用户名: 密码: 验证码:
Serratia marcescens SYBC 08的筛选、鉴定及其发酵产过氧化氢酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢酶(Catalase, CAT)通过催化一对电子的转移最终将H_2O_2分解为H2O和O2。其广泛应用于食品、纺织、造纸、环保等行业。因此,研究微生物发酵生产CAT具有一定的理论价值和潜在的应用前景。
     论文研究了产CAT菌株的筛选,经透射电镜观察、脂肪酸等生理生化观测和16S rRNA基因序列分析鉴定了一株高产CAT的细菌。考察了其发酵产酶条件,研究了发酵产酶调控方法、产酶生理、进行了酶的纯化与性质研究,克隆了该酶基因并进行了序列分析,取得了如下主要结果:
     分别采用H_2O_2富集生长法和H_2O_2起泡检测法,从37份土壤和污泥样品中,共筛选获得141株潜在的CAT高产菌。用H_2O_2起泡检测法从纺织厂漂洗车间含H_2O_2污泥中筛选获得一株CAT产量最高的菌株。在LB培养基平板培养48 h后,菌落为紫红色、圆形、光滑、湿润,表面隆起呈金属光泽,边缘整齐或不整齐,有轻微异味,色素不扩散到培养基中。该菌株有丙酮酸脱羧酶、赖氨酸脱羧酶,无精氨酸双水解酶。菌株能利用蔗糖、木糖、阿拉伯糖、乳糖、山梨醇,但不能利用L-鼠李糖、纤维二糖、蜜二糖。经透射电镜观察,这株菌能产圆形或棒形芽孢。主要的脂肪酸含量为C17:0 CYCLO (17.3 %),C_(16:0) (14.8 %),C_(10:0)3OH (10.0 %),C_(17:0) CYCLO (17.3 %),C_(14:0) (6.0 %)。经16S rRNA基因序列鉴定,将菌株命名为粘质沙雷菌(Serratia marcescens SYBC08)。研究还发现该菌株在碳源利用、主要脂肪酸含量等生理生化特征和其它的粘质沙雷菌有差异。该菌株CAT比活力较高,是生长于无H_2O_2环境S. marcescens SYBC-01的10.6倍。高的CAT比活力和产芽孢可能是其能够生长在H_2O_2胁迫环境的机制。通过对硫酸铵沉淀得到了粗CAT,进行主要应用酶学性质的研究表明,初步纯化的CAT在高温强碱和低温条件有一定的应用潜力。
     研究了S. marcescens SYBC08摇瓶发酵产CAT的最佳条件。以合成NADH主要途径TCA循环的中间产物柠檬酸为碳源发酵产CAT,较其它碳源提高了产量。推测CAT产量的提高与NADH的合成有密切的关系。再经响应面方法对发酵条件进一步优化。优化后的发酵条件:柠檬酸30 g/L、玉米浆33.8 g/L、初始pH 5.91、接种量4 % (v/v)、装液量50 mL/250 mL、转速250 r/min、温度32.8℃、培养36 h。酶产量从1470 U/mL提高到12165 U/mL,提高了7.27倍。
     在5 L小型发酵罐下,以摇瓶发酵的最佳培养基为发酵罐条件下的发酵培养基,研究了S. marcescens SYBC08产CAT的分批发酵条件。最佳的培养条件:通气量1.5 vvm、pH 7.0、转速400 r/min、相对溶氧控制在5 %、发酵时间22 h。在此条件下,CAT最高产量为22422 U/mL。进一步添加100 mg/L的烟酸以调控NADH的合成,CAT产量提高了15.1 %,达到26442 U/mL。
     分别以葡萄糖和柠檬酸为发酵碳源,研究了S. marcesces SYBC08产CAT过程的生理特征,分析了柠檬酸促进CAT产量的机制。CAT产量提高的过程中,AhpC活力及胞内VC含量提高较明显,MDA含量下降明显。发现两种碳源发酵的CAT产量均与抗氧化指标有显著或极显著的相关性,说明CAT产量的提高与氧化胁迫有关,柠檬酸为发酵碳源较葡萄糖为发酵碳源有更高的CAT产量,是增强了氧化胁迫。
     S. marcescens SYBC08的粗酶液经过硫酸铵沉淀、离子交换层析、凝胶过滤层析纯化得到纯的CAT。该过程的纯化倍数为13.8,回收率为22 %。CAT的分子量为230 kDa,由4个分子量为58 kDa同源亚基组成。该酶的比活力(199584 U/mg蛋白)是Halomonas sp. Sk1的3.44倍。该酶在405 nm和280 nm有吸收峰,A405/A280比值为0.42。K_m和V_(max)分别为78 mmol/L和188212 U/mg。1.0 mmol/L的Mg~(2+)和Ca~(2+)对CAT活力有显著的激活作用,Mn~(2+)、EDTA和邻苯二酚对CAT活力有显著的抑制作用。CAT有较宽的pH最佳活力(pH 7.0-9.0)和pH稳定性范围(pH 5.0-11.0)。最适的温度大约为20℃,在0℃依然有78.5 %的活力,这个结果证明其为常温菌产的低温单功能CAT。经LC-MS/MS氨基酸序列分析,该酶与S. proteamaculans 568的CAT氨基酸序列(gi|157371515 )最为匹配。由S. proteamaculans 568 CAT的基因序列设计引物并获得该CAT基因。该酶基因长度为1437 bp,Genbank上的登录号为HM068611。经该基因推导的氨基酸序列与相关的23个CAT比对并构建系统进化树。结果表明,虽然大部分具有重要功能的位点在24个相关的CAT中是相当保守,S. marcescens SYBC08 CAT推导的氨基酸序列残基(M53、S93、H341、H284和F194)在相关CAT中并不完全保守,说明不同CAT之间的催化行为有一定的多样性。该高比活CAT在肠杆菌科中具有最高的相似性,说明一些肠杆菌科微生物中的该类酶在抵御H_2O_2对细胞的伤害中发挥了重要的生理功能。该基因推导的氨基酸序列预测的二级、三级结构表明,二级结构中含的螺旋结构、折叠片状结构、环形及其它结构含量分别为27.8 %、16.7 %和55.4 %,预测的NORS区在343-423。预测的酶亚基三维结构与已知的1e93A(2.00 ?)有85.169 %的相似度。
Catalase (CAT) can decompose H_2O_2 to H2O and O2 by two-electron transfer. The enzyme is widely applied in the food, textiles, paper, environmental protection industries, etc. Therefore, the investigation of CAT production by microbial fermentation has theoretical value and potential applications.
