用户名: 密码: 验证码:
语前聋儿童人工耳蜗植入后语音特征的分析及其同遗传相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是一种严重影响人类生活质量的常见疾病,目前已知重度及极重度耳聋中由遗传因素所致占60%。本实验在测试语前聋儿童人工耳蜗植入后元音、辅音声学参数以及汉语普通话音调特征变化的基础上,探讨分析这些声学特征的变化规律和趋势。同时对聋儿进行耳聋相关基因的筛查,并在耳蜗植入术中行NRT检测。之后将基因检测结果和NRT结果结合分析两者间的联系,从而验证遗传性耳聋患儿听神经通路及功能是否完整,并为阐述遗传因素在听觉及言语康复中的预测作用奠定基础。最后本实验对GJB2相关性耳聋患儿的语音声学参数做进一步分析,从而发现并探究GJB2基因在言语产生中的作用,为阐述遗传因素在语前聋儿童人工耳蜗植入后听觉及言语康复中的预测作用提供依据。
     目的:
     1、通过主观评价并利用语音分析软件对植入人工耳蜗的语前聋儿童的元音、辅音和汉语音调特征进行分析,探讨这些语音特征的变化特点及规律,从而为植入耳蜗的语前聋儿童言语可懂度的分析奠定基础,并为寻求一种新的更加客观的言语康复评估方式提供思路和依据。
     2、对植入耳蜗的语前聋儿童进行耳聋相关基因的筛查,结合这些患儿术中神经反应遥测(NRT)的结果分析耳聋相关基因同听神经通路完整性之间的关系,从而为遗传因素对听神经功能及言语康复效果的预测性作用提供证据和支持。
     3、对植入耳蜗的语前聋儿童进行GJB2基因的测序分析。同时对这些患儿的语音特征变化进行进一步研究。分析两者之间是否具有相关性,从而为验证遗传因素(GJB2突变)是否可以预测耳蜗植入后言语产生的康复效果提供依据,并为今后的进一步研究奠定基础。
     方法:
     1.(第一部分):语前聋儿童耳蜗植入后元音、辅音声学特征和声调特征的分析:按年龄和首次测试时耳蜗开机时间的不同分组,之后再间隔8~10个月,分别对上述儿童进行第二次录音测试。先对录音内容进行主观评价,之后利用praat语音分析软件对上述录音内容的声学参数进行分析。同时在各时间段分别将上述结果同正常对照进行比较分析。以了解各声学特征的变化情况。并将两种评测方法进行对照,以了解两者评估方法的差异。
     2.(第二部分):利用基因芯片技术对植入耳蜗的语前聋儿童进行耳聋相关基因GJB2、GJB3、SLC26A4、线粒体DNA相关基因的已知突变位点进行筛查。同时对上述患儿在耳蜗植入术中进行神经反应遥测(NRT)的监测,分析两者之间是否存在联系。
     3.(第三部分):对语前聋儿童进行GJB2基因的全序列测序分析。将受试儿童按GJB2突变与否分为:GJB2相关性耳聋和非GJB2相关性耳聋。对上述两组儿童的言语可懂度进一步研究,分析两者之间的相关性。
     结果:
     1.1、(第一部分):在言语可懂度方面,首次测试时开机时间小于一年的低龄儿童两次测试差异显著,第二次测试时言语可懂度结果也明显优于高龄组儿童第二次测试时结果。高龄组儿童在两次测试时结果也有显著性差异。对首次测试时开机时间大于一年的二组儿童进行上述评价分析:低龄组儿童两次测试结果间有显著性差异,但高龄组儿童两次测试间差异无显著性。两组儿童在音调产生方面同对照组间差异显著。在声学分析中:各元音共振峰同正常对照间的差异不完全一致,但显著性差异主要为受试儿童的第一共振峰明显高于对照组,而第二共振峰低于对照组。在辅音声学分析中,受试儿童的塞音、塞擦音、擦音以及浊擦音和鼻音同正常对照之间也有许多差异。主要表现为辅音VOT或辅音CD明显高于或低于对照组。对于声调的声学分析可以更直观的反应出各音调的变化趋势。
     2.2、(第二部分):参与研究儿童的基因芯片筛查结果为:GJB2基因的杂合和纯合突变以及该基因的复合杂和突变。SLC26A4基因的IVS纯合突变以及GJB2和IVS的复合杂和突变。从受试儿童的NRT结果中可知,GJB2相关性耳聋的患儿NRT波形更加典型,而耳聋基因为野生型的儿童存在不典型的NRT结果。
     3.3、(第三部分):对受试儿童进行GJB2基因的测序分析,除235delC,299——300delAT以及235delC和299delAT复合杂合突变等致病性突变外,未发现新的突变位点,以上筛查结果同其它文献报道中的基本一致。按GJB2突变与否分组后两组儿童言语可懂度结果有显著性差异,GJB2基因同耳蜗植入后言语产生有相关性。
     结论:
     1、低年龄植入儿童的言语产生效果好于高年龄组儿童,随耳蜗开机使用时间的延长,言语产生的语音参数逐渐趋于同正常对照组接近,在开机时间超过一年后受试儿童言语产生的进步程度减慢,在高龄组儿童中尤为明显。随着耳蜗的使用受试儿童可以利用耳蜗提供的听觉反馈矫正自己的发音方法,而声学分析可以更好的反应出受试儿童元音及辅音方法间的细致差别,因此可以更好的为发音矫正提供参考。而声调的声学分析较主观评价可以更直观,准确的反应出声调的变化及趋势。
     2、JGB2基因突变是引起耳聋最主要的遗传因素,其突变率同其他学者报道的相近。通过对术中NRT的分析可知GJB2基因突变儿童的NRT波形较耳聋基因野生型儿童更加典型,但由于资料较少,目前尚未发现两者之间的相关性。遗传因素是预测听神经传导通路完整性的重要参考指标。通过术前的耳聋基因筛查可以为预后判断提供一定的帮助。
     3、GJB2相关性耳聋患儿的言语产生优于非GJB2突变的耳聋儿童,GJB2突变同言语产生具有相关性,因此术前进行该基因的筛查不仅可以明确耳聋的遗传病因,并对言语产生的预后判断具有重要参考作用。
The deafness is a common disease critically to influence quality of life.Now about 60%of severe to profound hearing loss was caused by heredity.Basing on measurement of acoustic parameters of vowels,consonants and tone features of mandarin in prelingual deafness children with cochlear implant and to study the change in the law and tedency about these acoustic features.At the same time to screen deafness genes in these children and to do the NRT in operations.And then, combining the results of gene screening and NRT to analyse the correlations between them so to verify the function and integrity of auditory nerve pathway in heredity deafness.And to explain the prognostic effects of genetic factors in auditory and speech rehabilitation.In this studies,progressively to analyse the acoustic parameters of GJB2 hearing loss children so to reserch the contributions of GJB2 gene in speech production and to provide evidences of prognostic effects of gene in hearing and speech rehabilitation in prelingual deafness children with cochlear implant.
