用户名: 密码: 验证码:
黑龙江省村域农业生态系统碳平衡及低碳农业对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界各国日益关注以变暖为主要特征的气候变化,由于人类的活动、工业的排放和化石燃料的使用,导致了二氧化碳的排放日益增加,加剧了全球的温室效应。农业生态系统在全球碳循环中占有重要地位,农业既是碳汇也是碳源,一方面,农业生产中农作物可以固碳,另一方面农业生产中土壤呼吸、化肥的施用、畜禽养殖、农业废弃物的处理等环节又会产生碳的排放。由于碳排放导致的温室效应而引起的气候变化又严重影响到农业生产,农业也是最易遭受气候变化影响的产业。面对气候变化的严峻挑战,我国政府已经做出到2020年国内生产总值二氧化碳排放比2005年下降40%~45%的承诺。联合国粮农组织提出,低碳农业既能遏制气候变化又能增加发展中国家的粮食产量,保持农业的可持续发展并发挥农业的固碳能力,对于我国的粮食安全与缓解气候变化趋势具有双重的积极意义。黑龙江省是粮食种植大省和畜牧业大省,在全国农业生态系统中碳的固定和排放中占有相当的比例。目前黑龙江省大部分农村采用常规农业的发展模式,从土地中收获的生物量大,但返还土壤的生物量少,同时畜牧业生产和居民生活用能碳排放量大,农业废弃物未得到有效地循环利用,形成“高投入、高消耗、高排放、低效率”的粗放型农业发展模式。同时,黑龙江省在探索生态农业、循环农业、有机农业的发展之路,形成不同地区的不同发展模式,这些模式将推动黑龙江省循环农业和低碳农业的发展。
     本文以村域为边界,以年为单位,运用调研、试验分析和模型计算结合的方法,对黑龙江省不同农业发展模式的四个典型村域农业生态系统碳的吸收、固定、排放和转移以及村域农业系统中碳源/汇进行了估算分析;基于村域模式对黑龙江省农业生态系统碳平衡进行估算和基于统计分析方法对黑龙江省农业生态系统碳平衡进行估算,在分析研究黑龙江省低碳农业发展潜力基础上,提出了黑龙江省发展低碳农业的对策,最后提出了黑龙江省农业提高碳固定,减少碳排放和发展低碳农业的战略对策。以下是本文的基本结论:
     1.本论文选取四个典型村作为研究对象,分别为以沼气利用为基础发展有机农业的新庄村,以发展种子专业生产的“公司+基地+农户”的订单模式的兴胜村,以发展循环农业和农村城镇化的循环农业模式的丰林村和以发展传统农业模式的同乐村。
     2.新庄村、兴胜村、同乐村和丰林村农作物碳吸收总量分别为8414t,5699t,9138t,7301t,农作物生育期碳吸收量的多少主要与村域农作物产量成正相关。农作物碳吸收强度分别7.2t/hm~2、4.2t/hm~2、6.8t/hm~2、9.1t/hm~2,碳吸收强度主要与农作物的单位面积产量有关,单位面积内农作物的产量越高,农作物生育期内碳的吸收量就越多。四个村域农作物平均碳吸收强度为6.8t/hm~2。从农田生态系统碳吸收能力上看,各作物生态系统碳吸收强度依次为马铃薯>甜菜>玉米>葵花>大豆>芸豆。
     3.新庄村、兴胜村、同乐村和丰林村农业生态系统碳吸收总量分别为11323t,13725t,16762t,14156t;碳吸收强度分别为9.1thm~2、8.5thm~2、10.6thm~2、14.1 thm~2。四个村域农业生态系统在碳吸收上存在较大的差异,主要与村域土地类型、土地面积以及农作物的产量和种植类型有关。从碳吸收能力上看,林地的碳吸收强度远远大于农田的碳吸收强度。
     4.新庄村、兴胜村、同乐村、丰林村农业生态系统碳排放量分别为28808t、30414t、36532t、18541t。四个村域碳排放量表现出明显差异。
