用户名: 密码: 验证码:
地震电磁场—基于动电效应的波场模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已有观测资料表明,地震发生时地震波经过的地方会产生电磁扰动,但目前对同震电磁信号产生的机理尚不清楚,双电层动电效应可能是引起这种震电耦合现象的一种机制。岩石孔隙固-液界面处存在着双电层,当地震波在岩石中传播时会引起孔隙流体相对骨架的运动,这种相对运动带动孔隙溶液中的净剩带电离子运动产生电磁场。本文基于双电层动电效应,研究(由断层滑动导致的)天然地震诱导的电磁场。
     当考虑的波长以及观测点到震源的距离远大于断层特征尺度时,将断层滑动视为一个双力偶点源,论文考察了双力偶点源在无限空间中辐射的震电波场。在基于Pride动电耦合方程组推导出了全空间单点力源的位移、电场和磁场的格林函数之后,进一步推导出了地震矩张量类型点源激发的位移、电场和磁场的解析表达式,获得了双力偶点源激发的震电波场的全空间解析解。计算出了天然地震频段双力偶点源脉冲激发的位移、电场和磁场的波形。在这些波形中,能观察到伴随P波的电场信号以及伴随S波的电场和磁场信号,并发现伴随S波的电场幅度小于伴随P波的电场幅度。作者证明了在天然地震频段,在孔隙地层(动力协调或接近动力协调的孔隙地层除外)中S波诱导电场的能力弱于P波。在模拟出的波形中,还观察到了震源激发的辐射电磁波,该电磁波速度比地震波高出至少一个数量级,几乎是在地震发生后“瞬间”就到达了观测点,但是其幅度比伴随地震波的电磁场小很多。研究还发现,震电波场与观测方位有关,在某些方位观测不到P波的位移信号,但是能观测到伴随P波的电场信号;在某些方位能观测到S波的位移信号,却观测不到伴随S波的磁场信号。文中还注意到了孔隙地层弹性参数之间的协调性对伴随P波电场的影响,从动电耦合方程组出发,证明了在弹性参数满足动力协调条件的孔隙地层中,P波不诱导电场。
     本文还考察了双力偶点震源在分层介质中激发的震电波场。基于动电耦合方程组导出了地震矩张量类型点源对应的位移-应力-电磁间断向量,将前人计算水平分层介质中点源激发震电波场的方法推广至地震矩张量类型点源,从而可模拟空间任意走向、倾向和滑动的断层所激发的震电波场。分别模拟了双力偶点源在半空间地质模型和多层水平分层地层中激发的震电波场。结果表明,由于自由表面的存在,P波和S波到达地表观测点时都会引起同震的电场和磁场扰动,瑞利波会引起电场和水平磁场扰动。研究发现,同震的电场和磁场与相应的地震波场具有明显的相关性,它们在波形上是相似的,但存在一定的相位差。研究还表明,同震电场的幅度与孔隙流体的矿化度和黏滞系数成反比,同震磁场的幅度与黏滞系数成反比。在模拟的波形中,还观察到了早于地震波到达的临界折射电磁波信号,地层中的地震波以及辐射电磁波入射到地表均可激发出此种临界折射电磁波,该电磁波的幅度与矿化度和黏滞系数成反比,比同震电磁场的幅度弱很多。模拟结果还表明从动电效应角度计算出的震电、震磁信号较强,具有可观测性。
     当考虑的波长以及观测点到震源的距离接近或小于小于断层特征尺度时,断层不能视为点源,此时将断层划分为若干个子断层,每个子断层均满足点源模型假设,整个断层滑动激发的波场由这些具有不同发震时刻的点源激发的波场叠加得到。本文分别对走滑型断层和倾滑型断层激发的震电波场进行了模拟。结果表明,断层滑动引起了显著的位移场、电场和磁场扰动,并且位移场、电场和磁场的扰动都具有方向性和上盘效应,即处于断层破裂传播前方区域上的电磁扰动幅度强于处于断层破裂传播相反方向区域上的电磁扰动,处于倾滑断层上方的接收点的位移场、电场和磁场的幅度强于下盘。文中还分别考察了覆盖层和断层埋藏深度对震电波场的影响。结果表明,地震波在覆盖层中发生了多次折射和反射,使得位移、电场和磁场的扰动幅度都得到了增强;断层的埋藏深度影响地表位移、电场和磁场的幅度,埋藏深度越浅,断层在地表引起的位移、电场和磁场扰动的幅度就越大。
     模拟结果还表明,无论对于走滑断层还是倾滑断层,在断层破裂终止和地震波扰动过后,断层附近不仅会产生永久位移,还存在残余电场,但不存在残余磁场,其中残余电场随着时间推移缓慢衰减。研究还表明,残余电场对接收深度很敏感,其中水平残余电场的幅度在自由表面处为零,且随深度增加而增大,竖直残余电场在自由表面处最大,且随深度增加而减小。在地表附近竖直电场扰动强度(包括同震的振荡幅度以及地震波过后的残余值)比水平电场高2个数量级。深度增加到一定值,竖直电场和水平电场处于同一数量级。
     论文基于双力偶点源模型和有限断层滑动模型的模拟研究揭示了因动电效应产生的同震电磁场的特点,对地震电磁观测提出了如下建议:电磁观测台站的布置应避开动力协调或接近动力协调的地区,并选择在流体矿化度和黏滞系数低的地层以便获得更强的同震电磁信号;在监测电场时应重视对其竖直分量的测量。
Electromagnetic (EM) signals have been observed in earlier researches during earthquakes. These signals accompany seismic waves. However, the reason for the existence of such coseismic EM signals is unclear. The electrokinetic effect corresponding to the electric double layer is one of the mechanisms for the coupling between the seismic and EM fields. When a seismic wave propagates in a rock, a relative fluid-solid flow is induced. Such relative flow drives the excess ions in the pore fluid to cause EM field. In this paper, the EM fields generated by an earthquake due to the electrokinetic effect is studied. The earthquake is modeled by a fault slip.