     In the thesis, screen and identification of a high-CAT-producing bacterium by using transmission electron microscopy, physiological and biochemical analysis and 16S rRNA gene sequence analysis were carried out. Its conditions and control strategies for CAT production, physiological properties during CAT production, purification and properties, gene cloning and the deduced amino acid sequence analysis of the cloned CAT gene were investigated. The results shown as follows:
     Two methods (including H_2O_2 concentration growth method and H_2O_2 foaming test) were applied in screening high-CAT -producing strains from 37 soil and sludge samples. Only 37 strains were obtained by using H_2O_2 concentration growth method, and 104 strains were obtained by using H_2O_2 foaming test. A high-CAT-producing strain, which was isolated by using H_2O_2 foaming test from sludge containing hydrogen peroxide in a bleaching workshop of a textile factory, showed the highest CAT production(1,401 U/mL)among all strains examined, was identified as S. marcescens SYBC08 by 16S rRNA gene sequence analysis and electron microscopic observation. Physiological and biochemical characteristics, fatty acid content were not identical to those of S. marcescens and the spore-forming S. marcescens spp. sakuensis. Its activity was 10.6-fold higher than that of S. marcescens SYBC-01 in an H_2O_2-free environment (294 U/mg of protein). The relatively high CAT activity and the spore structures may enable the strain to survive in a hydrogen peroxide environment. Properties of the CAT after purification by ammonium sulfate precipitation were studied, these results suggest that the enzyme has potential applications in relatively high temperature and alkali, and low-temperature conditions.
     The medium and condition of liquid fermentation for the yield of CAT by S.marcescens SYBC08 were optimized with single factor experiment and response surface method. CAT yield obtained in the presence of citric acid was higher than that obtained in the presence of other carbon source, and speculates that CAT yield have relation with biosystenm of NADH. The optimized medium and conditions were as follows: 30 g/L citric acid,33.8 g/L corn steep liquor powder, initial pH5.91, liquid volume 50 mL/250 mL flask, 4 % inoculation, 32.8°C , 250 r/min, for 36 hours. Under these conditions, the CAT yield was increased from1, 470 U/mL to12, 165 U/mL and has increasement of 7.28-fold.
     The optimizated batch fermentation conditions of S. marcescens SYBC08 was studied in 5.0 L bioreactor with the opitmized medium. The optimized conditions were as follows: pH 7.0, temperature 32.8°C, agitation speed 400 r/min, aeration 1.5 vvm, relatively dissioved oxygen 5 % and fermentation time 22 h. When S. marcescens SYBC08 was cultured in the optimized conditions, the CAT production reached 22,422 U/mL.When regulation of NADH was carried out by addition of 100 mg/L nicotinic acid at the optimizaed condition, the CAT production increased 15.1 % and reached 26,442 U/mL.
     During fermentatal process for CAT production, the physiological metabolic characteriza- tion of S. marcescens SYBC08 obtained in the presence of glucose or citric acid was studied, and the mechanism of enhancing CAT production obtained in the presence of citric acid was analyzed. It was found that when the yield of CAT was enhaced in the fermental process, activity of AhpC and the content of VC were obviously increased, and the content of MDA was obviously deduced. CAT production was significant positively correlated with partial antioxidant indexs, indicating improve oxidative stress enhanced CAT production.