     Objective:
     1.To analyse features of vowels,consonants and tones in prelingual hearing loss children with cochlear implants by subjective way and software of phonetics.To discuss features and regulations of these phonemes so to establish the foundation of analysing intelligibility of speech in prelingual hearing loss children with cochlear implants and to provide ideas and evidences of newer and more objective methods of evaluating speech rehabilitation.
     2.To screening genes of correlated hearing loss in prelingual deafness children.In operations,to do the NRT and then to combine the results of two parts to analyse the relation bewteen auditory nerve pathway and genes so to provide the evidences and supports of genetic predictable effects for auditory nerve function and rehabilitation efficacy of speech.
     3.To do the sequencing analysis of JGB2 in these children at the same time progressively to analyse the variations of intelligibility of speech and the production results in children with cochlear implants.To establish the foundantion of future research.
     Method:
     1.(part 1):According to different ages and beginning employment time of cochlear implant to divide these children into subgroups.After 2~3moths and 8~10months to measure subjective and phoetic parameters after first mapping, respectively.Utilizing PRAAT software to analyse acoustic parameters at the same time to compare the results with controls so to learn about the variations of these parameters.Furthermore,to compare the results with subjective methods and learn about the difference between them..
     2.(part 2):Utilizing the Gene Chip to screen the genes of GJB2,GJB3,SLC26A4 and Mitochondrial Gene(mtDNA) which are correlated with hereditory hearing loss.In implanting operations,to monitor the NRT for these children.And then to analyse the relation between them.
     3.(part 3):Sequencing the complete sequence of GJB2 in prelingual deaf children. And then divide these children into three groups according to with GJB2 mutation and without it.Further studying the intelligibility of speech features about two groups so to analyse the correlation between them.
     Results:
     1.In speech intelligibility,the results were very different between two measurements in lower children and older children whose beginning time was lower one year. And the results of second time of lower age children were better than older ones. To analyse subjectively two groups:the lower age children had different results but older ones not.About tone,the results were different between groups and controls.About analysis of phonetic:the formant of vowels were different between deaf childern and controls.The difference were that the value of formants of deaf children were lower or higher than controls.But about consonants,there were very different in plosive,affricate,firctive and nasal between measured children and controls.The variable tendency of tone can be macroscopic reflected by phonetic analysis of tone.