     When the wavelength considered and the receiver-to-source distance are larger than the characteristic length of the fault, the fault can be taken as a double couple point source. The properties of the seismoelectromagnetic wave fields induced by a double couple source in an infinite porous medium is investigated. Based on the Pride’s equations coupling the seismic and EM waves, the author derive the Green’s functions of the solid displacement, the electric field and the magnetic field due to a single point source. Furthermore, these Green’s functions are extended to cater for the moment tensor sources. Then the analytical expressions of the solid displacement, the electric and magnetic fields in the frequency-space domain excited by a double couple source are derived. The waveforms of the displacement, the electric and magnetic fields due to a double couple source are then calculated at earthquake frequencies. In these waveforms, there is an electric field accompanying a P wave as well as electric and magnetic fields accompanying an S wave. It is found that the electric field accompanying the S wave is smaller than that accompanying the P wave. It is proved that the S wave has a weaker capacity than the P wave in inducing an electric field at earthquake frequencies in a porous medium which is not dynamically compatible or nearly dynamically compatible. In the waveforms, there is also an independently propagating EM wave, which has a much higher speed than the seismic waves, and reaches the observation point immediately after the source originates. However, it has a weaker amplitude than the EM field accompanying a seismic wave. It is also found that the seismoelectromagnetic field depends on the observation orientation. There are orientations, in which the displacement induced by the P wave is not seeable while the electric field accompanying the P wave is apparent. And there are orientations, in which the displacement induced by the S wave is apparent while the magnetic field accompanying the S wave is not observable. It is noticed that the compatibility of the elastic parameters of the porous medium affects the electric field accompanying the P wave. And on the basis of the seismoelectric coupling equations, it is proved that when the parameters satisfy the dynamically compatible condition, the P wave does not induce any electric field.