     The isolation and purification of CAT from the crude extract of S. marcescens SYBC08 was carried out by ammonium sulfate precipitation, ion exchange chromatography, and gel filtration, and a single band from ion exchange was revealed by SDS-PAGE. During those processes, the enzyme was purified 62.5-fold in a 32 % yield. The purified CAT had an estimated molecular mass of 230 kDa, consisting of four identical subunits of 58 kDa. High specific activity of the CAT(199,584 U/mg protein) was 3.44 times higher than that of Halomonas sp. Sk1 CAT (57,900 U/mg protein). The two maxima at 405 nm (Soret peak) and 280 nm (protein maximum) were obviously appeared, and A405/A280 of 0.42 was calculated. The enzyme without peroxidase activity was found to be a monofunctional CAT. The apparent K_m and V_(max) were 78 mmol/L and 188, 212 U/mg, respectivly.The enzyme was significent activated by 1.0 mmol/L Mg~(2+) and Ca~(2+). However, it was significent inhibited by Mn~(2+), EDTA and catechol. The enzyme displayed a broad pH activity range (pH 5.0–11.0), with optimal pH range of 7.0–9.0. It was most active at 20°C and had 78 % activity at 0°C. Its thermo stability was slightly higher compared to that of commercial CAT from bovine liver. The result suggested that the CAT is a cold-adapted enzyme from mesophilic bacterium.The peptide sequences from S. marcescens SYBC08 CAT have the highly match CAT sequences from S. proteamaculans 568 (gi|157371515 ) by LC–MS/MS analysis. A encoding gene was cloned by using two PCR primers which was designed according to matching gene sequence from S. proteamaculans 568 CAT under LC-MS/MS analysis, and Its gene sequence of 1437bp was deposited in the GenBank under the accession number (HM068611).The sequence was compared with that of 23 related CATs. Although most of important founctional residues in the enzyme were well conserved in 23 related CATs, but some other important residues (such as M53, S93, H341, H284 and F194) are weakly conserved. It might further supported some degree of specificity in their catalysis behaviors.Its sequence was closely related with that of CAT from pathogenic bacterium in the family Enterobacteriaceae. These results imply that the enzyme with high specific activity plays a significant role in preventing those microorganisms of the family Enterobacteriaceae against hydrogen peroxide resulted in cellular damage.The analysis of predicted secondary and tertiary structure indicated that the content of helical structure, bundle structure and ring structure are 27.8 %, 16.7 % and 55.4 %, NORS region is located in 343-423.The three-dimensional structure from S. marcescens SYBC08 showed the highest similarity to the known 1e93A (2.00 ?) (85.169 %).
引文
1. Zámocky M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis [J]. Progress in Biophysics and Molecular Biology, 1999, 72 (1): 19-65
    2. Murthy M R, Reid T J, Sicignano A,et al.Structure of beef liver catalase [J]. Progress in Biophysics and Molecular Biology, 1981, 152(2): 465 - 499
    3.刘冰,梁婵娟.生物过氧化氢酶研究进展[J].中国农学通报, 2005, 21 (5):223 -224
    4.徐刚.过氧化氢酶在染纱生产中的应用[J].纺织科技进展, 2005 (2):29-305.
    5.李艳,李静.葡萄糖氧化酶及其应用[J].食品工程,2006 (3):9-11
    6.冯国基.现代诊断与治疗[M].北京:人民卫生出版社,1994
    7. Genovefa Z, Wenzig E, Mersmann A. Improvement of lipase production by addition of catalase during fermentation [J]. Applied Microbiology and Biotechnology, 1994, 40 (5): 650-652
    8. Gao Q, Demain A L. Improvement in the bioconversion of penicillin G to deacetoxycephalosporin G by elimination of agitation and addition of catalase [J]. Letter in Applied Microbiology, 2001, 34 (4): 511-513
    9. Chen H, Mousty C, Chen L, et al. A new approach for nitrite determination based on a HRP/catalase biosensor [J]. Materials Science and Engineering, 2008, 28(5): 726-730
    10. Dos S WG, Pacheco I, Liu M Y, et al. Purification and characterization of an iron superoxide Dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas [J]. Journal of Bacteriology, 2000, 182 (3): 796-804
    11. Shima S, Netrusov A, Sordel M, et al. Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri [J]. Archives of Microbiology, 2000, 171(5): 317-323
    12.张东旭,堵国成,陈坚.微生物过氧化氢酶的发酵生产及其在纺织工业的应用[J].生物工程学报, 2000, 26(5): 1473-1481
    13. Kim H, Lee J S, Hah Y C, et al. Characterization of the major catalase from Streptomyces coelicolor Atcc 10147 [J]. Microbiology, 1994, 140: 3391–3397
    14. Fiedurek J, Gromada A. Selet alion of biochemical mutants of Aspergillus niger with enhanced catalase production [J].Applied Microbiology and Biotechnology , 1999, 47(3) : 313-316
    15. Somashekar D, Venkateshwaran G, Argrawal Renu, et al. Novel enrichment technique for the isolation of highly potent catalase producing yeasts from soil [J]. Biotechnology Techniques, 1999, 13(1): 65-68
    16. Kurakov A V, Kupletskaya M B, Skrynnikova E V, et al. Search for micromycetes producing extracellular catalase and study of conditions of catalase synthesis [J]. Applied Biochemistry and Microbiology, 2001, 37(1): 67-72
    17.赵志军,华兆哲,刘登如,等.碱性过氧化氢酶高产菌的筛选、鉴定及发酵条件优化[J].微生物学通报, 2007, 34(4): 667-671
    18. Zeng H W, Cai Y J, Liao X R, et al. Optimization of catalase production and purification and characterization of a novel cold-adapted Cat-2 from mesophilic bacterium S. marcescens SYBC-01 [J]. Annals of Microbiology, 2010, 60(4): 701–708
    19. Nakayama M, Nakajima-Kambe T, Katayama H, et al. High catalase production by Rhizobium radiobacter strain 2-1 [J]. Journal of Bioscience and Bioengineering, 2008, 106(6): 554–558