     2.The results of screen by Gene Chip in participated children were heterozygous, homozygous,compound heterozygous mutations in GJB2,IVS homozygous mutation in SLC26A4 and compound heterozygous in it.By the results of NRT,the waveforms of NRT with GJB2 were more typical and reproducibility by different intensions and better than non-GJB2 ones.
     3.The results of sequences were not to find new mutational site execpt for 235delC, 299-300delAY and compound heterozygous mutation.These results were same as other literatures and the second part.There were significient difference about the results of intelligibility of speech in two groups,according to GJB2 mutating if or not.The speech production was correlated by the mutation of GJB2.
     Conclusion:
     1.The capability of speech production in lower age children were better than the older ones.Following temporal length of device turn-on,the parameters of speech production were gradually closing to normal control but the progress of tone features were not significance.When the time of utilization over one year the progress were slower this result were more obvious in old age.By using the devices,children can corrcet their manner of articulation.The analysis of phonetic can find the fine difference of vowels and consonants between these children and controls so can provide information for correcting articulation.The methods can reflect the variable tedency of tone more directly and precisely.
     2.The mutation of GJB2 is the most supreme heredity cause.In this test,the mutation rate was the same as other literatures.The waves of NRT were better in children with the mutation of GJB2 than ones without GJB2 mutation.But due to the children were a few so we couldn't find the correlation result between them.But we believe the genetic factor can be used to prognose the integrity of auditory nerve pathway and the gene-screen before operation can provide the help for prognosis.
     3.The results of speech production in children with GJB2 mutation were better than the ones with non-GJB2.They were negative correlation.So the gene-screen of GJB2 before operation were significant for prognosing the speech production.
引文
Abbas PJ , Brown CJ , Shallop JK. Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potentials,Ear Hear, 1999 ,20(1) :45-59.
    Allen C,Nikolopoulos TP,Dyar D,et al. Reliability of a rating scale for measuring speech intelligibility after pediatric cochlear implantation,Otol Neurotol, 2001, Sep,22(5):631-3.
    Allen MC, Nikolopoulos TP, O'Donoghue GM. Speech intelligibility in children after cochlear implantation, Am J Otol,1998,Nov,19(6):742-6.
    Bakhshaee M, Ghasemi MM,Shakeri MT,et al. Speech development in children after cochlear implantation.Eur Arch Otorhinolaryngol. 2007 Nov; 264 (11): 1263-6.
    Ball V, Ison KT.Speech production with electrocochlear stimulation,Br J Audiol, 1984, 18:251-58.
    Bauer PW, Geers AE,Brenner C,et al. The effect of GJB2 allele variants on performance after cochlear implantation,Laryngoscope, 2003, Dec;113(12): 2135-40.
    Beadle EA,Mckinley DJ,Nikolopoulos TP,et al. Long-term functional outcomes and academic-occupational status in implanted children after 10 to 14 years of cochlear implant use, Otol Neurotol, 2005, Nov, 26 (6): 1152-60.
    Bouchard ME,Normand MT,Cohen H. Production of consonants by prelinguistically deaf children with cochlear implants,Clin Linguist Phon,2007, Nov-Dec, 21 (11-12):875-84.
    Brown CJ , Hughes ML , Luk B, et al. The relationship between EAP and EABR thresholds and levels used to program the Nucleus 24 speech processor: data from adults. Ear Hear, 2000, 21(2): 151-163.
    Cohn ES,Kelley PM,Fowler TW,et al. Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene (GJB2/DFNB1) Pediatrics, 1999, Mar; 103(3): 546-50.
    Connell SS,Angeli SI,Suarez H,et al. Performance after cochlear implantation in DFNB1 patients, Otolaryngol Head Neck Surg, 2007,Oct;137(4):596-602.
    Dahl HH,Wake M,Sarant J,et al. Language and speech perception outcomes in hearing-impaired children with and without connexin 26 mutations,Audiol Neurootol, 2003,Sep-Oct,8(5):263-8
    DiNardo W, Ippolito S, Quaranta N,et al. Correlation between NRT measurement and behavioural levels in patients with the Nucleus 24 cochlear implant,Acta Otorhinolaryngol Ital,2003,Oct,23(5):352-5.
    Erber NP.Auditory training, Washington DC:AG Bell Association, 1982,47-62.
    Estivill X,Fortina P,Surrey S,et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness.Lancet. 1998 Feb 7;351(9100):394-8.
    Everett LA,Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS),Nat Genet, 1997, Dec, 17 (4):411-22.
    Flipsen P Jr,Colvard LG.Intelligibility of conversational speech produced by children with cochlear implants, J Commun Disord,2006 Mar-Apr,39(2):93-108.
    Flipsen P Jr. Intelligibility of spontaneous conversational speech produced by children with cochlear implants: A review,Int J Pediatr Otorhinolaryngol, 2008, Mar,3,[Epub ahead of print]
    Fukushima K, Sugata K, Kasai N, et al. Better speech performance in cochlear implant patients with GJB2-related deafness, Int J Pediatr Otorhinolaryngol,2002,62:151-157.