     The seismoelectromagnetic wave fields generated by a double couple in a horizontally-layered geological model are also studied. On the basis of the seismoelectric coupling equations, the stress-displacement-EM discontinuity vectors for the moment tensor sources are derived. And then the author extend the algorithm which is used by previous researchers to calculate the seismoelectromagnetic wave fields due to a point source in layered media to cater for moment tensor sources. Therefore, a simulation of the seismoelectromagnetic wave fields generated by a fault with arbitrary strike, dip and slip rake is allowable. As examples, the wave fields generated by a double couple source in a half-space and multi-layered formations are calculated, respectively. Due to the existence of the free surface, both the P and S waves cause coseismic electric and magnetic disturbances when they arrive at the receivers near the surface. There are also electric field and horizontal magnetic field accompanying a Rayleigh wave. It is found that the coseismic electric and magnetic fields have a close connection to the corresponding seismic fields. The waveforms of the coseismic electromagnetic fields and those of the seismic fields are similar, but of different phases. It is also found that the amplitude of the coseismic electric field decreases when either the salinity or the viscosity increase, and the coseismic magnetic field decreases when the viscosity increases. In the waveforms, there is also a kind of critically-refracted EM wave which reaches the receiving point earlier than the seismic wave. Such an EM wave can be converted from a seismic or EM wave incident on the free surface. Its amplitude is much smaller than the coseismic EM field, and decreases when either the salinity or the viscosity increases. The result shows that the seismoelectric and seismomagnetic signals due to the electrokinetic effect are measurable.
     When the wavelength considered and the receiver-to-source distance are close to or smaller than the characteristic length of the fault, the fault can not be taken as a point source. In this situation, the fault is discretized to a series of subfaults, each of which can be treated as a point source. The wave fields generated by the whole fault are a stacking of those generated by these subfaults. The displacements, the electric and magnetic fields generated by a strike-slip and a dip-slip fault are simulated, respectively. The result shows that the fault generates notable displacement and EM disturbances in the vicinity of the fault. The seismic and EM fields have clear directivity. The seismic, electric and magnetic fields in front of the fault rupturing direction are much larger than those in the opposite direction. For a dip-slip fault, the seismic and EM signals on the hanging wall are stronger than those on the foot wall. The influences of the cover layer and the source burial depth on the seismoelectromagnetic wave fields are investigated in the present paper. It is shown that when a cover layer is present, the seismic, electric and magnetic fields are amplified because of the multi-reflections and -refractions of the seismic waves in the cover layer. The source burial depth also exerts an impact on the amplitudes of the displacement, and the electromagnetic fields. Thinner burial depth makes stronger seismoelectromagnetic disturbance on the ground.
     The result also shows that for either a strike-slip fault or a dip-slip fault, there are permanent displacements and remnant electric fields but no remnant magnetic field near the fault after the fault rupture stops and the seismic wave propagates away. Such a remnant electric field damps with time and it is sensitive to the receiving depth. When the receiving depth increases the horizontal component of the remnant electric field increases, while the vertical component decreases. There is no horizontal remnant electric field right at the free surface. Both the coseismic oscillatory component and the postseismic decaying component of the vertical electric field are 2 orders of magnitude larger than those of the horizontal electric field. However, the horizontal and vertical electric fields become on the same order at a certain depth.
     The coseismic EM fields calculated from a point source model and a finite fault model have been investigated in this paper. Some suggestions are made for the measurement of the EM fields during earthquakes, i.e. avoiding the dynamically compatible or nearly dynamically compatible stratum, choosing a stratum with low fluid salinity and low fluid viscosity, and taking the vertical electric field into account.