    20. Pachecka J, Litwi ska J, Biliski J, et al. Hemoprotein formation in yeast. I. Isolation of catalase and cytochrome-deficient mutants [J]. Molecular and General Genetics, 1974, 134 (4): 1299-305
    21. Chary P, Natvig D O. Evidence for three differentially regulated catalase genes in Neurospora crassa: effect of oxidative stress, heat shock, and development [J]. Journal of Bacteriology, 1989. 171 (5): 2646-2626
    22. Visick K L, Ruby E G. The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase [J]. Journal of Bacteriology, 1998, 180(8): 2087-2092
    23. Zeller T, Klug G. Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter [J]. Microbiology, 2004, 150(10): 3451-3462
    24. Loewen P C, Hengge-Aronis R.The role of the sigma factor sigma S (KatF) in bacterial global regulation [J]. Annual Review of Microbiology, 1994, 48: 53-80
    25. Johnson C H, Klotz M G, York J L, et al. Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases [J]. Microbiology, 2002,148(4): 1129-1142
    26. Engelmann S, Lindner C, Hecker M. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis [J]. Journal of Bacteriology, 1995,177 (19): 5598-5605
    27. Christman M F, Morgan R W, Jacobson F S, et al.Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium [J]. Cell, 1985, 41(3):753-762
    28. Loewen P C, Switala J, Triggs-Raine B L.catalases HPI and HPII in Escherichia coli are induced independently [J]. Archives of Biochemistry and Biophysics, 1985, 243(1): 144-149
    29. González-Flecha B,Demple,B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli [J]. The Journal of Biological Chemistry, 1995, 270 (23): 13681-13687
    30. Messner K R,Imlay J A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli [J]. The Journal of Biological Chemistry, 1999, 274 (15): 10119–10128.
    31. Seaver L C, Imlay J A. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide [J]. The Journal of Biological Chemistry, 2004, 279 (19): 10119–10128
    32. Korshunov S, Imlay J A.Two sources of endogenous hydrogen peroxide in Escherichia coli [J]. Molecular Microbiology, 2010, 75(6): 1389–1401
    33. Gua J S, Xua P, Qua Y B.A biocatalyst for pyruvate preparation from dl-lactate: lactate oxidase in a Pseudomonas sp [J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 18: 299–305
    34. Tong H C, Chen W, Shi W Y, et al. SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H_2O_2 from Peptone [J]. Journal of Bacteriology, 2008, 190(13): 4716-4721
    35. Daniel G, Volc J, Filonova L. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H_2O_2 in brown rot decay of wood [J]. Applied and Environmental Microbioloy, 2007, 73 (19): 6241–6253
    36. Rongrong J, Andreas S B.Hydrogen peroxide-producing NADH oxidase(NOX-1)from Lactococcus lactis [J].Tetrahedron: Asymmetry,2004,15(18):2939-2944
    37. Chiang M L, Chou C C. Expression of superoxide dismutase, catalase and thermostable diretal hemolysin by growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus [J]. International journal of food microbiology, 2008, 121(3): 268-274
    38. Caridis K-A, Christakopoulos P, Macris B J. Control of catalase production and purity by altering certain nutritional factors of Alternaria alternata growth medium [J]. Biotechnology Letter, 1991, 13(1): 35-38
    39. Hidalgo A, Betancor L, Moreno R, et al. Thermus thermophilus as a cell factory for the production of a thermophilic Mn-Dependent catalase which fails to be synthesized in an active form in Escherichia coli [J]. Applied and Environmental Microbiology, 2004, 70(7): 3839–3844
    40.邓宇,华兆哲,赵志军,等.氮源对枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的影响[J].应用与环境生物学报,2008, 14(4): 544-547
    41. Liu J Z, Huang Y Y, Liu J, et al. Effects of metal ions on simultaneous production of glucose oxidase and catalase by Aspergillus niger [J]. Letters in Applied Microbiology, 2001, 32: 16-19
    42. Petruccioli M, Fenice M, Piccioni P, et al. Effect of stirrer speed and buffering agents on the production of glucose oxidase and catalase by Penicillium variabile (P16) in benchtop bioreactor [J]. Enzyme and Microbial Technology, 1995, 17: 336-339
    43. Caridis, K-A, Christakopoulos P, Macris B J. Simultaneous production of glucose oxidase and catalase by Alternaria alternate [J]. Applied Microbiology and Biotechnology, 1991, 34: 794-797
    44. Fiedurekb J, Gromada A. Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture [J]. Journal of Applied Microbiology, 2000,89 (18):85-89
    45. Hua Z Z, Yan G L, Du G C, et al. Study and improvement of the conditions for production of a novel alkali stable catalase [J]. Biotechnology Journal, 2007, 2(3): 326?333
    46.姚丹丹,刘立明,李江华,等.活性氧胁迫促进枯草芽孢杆菌WSHDZ-01过量合成过氧化氢酶[J].生物工程学报, 2009, 25(5): 786?792
    47.王明星,李寅,方芳,等.添加甲萘醌促进嗜热子囊菌合成过氧化氢酶[J].过程工程学报, 2005, 5(3): 337?340
    48. Yan G, Hua Z, Li Y, et al. Enhanced catalase synthesis by anovel combined system of photocatalytic reactor and fermentor [J]. Biotechnology Letter, 2005, 27(10): 683?687
    49. Koa H S, Fujiwaraa H, Yokoyamaa Y, et al.Inducible production of alcohol oxidase and catalase in a pecttalin medium by Thermoascus aurantiacus IFO 31693 [J]. Journal of Bioscience and Bioengineering, 2006, 99 (3): 290?292
    50. Gromada A, Fiedurek J. Optimization of catalase biosynthesis in submerged cultures of Aspergillus niger mutant [J]. Journal of Basic Microbiology, 1997, 37(2): 85?91
