturing and Fault Trace Geometry.Journal of Structural Geology.1997,19(6):835-847.
    [81]T.D.范.高尔夫.裂缝油藏工程基础.北京:石油工业出版社,1989.
    [82]Young-Seog Kim,D.C.P.Peacock,David J.Sanderson.Mesoscal Strike-slip Faults and Damage Zones at Marsalfom,Gozo Island,Malta.Journal of Structural Geoloty.2003,25:793-812.
    [83]Young-Seog Kim,David C.P.Peacock,David J.Sanderson.Journal of Structural Geology.2004,26:503-517.
    [84]Zeng Liaobo,Tian Chonglu.Quantitative prediction of structural fracture in low-permeability reservoir[J].China Oil & Gas,1996,3(3):135-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700