引文
1 M. Matsushima, Y. Honkura, N. Oshiman, et al. Seismoelectromagnetic Effect Associated with the ?zmit Earthquake and its Aftershocks. Bull. Seism. Soc. Am. 2002, 92: 350-360
    2 D. Karakelian, G. C. Beroza, S. L. Klemperer, et al. Analysis of Ultralow-Frequency Electromagnetic Field Measurements Associated with the 1999 M7.1 Hector Mine, California, Earthquake Sequence. Bull. Seism. Soc. Am. 2002, 92: 1513-1524
    3汤吉,詹艳,王立凤等. 5月12日汶川8.0级地震强余震观测的电磁同震效应.地震地质. 2008, 30(3): 739-745
    4徐光晶,汤吉,陈小斌.云南宁洱Ms6.4地震震后电磁效应.地震地质. 2009, 31(2): 305-312
    5汤吉,詹艳,王立凤等.汶川地震强余震的电磁同震效应.地球物理学报. 2010, 53(3): 526-534
    6 T. Ogawa, H. Utada. Coseismic Piezoelectric Effects Due to a Dislocation: 1. An Analytic Far and Early-Time Field Solution in a Homogeneous Whole Space. Phys. Earth Planet. Interiors. 2000, 121(3-4): 273-288
    7 Q. Huang. One Possible Generation Mechanism of Co-seismic Electric Signals. Proc. Japan. Acad. 2002, 78(B7):173-178
    8 A. G. Ivanov. Effect of Electrization of Earth Layers by Elastic Waves Passing through Them (in Russian). Dokl. Akad. Nauk. SSSR. 1939, 24:42-45
    9 J. Frenkel. On the Theory of Seismic and Seismoelectric Phenomena in a Mosit Soil. J. Physics (Soivet). 1944, 8(4): 230-241
    10 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid: I. Low-Frequency Range. J. Acoust. Soc. Am. 1956a, 28:168-178
    11 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid:Ⅱ. High-Frequency Range. J. Acoust. Soc. Am. 1956b, 28:179-191
    12 M. A. Biot. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 1962, 33: 1482-1498
    13 S. T. Martner, N. R. Sparks. The Electroseismic Effect. Geophysics,. 1959, 24: 297-308
    14 R. A. Broding, S. D. Buchanan and D. P. Hearn. Field Experiments on the Electroseismic Effect. IEEE Trans. Geosci. Electronics. 1963, GE-1:23-31
    15 L. T. Long, W. K. Rivers. Field Measurement of the Electroseismic Response.Geophysics. 1975, 40:233-245
    16 Y. S. Murty. First Results on the Direct Detection of Groundwater by Seismoelectric Effect - a Field Experiment. Bull. Austr. Soc. Expl. Geophys. 1985, 16: 254-255
    17 E. I. Parkhomenko, I. V. Gaskarov. Borehole and Laboratory Studies of the Seismoelectric Effect of the Second Kind in Rock. Izv. Akad. Sci. USSR. Physics of the Solid Earth. 1971, 9: 663-666
    18 A. H. Thompson, G. A. Gist. Geophysical Applications of Electrokinetic Conversion. The Leading Edg. 1993, 12:1169-1173
    19 K. E. Butler, R. D. Russell, A. W. Kepic, et al. Measurement of the Seismoelectric Response from a Shallown Boundary. Geophysics. 1996, 61: 1769-1778
    20 M. Dietrich, S. Garambois and F. Glangeaud. Seismoelectric Effects: a Field Example over a Shallow Aquifer. Proc. EEGS 2nd Ann. Mtng, Nantes, France. 1996: 82-84
    21 O. V. Mikhailov, M. W. Haartsen and M. N. Toks?z. Electroseismic Investigation of the Shallow Subsurface: Field Measurements and Numerical Modeling. Geophysics. 1997, 62: 97-105
    22 D. Beamish. Characteristics of Near Surface Electrokinetic Coupling. Geophys. J. Int. 1999, 137: 231-242
    23 S. Garambois, M. Dietrich. Seismoelectric Wave Conversions in Porous Media:Field Measurements and Transfer Function Analysis. Geophysics. 2001, 66: 1417-1430
    24 B. Kulessa, T. Murray, D. Rippin. Active Seismoelectric Exploration of Glaciers. Geophys. Res. Lett. 2006, 33, L07503, doi:10.1029/2006GL025758.
    25 J. C. Dupuis, K. E. Butler. Vertical Seismoelectric Profiling in a Borehole Penetrating Glaciofluvial Sediments. Geophys. Res. Lett. 2006, 33, L16301, doi:10.1029/2006GL026385
    26 J. C. Dupuis, K. E. Bulter and A. W. Kepic. Seismoelectric Imaging of the Vadose Zone of a Sand Aquifer. Geophysics. 2007, 72: A81-A85
    27 S. S. Haines, S. R. Pride, S. L. Klemperer, et al. Seismoelectric Imaging of ShallowTargets. Geophysics. 2007, 72: G9-G20
    28 A. H. Thompson, S. Hornbostel, J. Burns, et al. Field Tests of Electroseismic Hydrocarbon Detection. Geophysics. 2007, 72: N1-N9
    29 Z. Zhu, M. N. Toks?z and D. R. Burns. Electroseismic and seismoelectric measurements of rock samples in a water tank. Geophysics. 2008, 73: 153-164
    30 C. Bordes, L. Jouniaux, M. Dietrich, et al. First Laboratory Measurements ofSeismo-magnetic Conversions in Fluid-filled Fontainebleau Sand. Geophys. Res. Lett. 2006, 33, L01302.