    51. Lee H, Suh H J, Yu H J, et al. Commercial production and separation of catalase produced by Micrococcus sp [J]. Journal of Food Science and Nutrition, 2002, 7(1): 28?32
    52. Shi X, Feng M, Zhao Y, et al. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis [J]. Biotechnology Letter, 2008, 30(1):181?186
    53. Kacem Chaouche N Sr, Destain J, Merahi Z, et al. Optimization of extracellular catalase production from Aspergillus phoenicis K30 by Plackett-Burman design and linear regression using date flour as single carbon source and purification of the enzyme [C]. 31rd Symposium on Biotechnology for Fuels and Chemicals. 2007
    54. Okakura K, Mazuka F, Fukushi T, et al. Thermotolerant catalase [P]. World patent, WO2009104622A1
    55. Dietmar S, Ida S. Springer Handbook of Enzymes [M]. Berlin: springer. 2008, 194-210
    56. Yumoto I, Ichihashi D, Iwata H, et al. Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T) exhibiting high catalase activity [J]. Journal of Bacteriology, 2000, 182(7): 1903–1909
    57. Wang W, Sun M, Liu W, et al. Purification and characterization of a psychrophilic catalase from Antarctic Bacillus [J]. Canadian Journal of Microbiology, 54(10): 823–828
    58. Lorentzen M S, Moe E H, Jouve M, et al. Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteusmirabilis [J]. Extremophiles, 2006, 10(5): 427–440
    59. Chauvatcharin N , Vattanaviboon P , Switala J, et al. Cloning and characterization of katA, encoding the major monofunctional catalase from Xanthomonas campestris pv. Phaseoli [J]. Current Microbiology, 2003, 46(2): 0083-0087
    60. Brown-Peterson N J, Salin M L , et al. Purification and Characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium [J]. Journal of Bacteriology, 1995, 177(2): 378-384
    61. Goldberg I, Hochman A. Purification and characterization of a novel type of catalase from the bacterium Klebsiella pneumonia [J]. Biochimica Biophysica Acta.1989, 991(2): 330-336
    62. Goldberg I, Hochman A. Three different types of catalases in Klebsiella pneumonia [J]. Biochimica Biophysica Acta .1989, 268(1): 124-128
    63. Terzenbach D P, Blaut M. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium RhodobacterSphaeroides Ath 2.4.1 and its role in the oxidative stressresponse [J]. Archives of Microbiology, 169(6): 503–508
    64. Zámocky M, Godocikova J, Gasperik J, et al. Expression,purification, and sequence analysis of catalase-1 from the soil bacterium Comamonas terrigena N3H [J]. Protein Expression and Purification, 36(1): 115-123
    65. Loewen P C, Switala J. Purification and characterization of spore-specific catalase-2 from Bacillus subtilis [J]. Biochemistry and Cell Biology.1988, 66 (7): 707-714
    66. Shima S, Sordel-Klippert M, Brioukhanov A, et al. Characterization of a heme-dependent catalase from Methanobrevibacter Arboriphilus [J]. Applied and Environmental Microbiology, 2001, 67 (7): 3041-3045
    67. Phucharoen K, Hoshino K, Takenaka Y, et al. Purification, characterization, and gene sequencing of a catalase from an alkali- and halo-tolerant bacterium, Halomonas Sp. Sk1 [J]. Bioscience, Biotechnology and Biochemistry. 2004, 66(5): 955-962
    68. Kobayashi I, Tamura T, Sghaier H , et al. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus Radiodurans [J]. Journal of Bioscience and Bioengineering, 2006, 101 (4): 315-321
    69. Zhang X Q, Xue Y F, Zhao A M, et al. Purification and characterization of a monofunctional catalase from an alkaliphi Bacillus Sp. F26 [J]. Sheng Wu Gong Cheng Xue Bao, 2005, 21(1): 71-77
    70. Kang Y S, Lee D H, Yoon B J, et al. Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions [J]. Journal of Microbiology, 2006, 44(2): 185-91
    71. Martin G K, Loewen P C. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryote [J]. Molecular Biology and Evolution, 2003, 20(7): 1098-1112
    72. Margesinand R, Schinner F. Cold-adapted organisms-ecology, physiology, enzymology and molecular [M]. Berlin: springer. 1999, 1-416
    73. Russell N J. Cold adaptation of microorganisms [M]. London: Philosophical Transactions of the Royal Society, 1990
    74. Morita R Y. Psychrophilic bacteria [J]. Bacterial reviews, 1975, 39 (2): 144-167
    75. Gerday C M, Aittaleb M. Bentahir J P, et al. Cold-adapted enzymes: from fundamentals to biotechnology [J]. Trends Biotechnology, 2000, 18(2): 103-107
    76. Huston A L. Biotechnological aspects of cold-adapted enzymes. Psychrophiles: from Biodiversity to Biotechnology [M]. Heidelberg: Springer Verlag, 2007: 347–363
    77. Margesin R. Feller G. Biotechnological applications of psychrophiles [J]. Environmental Technology, 2010, 31(8): 835 -844
    78. Ichisea N, Moritab N, Kawasakib K , et al. Gene cloning and expression of the catalase from the hydrogen peroxide-resistant bacterium Vibrio rumoiensis S-1 and its subcellular localization [J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 530-534
    79. Herouart D, Sigaud S, Moreau S, et al.Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase [J]. Journal of Bacteriology, 1996, 178(23): 6802-6809
    80. Tokuyama S N J, Sogabe A, Kawamura Y, et al. Cloning and high expression of catalase gene from Bacillus sp. TE124 [J]. Journal of Bioscience and Bioengineering, 2001, 91(4):422-424
    81. Loewen P C, Carpena X, Rovira C, et al. Structure of Helicobater pylori catalase, with and without formic acid bound at 1.6 ? resolutions. Biochemistry [J]. 2004, 43(11): 3089-3103.