    Gardner P, Oitmaa E, Messner A, et al. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up, Pediatrics, 2006, Sep, 118(3):985-94.
    Gold T. Speech production in hearing-impaired children,J Commun Dis, 1980, 13(6):397-418.
    Green T,Faulkner A, Rosen S. Spectral and temporal cues to pitch in noise-excited vocoder simulations of continuous-interleaved-sampling cochlear implants,J Acoust Soc Am,2002,Nov,112(5 Pt 1):2155-64.
    Guy van Camp , Patrick JW, Richard JHS. Nonsyndromic hearing impairment: Unparalleled heterogeneity , Am J Hum Genet, 1997 ; 60 : 758-764.
    Hamzavi J,Deutsch W, Baumgartner WD,et al. Short-term effect of auditory feedback on fundamental frequency after cochlear implantation,Audiology, 2000, Mar-Apr, 39(2):102-5.
    Harima Y, Sawada S , Nagata K, et al. Polymorphism of the WAF1 gene is related to susceptibility to cervical cancer in Japanese women, Int J Mol Med , 2001 ,7 :261-264.
    Hocevar-Boltezar I,Vatovec J,Gros A,et al.The influence of cochlear implantation on some voice parameters,Int J Pediatr Otorhinolaryngol, 2005, Dec, 69 (12): 1635-40.
    Horga D, Liker M, Voice and pronunciation of cochlear implant speakers,Clin Linguist Phon, 2006, Apr-May, 20 (2-3):211-7.
    Hughes ML , Brown CJ , Abbas PJ , et al. Comparison of EAP thresholds with MAP levels in the nucleus 24 cochlear implant: data from children, Ear Hear, 2000, 21(2):164-174.
    Hughes ML,Vander Werff KR,Brown CJ,et al. A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users,Ear Hear,2001,Dec,22(6):471-86.
    Hutchin T,Haworth I,Higashi K,et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics, Nucleic Acids Res, 1993, 21(18): 4174-9.
    Jun AI,McGuirt WT,Hinojosa R,et al. Temporal bone histopathology in connexin 26-related hearing loss, Laryngoscope, 2000, Feb;110(2 Pt l):269-75.
    Kaeasaki A,Fukushima K,Kataoka Y,et al. Using assessment of higher brain functions of children with GJB2-associated deafness and cochlear implants as a procedure to evaluate language development. Int J Pediatr Otorhinolaryngol. 2006 Aug; 70 (8):1343-9.
    Kammen-Jolly K, Ichiki H, Scholtz AW, et al. Connexin 26 inhuman fetal development of the inner ear.Hear Res, 2001,160 (1- 2): 15- 21.
    Kenna MA,Wu BL,Cotanche DA,et al. Connexin 26 studies in patients with sensorineural hearing loss, Arch Otolaryngol Head Neck Surg,2001,127 (9): 1037-42.
    Kikucki T, Kimura RS, Paul DL, et al. Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev, 2000,32: 163- 166.
    King JE,Polak M,Hodges AV,et al. Use of neural response telemetry measures to objectively set the comfort levels in the Nucleus 24 cochlear implant, J Am Acad Audiol,2006,Jun, 17(6):413-31.
    Lai WK,Aksit M,Akdas F,et al. Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications, Int J Audiol, 2004, May, 43(5):252-63.
    Lai WK,Dillier N. A simple two-component model of the electrically evoked compound action potential in the human cochlea, Audiol Neurootol, 2000, Nov-Dec, 5(6): 333-45.
    Lane H,Wozniak J,Perkell J. Changes in voice-onset time in speakers with cochlear implants,J Acoust Soc Am,1994,Jul,96(1):56-64.
    Liu XZ, Xia XJ, Ke XM, et al. The prevalence of connexin 26(GJB2) mutations in the Chinese population. Hum Genet, 2002,111(4- 5): 394- 397.
    Liu XZ,Xia XJ,Xu LR,et al. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss,Hum Mol Genet, 2000, 9(1):63-7.
    Liu Y, Ke X, Qi Y, et al. Connexin26 gene ( GJB2): prevalence of mutations in the Chinese population.J Hum Genet. 2002;47(12):688-90.
    Lohle E, Frischmuth S,Holm M,et al. Speech recognition, speech production and speech intelligibility in children with hearing aids versus implanted children,Int J Pediatr Otorhinolaryngol, 1999,Feb, 15,47(2): 165-9.
    Loundon N,Busquet D,Roger G,et al. Audiophonological results after cochlear implantation in 40 congenitally deaf patients: preliminary results,Int J Pediatr Otorhinolaryngol, 2000,Nov,30,56(1):9-21.