    31 C. Bordes, L. Jouniaux and S. Garambois, et al. Evidence of the Theoretically Predicted Seismo-magnetic Conversion. Geophys. J. Int. 2008, 174: 489-504
    32刘洪,李幼铭.对利用震电效应勘探油气水的几点看法.石油物探. 1994, 33(2): 94-101
    33裘慰庭.震电效应在油气勘探中的应用前景.石油仪器. 1996, 2(10): 8-12
    34刘洪.震电效应研究在资源勘探中的应用前景.地球物理学进展. 2002, 17: 211-217
    35陈本池.震电效应在油气勘探开发中的应用.物探与化探. 2007, 31(4): 333-338
    36严洪瑞,刘洪,李幼铭等.震电勘探方法在大庆油田的实验研究.地球物理学报. 1999, 42: 257-267
    37石昆法.震电效应原理和初步实验结果.地球物理学报. 2001, 44(5):720-728
    38 S. R. Pride. Governing Equations for the Coupled Electromagnetics and Acoustics of Porous Media. Phys. Rev. B. 1994, 50: 15678-15696
    39 D. B. Pengra, S. X. Li and P. Z. Wong. Determination of Rock Properties by Low-Frequency AC Electrokinetics. J. Geophy. Res. 1999, 104: 29485-29508
    40 D. B. Pengra, P. Z. Wong. Low-frequency AC Electrokinetics. Colloids Surf., A: Physicochemical and Engieering Aspects. 1999, 159: 283-292
    41 P. M. Reppert, F. D. Morgan. Frequency-Dependent Electroosmosis. J. Colloid Interface Sci. 2002, 254: 372-383
    42 S. R. Pride, M. W. Haartsen. Electroseismic Wave Properties. J. Acoust. Soc. Am. 1996, 100(3): 1301-1315
    43 M. W. Haartsen, S. R. Pride. Electroseismic Waves from Point Sources in Layered Media. J. Geophys. Res. 1997, 102(B11): 24745-24769
    44 S. Garambois, M. Dietrich. Full Waveform Numerical Simulations of Seismo-electromagnetic Wave Conversions in Fluid-saturated Stratified Porous Media. J. Geophys. Res. 2002, 107: 40-58
    45 H. Ren, Q. Huang and X. Chen. A New Numerical Technique for Simulating the Coupled Seismic and Electromagnetic Waves in Layered Porous Media. Earthquake Science. 2010, 23(2): 167-176
    46 H. Ren, Q. Huang and X. Chen. Analytical Regularization of the High-Frequency Instability Problem in Numerical Simulation of Seismoelectric Wave-fields in Multi-layered Porous Media. Chin. J. Geophys. 2010, 53(3): 506-511
    47 B. S. White, M. Zhou. Electroseismic Prospecting in Layered Media. Soc. Indust. Appl. Math. 2006, 67(1): 69-98.
    48 M. W. Haartsen. Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-elastic Media and its Applications in Geophysical Exploration. Ph.D Thesis, Massachusetts, MIT. 1995, 1-325
    49 Z. Zhu, M. W. Haartsen and M. N. Toks?z. Experimental Studies of Electro-kinetic Conversions in Fluid-saturated Borehole Models. Geophysics. 1999, 64: 1349-1356
    50 O. V. Mikhailov, J. Queen and M. N. Toks?z. Using Borehole Electroseismic Measurements to Detect and Characterize Fractured (Permeable) Zones. Geophysics. 2000, 65: 1098-1112
    51 X. M. Tang, C. H. Cheng and M. N. Toks?z. Dynamic Permeability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. J. Acoust. Soc. Am. 1991, 90: 1632-1646
    52 Z. Zhu, M. N. Toks?z. Crosshole Seismoelectric Measurements in Borehole Models with Fractures. Geophysics. 2003, 68: 1519-1524