    82. Carpena X , Perez R, Ochoa W F , et al. Crystallization and preliminary X-ray analysis of clade I catalases from Pseudomonas syringae and Listeria seeligeri [J]. 2001, 57(8): 1184-1186
    83. Hara I, Ichise N, Kojima K, et al. Relationship between the size of the bottleneck 15 ? from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates [J], Biochemistry, 2007, 46(1): 11-22
    84. Vainshtein B K, Melik-Adamyan W R, Barynin V V, et al. Three-dimensional structure of catalase from Penicillium vitale at 2.0 ? resolution [J], Journal of Molecular Biology, 1986, 188(1): 49-61
    85. Bravo J, Mate M J, Schneider T, et al. Structure of catalase HPII from Escherichia coli at 1.9 ? resolutions [J]. Proteins, 1999, 34 (2): 155-166
    86. Dfaz A, Horjales E, Rudino-pinera E, et al. Unusual Cys-Tyr covalent bond in a large catalase [J]. Journal of Molecular Biology, 2004, 342(3): 971-85
    87. Ko T P, Day J, Malkin A J, et al. Structure of orthorhombic crystals of beef liver catalase [J]. Biological Crystallography, 1999, 55(8): 1383-1394
    88. Murshudov G N, Grebenko A I, Brannigan J A, et al. The structures of Micrococcus lysodeikticus catalase, its ferryl intermediate (compound II) and NADPH complex [J]. Biological Crystallography, 2002 (23): 1972-1982
    89. Andreoletti P, Pernoud A, Sainz G, et al. Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid [J]. Biological Crystallography, 2003, 59(12): 2163-2168
    90. Berthet S L. Nykyri M .Bravo J, et al. Crystallization and preliminary structural analysis of catalase A from Saccharomyces cerevisiae [J]. Protein Science, 1997, 6 (2): 481-483
    91. Putnaml C D, Arvail A S, Bourne Y, et al. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism [J]. Journal of Molecular Biology, 2000, 296 (1): 295-309
    92. H?kansson K O, Brugna M,Tasse L. The three-dimensional structure of catalase from Enterococcus faecalis [J]. Biological Crystallography, 2004, 60 (8): 1374-1380
    93. Riise E K, Lorentzen M S, Helland R, et al. The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 ? reveals structural aspetals of cold adaptation [J]. Biological Crystallography, 2007, 63 (Pt 2): 135-148
    94. Bravo J, Mate M J, Schneider T, et al. Structure of catalase HPII from Escherichia coli at 1.9 ? resolution [J]. Protein Struct Funct Genet, 1999, 34(2): 155-166
    95. Ueda M, Kinoshita H, Maeda S-I, et al. Structure-function study of the amino-terminal strenght of the catalase subunit molecule in oligomerization, heme binding, and activity expression [J]. Applied Microbiology Biotechnology, 2003, 61 (5-6): 488-494
    96. Chelikani P, Donald L J , Duckworth H W , et al. Hydroperoxidase II of Escherichia coli exhibits enhanced resistance to proteolytic cleavag Biochemistry [J]. Biochemistry. 2003,42(19): 5729-5735
    97. Chelikani P, Carpena X, Perez-Luque R, et al. Characterization of a large subunit catalase truncated by proteolytic cleavage [J]. Biochemistry. 2005, 44(15): 5597-5605
    98. Loewen P C, Switala J, Ossowski I V, et al. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d [J]. Biochemistry, 1993, 32(38): 10159–10164
    99. Andreoletti P, Sainz G, Jaquinod M, et al. High-resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron [J]. Proteins, 2003, 50 (2): 261-271
    100. Hillar A, Nicholls P, Switala J, et al. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes [J]. Biochemstry Journal, 1994, 300 (2): 531-539
    101. Kirkman H N, Rolfo M, Ferraris A M, et al. Mechanisms of protet alion of catalase by NADPH-kinetics and stoichiometry [J]. Journal of Biotechnology and Chemistry, 1999,
    274 (20): 13908-13914
    102. Kirkman1 H N, Gian G F. Mammalian catalase: a venerable enzyme with new mysteries [J]. Trends in Biochemical Sciences, 2007, 32 (1): 44-50
    103. Kalo S G, Gelpi J L, Fita I, et al. Theoretical study of the mechanisms of substrate recognition by catalase [J]. Journal of American Society, 2001, 123(39): 9665-9672
    104. Thuy L H A, Phucharoen K, Ideno A, et al. Alkali- and halo-tolerant catalase from Halomonas sp. SK1: overexpression in Escherichia coli, Purification, Characterization, and Genetic Modification. Bioscience Biotechnology Biochemistry, 2004, 68 (4): 814-819