    Marazita M,Ploguhman L,Rawling B,et al.Genetic epidemiological studies of early-onset deafness in the U.S school-age population. Am.J.Hum. Genet, 1993, 46:486-491.
    Matsushiro N, Doi K, Fuse Y, et al. Successful cochlear implantation in prelingual profound deafness resulting from the common 233delC mutation of the GJB2 gene in the Japanese,Laryngoscope,2002,112:255-261.
    Mesolella M, Tranchino G, Nardone M, et al. Connexin 26 mutations in nonsyndromic autosomal recessive hearing loss: speech and hearing rehabilitation, Int J Pediatr Otorhinolaryngol, 2004, Aug,68(8):995-1005.
    Newton V, Aetiology of bilateral sensori-neural hearing loss in young chidren.J Laryngol Otol Suppl, 1985, 10:1-57.
    Ohde RN. Fundamental frequency as an acoustic correlate of stop consonant voicing, J Acoust Soc Am,1984,Jan,75(1):224-30.
    Parving A,Epidemiology of hearing loss and aetiological diagnosis of hearing impairment in childhood. Int J Pediatr Otorhinolaryngol, 1983, 5(2):151-65.
    Peng SC,Tomblin JB,Cheung H,et al.Perception and production of mandarin tones in prelingually deaf children with cochlear implants,Ear Hear, 2004, Jun, 25 (3):251-64.
    Peng SC,Weiss AL,Cheung H,et al. Consonant production and language skills in Mandarin-speaking children with cochlear implants,Arch Otolaryngol Head Neck Surg, 2004, May, 130(5):592-7.
    Poissant SF,Peters KA,Robb MP. Acoustic and perceptual appraisal of speech production in pediatric cochlear implant users, Int J Pediatr Otorhinolaryngol, 2006,Jul,70(7): 1195-203.
    Rosen S. Temporal information in speech: acoustic, auditory and linguistic aspects,Philos Trans R Soc Lond B Biol Sci,1992,Jun,29,336(1278):367-73.
    Serry T,Blamey P,Grogan M. Phoneme acquisition in the first 4 years of implant use,Am J Otol, 1997,Nov,18(6 Suppl):S122-4.
    Serry TA,Blamey PJ. A 4-year investigation into phonetic inventory development in young cochlear implant users,J Speech Lang Hear Res,1999,Feb,42(1):141-54.
    Sharma A,Dorman MF,Spahr AJ. A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation,Ear Hear, 2002, Dec, 23(6):532-9.
    Siemering K, Manji SS, Hutchison WM, et al. Detection of mutations in genes associated with hearing loss using a microarray-based approach, J Mol Diagn, 2006, Sep, 8(4):483-9
    Sinnathuray AR, Toner JG,Clarke-Lyttle J,et al. Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation,Otol Neurotol,2004, Nov,25(6):935-42.
    Sinnathuray AR,Toner JG,Geddis A,et al. Auditory perception and speech discrimination after cochlear implantation in patients with connexin 26 (GJB2) gene-related deafness, Otol Neurotol, 2004, Nov; 25 (6):930-4.
    Smith CR. Residual hearing and speech production in deaf children, J Speech Hear Res,1975,Dec,18(4):795-811.
    Spiess AC,Lang H,Schulte BA,et al.Effects of gap junction uncoupling in the gerbil cochlea, Laryngoscope, 2002, Sep, 112(9):1635-41.
    Stanczuk GA , Sibanda EN , Tswana SA, et al. Polymorphism at the -308 -promoter position of the tumor necrosis factor-alpha( TNF-alpha) gene and cervical cancer, Int J Gynecol Cancer, 2003 ,13 :148-153.
    Steel KP. Science, medicine,and the future : new interventions in hearing impairment. Bmj, 2000 , Mar 4 320:622.
    Stoel-Gammon C. Prelinguistic vocalizations of hearing-impaired and normally hearing subjects: a comparison of consonantal inventories,J Speech Hear Disord,1988,Aug,53(3):302-15.
    Taitalbaum-Swead R,Brownstein Z,Muchnik C,et al. Connexin-associated deafness and speech perception outcome of cochlear implantation,Arch Otolaryngol Head Neck Surg ,2006,May,132(5):495-500.
    Tobey EA, Angelette S,Murchison C,et al. Speech production performance in children with multichannel cochlear implants,Am J Otol,1991,12 Suppl:165-73.
    Tobey EA,Geers AE,Brenner C,et al. Factors associated with development of speech production skills in children implanted by age five,Ear Hear,2003,Feb,24(1 Suppl):36S-45S.
    Tobey EA,Pancamo S,Staller SJ,et al. Consonant production in children receiving a multichannel cochlear implant,Ear Hear,1991,Feb,12(1):23-31.