    53 Z. Zhu, M. N. Toks?z Seismoelectric and Seismomagnetic Measurements in Fractured Borehole Models. Geophysics. 2005, 70: F45-F51
    54胡恒山,李长文,王克协等.声电效应测井模型实验研究.测井技术. 2001, 25(2): 89-95
    55陈本池,牟永光,狄帮让等.井中震电勘探模型实验研究.石油物探. 2003, 42(1): 35-38
    56 J. G. Berryman. Electrokinetic Effects and Fluid Permeability. Phys. Rev. B. 2003, 338:270-273
    57 S. X. Li, D. B. Pengra and P. Z. Wong. Onsager’s Reciprocal Relation and the Hydraulic Permeability of Porous Media. Phys. Rev. E. 1995, 51: 5748-5751
    58王军,胡恒山,徐小蓉等.基于动电效应的岩心渗透率实验测量.地球物理学报. 2010, 53(8): 1953-1960
    59王军,胡恒山,李新等.岩芯流动电势和流动电流实验测量及动电耦合系数.地球物理学报. 2010(已投稿)
    60 H. Deckman, E. Herbolzheimer and A. Kushnick. Determination of Electro-kinetic of Coupling coefficients. SEG Expanded Abstracts. 2005, 24: 561-564
    61胡恒山,王克协.井孔周围轴对称声电耦合波: (Ⅰ)理论.测井技术. 1999, 23(6): 427-432
    62胡恒山,王克协.井孔周围轴对称声电耦合波: (Ⅱ)声电效应测井数值模拟.测井技术. 2000, 24(1): 3-13
    63胡恒山.声电效应测井的理论、数值与实验研究.吉林大学博士学位论文. 2000: 1-128
    64胡恒山.孔隙地层井壁上的声波首波及其诱导电磁场的原因.物理学报. 2003, 52(8): 1954-1959
    65胡恒山.刘家琦,王洪滨等.声电效应测井响应的似稳场近似模拟.地球物理学报. 2003, 46(2): 259-264
    66关威,胡恒山,储昭坦.声诱导电磁场的赫兹矢量表示与多极声电测井模拟.物理学报. 2006, 55: 267-274
    67崔志文.多孔介质声学模型与多极源声电效应测井和多极随钻测井的理论与数值研究.吉林大学博士学位论文. 2004: 52-84
    68 Z. Cui, K. Wang, H. Hu, et al. Acousto-electric Well Logging by Eccentric Source and Extraction of Shear Wave. Chin. Phys. 2007, 16(3): 746-752
    69 Z. Cui, K. Wang, J. Sun, et al. Numerical Simulation of Shear-Horizontal-Wave-Induced Electromagnetic Field in Borehole Surrounded by Porous Formation. Chin. Phys. Lett. 2007, 24(12): 3454-3457
    70 B. D. Plyushchenkov, V. I. Turchaninov. Solution of Pride’s Equations through Potentials. Int. J. Modern Phys. C. 2006, 17: 877-908
    71 X. Zhan, S. Chi. Simulation of the Converted Electric Field during Multipole Logging While Drilling (LWD): SEG Expanded Abstracts. 2006, 25: 446-450
    72 H. Hu, W. Guan and J. M. Harris. Theoretical Simulation of Electroacoustic Borehol Logging in a Fluid-Saturated Porous Formation. J. Acoust. Soc. Am. 2007, 122: 135-145
    73 Q. Han, Z. Wang. Time-domain Simulation of SH-Wave-Induced Electro-magnetic Field in Heterogeneous Porous Media: A Fast Finite-element algorithm. Geophysics. 2001, 66:448-461
    74 C. C. Pain, J. H. Saunders, M. H. Worthington, et al. A Mixed Finite-element Method for Solving the Poroelastic Biot Equations with Electrokinetic Coupling. Geophys. J. Int. 2005, 160: 592-608
    75 S. S. Haines and S. R. Pride. Seismoelectric Numerical Modeling on a Grid. Geophysics. 2006, 71: N57-N65
    76 W. Guan, H. Hu. Finite-Difference Modeling of the Electroseismic Logging in a Fluid-Saturated Porous Formation. J. Comput. Phys. 2008, 227: 5633-564
    77关威.孔隙介质弹性波-电磁场耦合效应测井的波场模拟研究.哈尔滨工业大学博士学位论文. 2009: 97-110
    78 M. B. Gokhberg, V. A. Morgounov, T. Yoshino, et al. Experimental Measure-ment of Electromagnetic Emissions Possibly Related to Earthquakes in Japan. J.Geophys. Res. 1982, 87: 7824-7828