    105. Switala J, Loewen P C. Diversity of properties among catalases [J]. Archives of Biochemistry and Biophysics, 2002, 401 (2): 145-154
    106.宋春林,张志丰,幺洪波,等.过氧化氢的供需现状和发展趋势[J].氯碱工业, 2010 ,46 (4):21-26
    107. Fusho Y, Yajima Y. Catalase from Bacillus subtilis IAM 1026 (Ferm BP-4844) [P]. US Patent. 1996, 5486467
    108. Calandrelli V, Gambacorta A, Romano I, et al. A novel thermo-alkali stable catala se-peroxidase from Oceanobacillus oncorhynchi subsp incaldaniensis: purification and characterization [J]. World Journal of Microbiology and Biotechnology, 2008, 24(10): 2269-2275
    109.邓宇,华兆哲,赵志军,等.氮源对枯草芽孢杆菌WSH DZ-01合成过氧化氢酶的影响[J].应用与环境微生物学报, 2001 ,14 : 544-547
    110.冷晒祥,钱国坻,华兆哲,等.过氧化氢酶的棉针织物漂染工艺研究[J].印染, 2006 ,14 : 544-547
    111.沈国强,张栋,杨春霞.牛肝过氧化氢酶提取工艺的研究[J].化学与生物工程, 2008, 25(1): 37 -39
    112. Zhuge J,Wang Z X. Manual for Industrial Microbiology Experiment [M], China Industry Press, Beijing 1997
    113. Tao T S, Yang R Y, Zhu D X. Procaryote Biosystematics [M], Chemical Industry Press, Beijing 2007
    114. Vaisanen O M, Nurmiaho-Lassila E L, Marmo, S. A, et al. Structure and composition of biological slimes on paper and board machines [J]. Applied and Environmental Microbiology. 1994, 60(2): 641–653
    115. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics. 2004, 5: 150–163
    116. Thompson D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research. 1997, 25, 4876–4882
    117. Saitou N, Nei M, The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution.1987, 4: 406–425
    118. Takahashi, K Nei, M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used [J]. Molecular Biology and Evolution. 2000, 17, 1251–1258
    119. Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding [J]. Analytical Biochemistry. 1976, 72(2): 248–254
    120. Ichise N, Morita N, Hoshino T, et al. A mechanism of resistance to hydrogen peroxide in Vibrio rumoiensis S-1 [J]. Applied and Environmental Microbiology. 1999,65(2): 73-79
    121. Ichise N, Hirota K, Ichihashi D, et al. H_2O_2 tolerance of Vibrio rumoiensis S-1(T) is attributable to the cellular catalase activity [J]. Journal of Bioscience and Bioengineering,2008,106(1): 39-45
    122.钱斯亮,蔡宇杰,廖祥儒,等.热稳定性过氧化氢酶高产菌的筛选、鉴定及酶学性质研究[J].西北农业学报, 2008, 17(2): 238-242
    123.沈萍.微生物学[M].北京:高等教育出版社,2000:51-57
    124.杨洁彬,李淑高,张篪等.食品微生物学[M].2版.北京:中国农业大学出版社, 1995: 18-20
    125. Marquis R E, Sim J, Shin S Y. Molecular mechanisms of resistance to heat and oxidative damage [J]. Journal of Applied Microbiology. 1994, 76, 40–48
    126. Setlow B, Setlow P. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide [J]. Applied and Environmental Microbiology. 1993, 59, 3418–3423
    127. Ajithkumar B, Ajithkumar V P, Iriye R, et al. Spore-forming S. marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank [J]. International Journal of Systematic and Evolutionary Microbiology. 2003, 53, 253–258
    128. Ebara S, Shigemori Y. Alkali-tolerant high-activity catalase from a thermophilic bacterium and its overexpression in Escherichia coli. 2008, 53(2):255–260
    129.燕国梁.活性氧胁迫下Bacillus sp. F26以过氧化氢酶合成为特征的应激响应[D]:[博士学位论文].无锡:江南大学生物工程学院, 2006
    130.刘建忠,翁丽萍,张黔玲,等.表面响应法优化黑曲霉过氧化氢酶的发酵工艺[J].微生物学通报.2002, 29(5): 17-25
    131.Venkateshwaran G,Somashekar D, Prakash M H. Production and utilization of catalase using Saccharomyces cerevisiae [J]. Process Biochemistry, 1999, 34(2): 187-191
    132.方芳,李寅,堵国成,等.一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力[J].生物工程学报,2004, 20(3): 423-428
    133.白秀峰,发酵工艺学[M].北京:中国医药科技出版社, 2003: 137-141
    134. M?yata R, Tetsu Y. Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005, Journal of Fermentation and Bioengineering [J]. 1996, 82, (5): 475–479
    135. Kayalia H A, Tarhan L. The effet al of glucose and maltose concentrations on pyruvate and ascorbate production, antioxidant enzyme activities and LPO levels in Fusarium equiseti [J].Process Biochemistry.2004, 39(11): 1519-1524
    136.李达,伦永志,周士胜. NAD+/NADH代谢机制研究进展[J].生物技术通讯2010.21(1):98-102
    137.岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社(第二版), 2008: 341-342