    Tsukamoto K,Suzuki H,Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese, Eur J Hum Genet, 2003, Dec,(12):916-22.
    Uno A,Shinya N,Haruhara N,et al.Revan's Coloured Progressive Matrices in Japanese Children-As a Screening Intelligence Test for Children with Learning Disorder and Acquired Childhood Aphasia,Jpn,J.Logoped Phoniatr, 2005, 46: 185-189.
    Usami S,Abe S,Weston MD,et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations, Hum Genet, 1999, Feb, 104(2): 188-92.
    Uziel AS,Sillon M,Vieu A,et al. Ten-year follow-up of a consecutive series of children with multichannel cochlear implants,Otol Neurotol, 2007, Aug, 28(5): 615-28.
    Van Camp G, Willems PJ , Smith RJ . Nonsyndromic hearing impairment: unparalleled heterogeneity, Am J Hum Genet, 1997 , 60 :758.
    Vihman MM, Phonological development: the origins of language in the child,Cambridge:Blackwell Publishers.
    Waltzman SB, Cohen NL,Gomolin RH,et al. Open-set speech perception in congenitally deaf children using cochlear implants,Am J Otol, 1997, May,18(3):342-9
    Wang HL,Chang WT,Li AH,et al.Functional analysis of connexin-26 mutants associated with hereditary recessive deafness,J Neurochem,2003,Feb,84(4):735-42.
    Xu L,Tsai Y,Pfingst BE.Features of stimulation affecting tonal-speech perception:implications for cochlear prostheses,J Acoust Soc Am,2002,Jul,112(1):247-58.
    鲍怀翘.普通话语音理和声学分析简介(续1),听力学及言语疾病杂志,2004,12,4:285-86.
    鲍怀翘.普通话语音理和声学分析简介(续2),听力学及言语疾病杂志,2004,12,4:357-59.
    戴朴,刘新,于飞,等.18个省市聋校学生非综合征性聋病分子流行病学研究(Ⅰ)-JGB2 235delC和线粒体DNA12SrRNA A1555G突变筛查,中华耳科学杂志,2006,4,1:1-5.
    雷雳.PDS基因突变与前庭导水管扩大综合征,国外医学耳鼻咽喉科分册,2003,27(4):198-201.
    刘军.中华耳科学杂志,2007,5(1):21-25.
    龙墨,梁巍,周丽君,等.聋儿语音获得分析,中国耳鼻咽喉头颈外科,2006,13(5):313-316.
    潘滔,马芙蓉,曹克利,等.不同年龄人工耳蜗置入语前聋儿童元音基频和共振峰变化分析,临床耳鼻咽喉科杂志,2005,19(4):145-148.
    王国建,戴朴,韩东一,等.基因芯片技术在非综合征性耳聋快速基因诊断中的应用研究,中华耳科学杂志,2008,6(1):61-6.
    王苹,王新美,安秀芬等.Connexin 26基因233delC突变与中国人先天性耳聋的研究,耳鼻咽喉-头颈外科,2001,8(1):24-26.
    王胜资,张斌,谭明,等.药物性耳聋现状调查及基因分析,上海医科大学学报,1999,26(2):154-155.
    杨华,汤建国,曹克利,等.神经反应遥测技术在人工耳蜗植入术中的检测应用,中华耳鼻咽喉科杂志,2001,36(5):352-356.
    于飞,戴朴,曹菊阳,等.中国东北地区非综合征性耳聋患者GJB2基因的致聋突变分析,中国实验诊断学,2006,10,1:38-41.
    郑文波,罗建红,郦云等.中国人语前非综合征性耳聋患者GJB2基因的突变分 析,中华儿科杂志,2000,38(10):610-613.
    中国聋儿康复研究中心,全国聋儿康复工作协调组办公室.聋儿听觉言语康复评估方法.吉林省教育音像出版社
    中华医学会耳鼻咽喉科学分会,中华耳鼻咽喉科杂志编辑委员会.人工耳蜗植入工作指南(2003年长沙).中华耳鼻咽喉科杂志,2004,39:66-69
    1.戴维·克里斯特尔.现代语言学词典[M].第四版.北京:商务印书馆,2004.26-383.
    2.何善芬.英汉音节结构对比,外语研究,1997,52(20):45-48
    3.王树峰.与听力学相关的语音学知识,中国听力语言康复科学杂志,2006,2:72-74.
    4.鲍怀翘.普通话语音理和声学分析简介(续1),听力学及言语疾病杂志,2004,12,4:285-86.
    5.Dejonckere PH,Bradley B,clemente P,et al.A basic protocol for functional assessment of voice pathology,especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques.Guideline elaborated by the Committee on Phoniatrics of the European Laryngological Society(ELS).Eur Arch Otorhinolaryngol,2001,Feb,258(2):77-82.