    79 A. C. Fraser-Smith, A. Bernardi and P. R. McGill. Low-frequency Magnetic Field Measurements Near the Epicenter of the Ms7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17: 1465-1468
    80 M. A. Fenoglio, M. J. S. Johnston, and J. D. Byerlee. Magnetic and Electric Fields Associated with Changes in High Pore Pressure in Fault Zones: Application to the Loma Prieta ULF Emissions. J. Geophys. Res. 1995, 100(B7): 12951-12958, doi:10.1029/95JB00076
    81 M. J. S. Johnston. Electromagnetic Fields Generated by Earthquakes. International Handbook of Earthquake and Engineering Seismology, Academic Press. 2002, 621-634
    82 M. J. S. Johnston, R. J. Mueller, Y. Sasai. Magnetic Field Observation in the Near-field the 28 June 1992 Mw7.3 Landers, California, earthquake. Bull. Seis. Soc. Am. 1994, 84: 792-798
    83 T. Nagao, Y. Orihara, T. Yamaguchi, et al. Co-seismic Geoelectric Potential Changes Observed in Japan. Geophys. Res. Lett. 2000, 27(10): 1535-1538, doi:10.1029/1999GL005440
    84 H. Murakami, T. Hashimoto, N. Oshiman, et al. Electrokinetic Phenomena Associated with a Water Injection Experiment at the Nojima Fault on Awaji Island, Japan. The Island Arc. 2001, 10: 244-251
    85 Y. Honkura, M. Matsushima, N. Oshiman, et al. Small Electric and Magnetic Signals Observed before the Arrival of Seismic Wave. Earth Planets Space. 2002, 54:9-12
    86 N. Ujihara, Y. Honkura, and Y. Ogawa. Electric and Magnetic Field Variations Arising from the Seismic Dynamo Effect for Aftershocks of the M7.1 Earthquake of 26 May 2003 off Miyagi Prefecture, NE Japan. Earth Planets Space. 2004, 56 (2): 115-123
    87 H. T. Mizutani, T. Ishido, T. Yokokura, et.al. Electrokinetic Phenomena Associated with Earthquakes. Geophys. Res. Lett. 1976, 3:365-368.
    88 D. V. Fitterman. Electrokinetic and Magnetic Anomalies Associated With Dilatant Regions in a Layered Earth. J. Geophys. Res. 1978, 83(B12): 5923-5928, doi:10.1029/JB083iB12p05923.
    89 D. V. Fitterman. Theory of Electrokinetic-magnetic Anomalies in a Faulted Half Space. J. Geophys. Res. 1979, 84: 6031-6040
    90 T. Ishido, H. Mizutani. Experimental and Theoretical Basis of Electrokinetic Phenomena in Rock‐Water Systems and Its Applications to Geophysics. J. Geophys. Res. 1981, 86(B3): 1763-1775.
    91 I. P. Dobrovolsky, N. I. Gershenzon and M. B. Gokhberg. Theory of Electro-Kinetic Effects Occurring at the Final Stage in the Preparation of a Tectonic Earthquake. Phys. Earth Planet. Interiors. 1989, 57(1-2): 144-156
    92 P. Gavrilenko. Hydromechanical Coupling in Response to Earthquakes: on the Possible Consequences for Aftershocks. Geophys. J. Int. 2005, 161: 113-129
    93 S. R. Pride, F. Moreau and P. Gavrilenko. Mechanical and Electrical Response Due to Fluid-pressure Equilibration Following an Earthquake. J. Geophys. Res. 109, B03302, doi:10.1029/2003JB002690