    138. Liu L M, Li Y, Shi Z P, et al. Enhancement of pyruvate productivity in Torulopsiglabrata: increase of NAD(+) availability [J]. Journal of Biotechnology, 2006, 126(2): 173?185
    139.张廷超,杨惠.微量分光光度法测定人精浆中柠檬酸含量[J].现代检验医学杂志, 2004 , 18(5): 32?33
    140. Singh R, Mailloux RJ, Puiseux-Dao S, et al. Oxidativestress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens [J]. Journal of Bacteriology, 2007, 189(18): 6665?6675
    141. Bonarius H P J, Houtman J H M, Schmid G, et al. Metabolic-flux analysis of hybridoma cells under oxidative and reductive stress using mass balances [J]. Cytotechnology, 2000, 32(2): 97?107
    142.许申鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究及改进[J].化学通报, 2001, 8: 516-519
    143. Mishra Y, Chaurasia N, Rai L C. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses [J]. Biochemical and Biophysical Research, 2009, 381(4):606 -611
    144. Alessandra S D, Rosa?ngela V A, Maria J D, et al. Oxidative stress response in Paracoccidioides brasiliensis: assessing catalase and cytochrome c peroxidase [J]. Mycological Research, 2008, 112,747–756
    145.陈巍,林锡煌,戴丹凤,等.短乳杆菌产NADH氧化酶的发酵及纯化[J].华侨大学学报2010, 31(5): 548-551
    146. Mailloux R J.Singh R, Brewer G, et al. A-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant a-ketoglutarate during oxidative stress in Pseudomonas fluorescens [J]. Journal of Bacteriology, 2009, 191(12): 3804-3810
    147. Mccord J M, Fridovich I. Superoxide dismutase. An enzymic function for Erythrocuprein(hemocuprein) [J]. The Journal of Biological Chemistry, 1969, 244(22): 6049 -6055
    148.李林波,罗宇,屈凌波,等. NADH氧化酶的应用研究进展[J].河南工业大学学报. 2010, 31(4) :80-88
    149. Ochsner U A, Vasil M L, Alsabbagh E, et al. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF [J]. Journal of Bacteriology. 2010, 182(16): 4533 -4544
    150. Mongkolsuk S, Whangsuk W, Vattanaviboon P, et al. A Xanthomonas alkylhydro- peroxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes [J]. Journal of Bacteriology, 2000, 182(23): 6845-6849
    151. Cosgrove K, Coutts G, Jonsson I-M, et al. Catalase (KatA) and Alkyl Hydroperoxide Reductase (AhpC) Have Compensatory Roles in Peroxide Stress Resistance and Are Required for Survival, Persistence, and Nasal Colonization in Staphylococcus aureus [J]. 2007, 189 (3): 1025-1035
    152. Steele K H, Baumgartner J E, Valderas M W, et al. Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308 [J]. Journal of Bacteriology. 2010, 192 (19): 4912-4922
    153. Sies H, Stahl W, Sundquist A R. Antioxidant functions of vitamins [J]. Annals of the New York academy of sciences. 1992, 69 : 7-20
    154.王璇,陆征丽,常红,等.维生素C、E对体外血管内皮细胞氧化损伤保护作用研究[J].天津医科大学学报,2005, 11(2): 187-189
    155. Bai Z H,Harvey L M,McNeil B.Oxidative stress in submerged cultures of fungi [J].Critical Reviews in Biotechnology, 2003, 24(4): 267-302
    156. Kayali H A, Tarhan L. The impact of vitamins C, B1 and B6 supplementation on antioxidant enzyme activities, membrane total sialic acid and lipid peroxidation levels in Fusarium species [J]. Process Biochemistry. 2006, 41 (7): 1608-1613
    157. Gudelj M, Fruhwirth GO, Paar A, et al. A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents [J]. 2001, 5 (6): 423-429
    158. Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970. 227: 680–685
    159. Merril C R. Silver staining of proteins and DNA [J]. Nature, 1990. 343(6260): 779–780
    160.钱斯亮. S. marcescens SYBC-01产过氧化氢酶发酵条件优化及酶学性质研究[D] : [硕士学位论文].无锡:江南大学生物工程学院, 2008
    161. Cai Y J, Wang L, Liao X R, et al. Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp. SYBC WU-3 [J]. Process Biochemistry, 2009, 44(7): 786-790
    162. Wang Z X, Cai Y J, Liao X R,et al. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1 [J]. Process Biochemistry, 2010, 45(10): 1720–1729
    163. Sun M Z, Liu S Q, Yang F, et al. A novel phospholipase A2 from Agkistrodon blomhoffii ussurensis venom: purification, proteomic, functionaland structural characterizations [J]. Biochimie, 2009, 91(4): 558–567
    164. Vafiadi C, Topakas E, Biely P, et al. Purification, characterization and mass spectro- metric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile [J]. FEMS Microbiology Letters, 2009, 296(2): 178–184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700