    6.Tobey EA,Geers AE,Brenner C,et al.Factors associated with development of speech production skills in children implanted by age five,Ear Hear,2003,Feb,24(1 Suppl):36S-45S.
    7.Lane H,Perkell JS.Control of voice-onset time in the absence of hearing:a review,J Speech Lang Hear Res,2005 Dec,48(6):1334-43.
    8.Grogan ML,Barker EJ,Dettman SJ,et al.Phonetic and phonologic changes in the connected speech of children using a cochlear implant,Ann Otol Rhinol Laryngol Suppl,1995 Sep;166:390-3.
    9.Ertmer DJ,Mellon JA.Beginning to talk at 20 months:early vocal development in a young cochlear implant recipient,J Speech Lang Hear Res,2001,Feb,44(1):192-206.
    10.吴宗济,林茂灿.实验语音学概要[M],北京:高等教育出版社,1989,117-121.
    11.鲍怀翘.普通话语音理和声学分析简介(续2),听力学及言语疾病杂志,2004,12,4:357-59.
    12.Gold T.Speech production in hearing-impaired children,J Commun Dis,1980,13(6):397-418.
    13.Allen MC,Nikolopoulos TP,O'Donoghue GM.Speech intelligibility in children after cochlear implantation,Am J Otol,1998,Nov,19(6):742-6.
    14.Beadle EA,Mckinley DJ,Nikolopoulos TP,et al.Long-term functional outcomes and academic-occupational status in implanted children after 10 to 14 years of cochlear implant use,Otol Neurotol,2005,Nov,26(6):1152-60.
    15.Bakhshaee M,Ghasemi MM,Shakeri MT,et al.Speech development in children after cochlear implantation.Eur Arch Otorhinolaryngol.2007 Nov;264(11):1263-6.
    16.Uziel AS,Sillon M,Vieu A,et al.Ten-year follow-up of a consecutive series of children with multichannel cochlear implants,Otol Neurotol,2007,Aug,28(5):615-28.
    17.Allen C,Nikolopoulos TP,Dyar D,et al.Reliability of a rating scale for measuring speech intelligibility after pediatric cochlear implantation,Otol Neurotol,2001,Sep,22(5):631-3.
    18.Loundon N,Busquet D,Roger G,et al.Audiophonological results after cochlear implantation in 40 congenitally deaf patients:preliminary results,Int J Pediatr Otorhinolaryngol,2000,Nov,30,56(1):9-21.
    19.Lohle E,Frischmuth S,Holm M,et al.Speech recognition,speech production and speech intelligibility in children with heating aids versus implanted children,Int J Pediatr Otorhinolaryngol,1999,Feb,15,47(2):165-9.
    20.Flipsen P Jr,Colvard LG.Intelligibility of conversational speech produced by children with cochlear implants,J Commun Disord,2006 Mar-Apr,39(2):93-108.
    21.Bouchard ME,Normand MT,Cohen H.Production of consonants by prelinguistically deaf children with cochlear implants,Clin Linguist Phon,2007, Nov-Dec,21(11-12):875-84.
    22. Horga D, Liker M, Voice and pronunciation of cochlear impiant speakers,Clin Linguist Phon,2006,Apr-May,20(2-3):211-7.
    23. Poissant SF,Peters KA,Robb MP. Acoustic and perceptual appraisal of speech production in pediatric cochlear implant users, Int J Pediatr Otorhinolaryngol, 2006,Jul,70(7):1195-203.
    24. Flipsen P Jr. Intelligibility of spontaneous conversational speech produced by children with cochlear implants: A review, Int J Pediatr Otorhinolaryngol, 2008, Mar,3,[Epub ahead of print]
    25. Jensema CJ,Karchmer MA,Trybus RJ,et al. The Rated Speech Intelligibility of Hearing Impaired Children: Basic Relationships and a Detailed Analysis. Series R, No. 6, Office of Demograpgic Studies ,Gallaudet College , Wanshington, DC, 1978.
    26. Angelocci AA,Kopp GA,Holbrook A. The vowel formants of deaf and normal-hearing eleven-to foruteen-year-old boys,J Speech Hear Disord, 1964,May,29:156-60.
    27. Higgins MB,McCleary EA,Carney AE,et al. Longitudinal changes in children's speech and voice physiology after cochlear implantation,Ear Hear, 2003, Feb, 24 (1):48-70.
    28. Monsen RB. Acoustic qualities of phonation in young hearing-impaired children,J Speech Hear Res,1979,Jun,22(2):270-88.