    94李山有,金星,马强等.地震预警系统与智能应急控制系统研究研究.世界地震工程., 2001, 20(4): 21-26
    95张国民,傅征祥,桂燮泰等.地震预报引论.科学出版社, 2001
    96 M. A. Biot, D. G. Willis. The Elastic Coefficients of the Theory of Consolidation. J. Appl. Mech. 24 (1957): 594-601.
    97 D. L. Johnson, J. Koplik and R. Dashen, Theory of Dynamic Permeability and Tortuosity in Fluid-saturated Porous-media. J. Fluid Mech. 176(1987): 379-402
    98胡恒山,王克协.孔隙介质声学理论中的动态渗透率.地球物理学报. 2001, 44(1): 135-141
    99胡恒山,王克协,刘家琦.孔隙介质中快纵波的衰减特性和动力协调现象.计算物理. 2002, 9(3): 203-207
    100 J. C. Slattery. Momentum, Energy and Mass Transfer in Continua. 2nd ed. McGraw-Hill, New York. 1981
    101 S. R. Pride, A. F. Gangi, and F. D. Morgan. Deriving the Equations of Motion for Porous Isotropic Media. J. Acoust. Soc. Am. 1992, 92: 3278-3290
    102 S. R Pride, F.D Morgan. Electrokinetic Dissipation Induced by Seismic Waves. Geophysics. 1991, 56(7): 914-625
    103 G. Bonnet. Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range. J. Acoust. Soc. Am. 1987, 82(5):1758-1762.
    104 C. Boutin. Integral Representation and Sources in Isotropic Poroelastic Media. Transport Processes in Porous Media, Kluwer Academic Publishers. 1991: 521-538,.
    105 K. Aki, P. G. Richards. Quantitative Seismology. University Science Books Sausalito, California. 2002.
    106 G. Backus, M. Mulcahy. Moment Tensors and Other Phenomenological Descriptions of Seismic Sources: I. Continuous Displacements. Geophys. J. Int. 1976a, 46(2): 341-361.
    107 G. Backus, M. Mulcahy. Moment Tensors and Other Phenomenological Descriptions of Seismic Sources: II. Discontinuous Displacements. Geophys. J.Int. 1976b, 47(2): 301-329.
    108 L. Vernik. Acoustic Velocity And Porosity Systematics In Siliciclastics. The Log Analyst. 1998, 39: 27-35
    109 L. Vernik. Predicting Lithology and Transport Properties from Acoustic Velocities Based on Petrophysical Classification of Siliciclastics. Geophysics. 1994, 3: 420-427.
    110陈运泰.多层弹性半空间的地震波(一).地球物理学报, 1974, 17(1): 20-44
    111 B. L. N Kennett. Seismic Wave Propagation in Stratified Media. Cambridge University Press, Cambridge, UK. 1983.
    112 N. A. Haskell. Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults. Bull. Seism. Soc. Am. 1964, 54(6A):1811-1841
    113 N. A. Haskell. Elastic Displacements in the Near-field of a Propagating Fault. Bull. Seism. Soc. Am. 1969, 59(2): 865-908
    114 K. Aki. Seismic Displacements near a Fault. J. Geophys. Res. 73(16): 5359-5376
    115 M. Bouchon. Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions. J. Geophys. Res. 1979, 84(B7): 3609-3614
    116 M. Bouchon. The Motion of the Ground During an Earthquake 1. The Case of a Strike Slip Fault. J. Geophys. Res. 1980a, 85(B1): 356-366
    117 M. Bouchon. The Motion of the Ground During an Earthquake 2. The Case of a Dip Slip Fault. J. Geophys. Res. 1980b, 85(B1): 367-375,
    118 A. H. Olson, R. J. Apsel. Finite Faults and Inverse Theory with Applications to the 1979 Imperial Valley Earthquake. Bull. Seism. Soc. Am. 1982, 72(6A): 1969-2001
    119 D. D. Oglesby, R. J. Archuleta and S. B. Nielsen. Earthquakes on Dipping Faults: The Effect of Broken Symmetry. Science, 280(5366): 1055-1059
    120 B. T. Aagaard. Finite-element Simulation of Earthquakes. Ph.D Thesis. California, CIT. 1999
    121 R. W. Graves. Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-grid Finite Differences. Bull. Seism. Soc. Am. 1996, 86(4): 1091-1106
    122 R. W. Graves. Three-dimensional Finite-difference Modeling of the San Andreas fault: Source Parameterization and Ground-motion Levels. Bull. Seism. Soc. Am. 1998, 88(4): 881-897
    123盖增喜,陈晓非.利用点源叠加合成有限尺度运动源的理论地震图.北京大学学报(自然科学版). 2008, 44(3): 407-41
    124 R. N. Chandler, D. L. Johnson. The Equivalence of Quasistatic Flow in Fluid-Saturated Porous Media and Biot's Slow Wave in the Limit of Zero Frequency. J. Appl. Phys. 1981, 52: 3391-3395
    125 F. Wenzlau, T. M. Müller. Finite-difference Modeling of Wave Propagation and Diffusion in Poroelastic Media. Geophysics. 2009,74: T55-T65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700