    29. Ball V, Ison KT.Speech production with electrocochlear stimulation,Br J Audiol,1984,18:251-58.
    30. leder SB,Spitzer JB,Milner P,et al. Reacquisition of contrastive stress in an adventitiously deaf speaker using a single-channel cochlear implant, J Acoust Soc Am, 1986,Jun,79(6): 1967-74.
    31. Hamzavi J,Deutsch W, Baumgartner WD,et al. Short-term effect of auditory feedback on fundamental frequency after cochlear implantation, Audiology, 2000, Mar-Apr,39(2): 102-5.
    32. Hocevar-Boltezar I,Vatovec J,Gros A,et al.The influence of cochlear implantation on some voice parameters,Int J Pediatr Otorhinolaryngol, 2005,Dec, 69(12): 1635-40.
    33. Seifert E, Oswald M,Bruns U,et al. Changes of voice and articulation in children with cochlear implants, Int J Pediatr Otorhinolaryngol,2002,Nov,11,66(2): 115-23.
    34. Tobey EA, Angelette S,Murchison C,et al. Speech production performance in children with multichannel cochlear implants,Am J Otol,1991,12 Suppl:165-73.
    35. Stoel-Gammon C. Prelinguistic vocalizations of hearing-impaired and normally hearing subjects: a comparison of consonantal inventories,J Speech Hear Disord, 1988,Aug,53(3):302-15.
    36. Smith CR. Residual hearing and speech production in deaf children, J Speech Hear Res,1975,Dec,18(4):795-811.
    37. Ohde RN. Fundamental frequency as an acoustic correlate of stop consonant voicing,J Acoust Soc Am,1984,Jan,75(1):224-30.
    38. Lane H,Wozniak J,Perkell J. Changes in voice-onset time in speakers with cochlear implants,J Acoust Soc Am,1994,Jul,96(1):56-64.
    39. Lu L,Liu H.Peabody Picture Vocabulary Test_Mandarin Version,Revised Form A,Taipei,Taiwan: Psychological Publishing Co Ltd, 1988.
    40. Lin P, Lin S.The Assessment of Preschool Language Disorder,Taipei,National Taiwan Normal University Press, 1993.
    41. Peng SC,Tomblin JB,Cheung H,et al.Perception and production of mandarin tones in prelingually deaf children with cochlear implants,Ear Hear,2004, Jun, 25(3):251-64.
    42. Peng SC,Weiss AL,Cheung H,et al. Consonant production and language skills in Mandarin-speaking children with cochlear implants,Arch Otolaryngol Head Neck Surg,2004,May,130(5):592-7.
    43. Serry T,Blamey P,Grogan M. Phoneme acquisition in the first 4 years of implant use,Am J Otol, 1997,Nov,18(6 Suppl):S122-4.
    44. Serry TA,Blamey PJ. A 4-year investigation into phonetic inventory development in young cochlear implant users, J Speech Lang Hear Res,1999,Feb,42(1):141-54.
    45. Tobey EA,Pancamo S,Staller SJ,et al. Consonant production in children receiving a multichannel cochlear implant,Ear Hear,1991,Feb,12(1):23-31.
    46. Rosen S. Temporal information in speech: acoustic, auditory and linguistic aspects,Philos Trans R Soc Lond B Biol Sci,1992,Jun,29,336(1278):367-73.
    47. Green T,Faulkner A, Rosen S. Spectral and temporal cues to pitch in noise-excited vocoder simulations of continuous-interleaved-sampling cochlear implants, J Acoust Soc Am,2002,Nov,112(5 Pt 1):2155-64.
    48. Sharma A,Dorman MF,Spahr AJ. A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation,Ear Hear, 2002, Dec, 23(6):532-9.
    49. Connor CM,Hieber S,Arts HA,et al. Speech, vocabulary, and the education of children using cochlear implants: oral or total communication?, J Speech Lang Hear Res, 2000, Oct, 43(5): 1185-204.
    50. Hammes DM,Novak MA,Rotz LA,et al. Early identification and cochlear implantation: critical factors for spoken language development,Ann Otol Rhinol Laryngol Suppl,2002,May, 189:74-8.
    51. 51 Moog JS, Geers AE. Epilogue: major findings, conclusions and implications for deaf education,Ear Hear,2003,Feb,24(1 Suppl):121S-5S.
    52. 51 Tye-Murray N,Spencer L,Woodwroth GG. Acquisition of speech by children who have prolonged cochlear implant experience, J Speech Hear Res, 1995,Apr,38(2):327-37.
    53. Uziel A,Mondain M,Raid J. European procedures and considerations in children's cochlear implant program,Ann Otol Rhinol Laryngol Suppl,1995,Sep,166:212-5.
    54. Han D,Zhou N,Li Y,et al. Tone production of Mandarin Chinese speaking children with cochlear implants, Int J Pediatr Otorhinolaryngol,2007, Jun, 71(6): 875-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700