     (1)新庄村、兴胜村、同乐村和丰林村农作物种植统碳排放量分别为1243t、578t、522t、335t,新庄村水稻面积种植较多,农作物种植产生碳排放量远远高于其他三个村域。在农作物种植过程中,农业用电、农田灌溉、化肥施用和农机使用四个产生碳排放的途径中,因化肥的施用而产生的碳排放量最多,新庄村、兴胜村、丰林村和同乐村因化肥施用而产生的碳排放占种植生产中产生的碳排放总量之比分别是35%、91%、85%、87%。
     (2)新庄村、兴胜村、同乐村和丰林村畜禽养殖产生的碳排放量分别为41t、64t、12t、39t,畜禽养殖产生的碳排放量多少主要与畜禽养殖数量和类型有关。
     (3)新庄村、兴胜村、同乐村和丰林村土壤呼吸产生的碳排放量分别为19465t、24240t、24034t、14782t,土壤呼吸产生的碳排放量主要与村域土地面积和土地类型有关。村域土地以农田为主,因此农田土壤呼吸释放的碳量最多,新庄村、兴胜村、丰林村和同乐村农田土壤产生的碳排放量占土壤呼吸产生的碳排放总量之比分别为96%、91%、90%、87%。
     (4)新庄村、兴胜村、同乐村和丰林村人口产生的碳排放量分别为1007t、611t、1245t、438t。四个村域人口产生的碳排放量的明显差异主要与村域人口数量有关。
     (5)新庄村、兴胜村、同乐村和丰林村生活用能产生的碳排量分别为7052t、4921t、10630t、2927t;人均每年生活用能碳排放强度分别为2.3t、2.6 t、2.8 t、2.2t,主要与农民生活能源消费结构有关。同乐村、兴胜村生活用能以秸秆为主,能源利用效率很低,生活用能产生碳排放量高,新庄村以沼气和秸秆为生活用能,丰林村的生活用能以秸秆固化燃料作为取暖用能,以沼气作为炊事用能,具有明显的节能减排效果。
     5. 2010年新庄村、兴胜村、同乐村、丰林村农业生态系统固定的碳量分别为669t、532t、302t、800t,发展有机农业的新庄村和发展循环农业的丰林村农田土壤固碳量相对较高。
     6. 2010年新庄村、兴胜村、同乐村、丰林村四个村域转移出农业生态系统以外的碳量分别为3897t、2746t、5212t、5192t,转移出村域农业生态系统碳量依次为同乐村>丰林村>新庄村>兴胜村。农作物产品转移碳量占转移出村域农业生态系统碳量的百分比分别为98%、92%、99%、77%。四个村域转移出农业生态系统外的碳量以农产品为主,畜禽产品所占比重相对较少。
     7.通过对四个典型村农田生态系统碳吸收量和碳排放量的估算分析,碳的排放量远远小于碳吸收量,四个村域农田生态系统碳吸收总量约为碳排放量的11倍,说明黑龙江省村域农田生态系统具有较强的碳汇能力。新庄村、兴胜村、同乐村、丰林村农田生态系统碳汇量分别为7171t、5121t、8527t、6946t;碳汇强度分别为6.17t/ hm~2、3.74t/ hm~2、6.3t/ hm~2、8.7t/hm~2 ,平均碳汇强度6.2t/hm~2。
     8.通过对四个典型村域农业生态系统碳吸收、碳排放、碳固定和碳转移的估算分析,四个村域农业生态系统由于碳排放远远大于碳吸收,碳排放总量约为碳吸收总量的2倍,可以看出黑龙江省村域农业生态系统表现为明显的碳排放源。新庄村、兴胜村、同乐村、丰林村的碳源量分别为17485、16690t、19970t、4385t,碳源强度分别为14t/hm~2、10.4t/hm~2、12.6t/hm~2、4.4t/hm~2,四个村域的平均碳源强度为10.4t/hm~2。
     9.由物流分室模型稳定性分析可知,有机农业模式的新庄村、循环农业模式的丰林村和高效专业农业模式的兴胜村的农业生态系统,依据农业生产格局的碳输入输出现有平衡状况,其农业生态系统趋向于渐近稳定。传统农业生产模式的同乐村农业生态系统趋向于不稳定。
     10.从不同组合农业发展方案农业生态系统碳平衡估算结果可知,黑龙江省农业按照“10%传统农业+50%循环农业+40%高效农业”的发展方案,农田生态系统的碳排放量最低,碳吸收量和碳汇量最高,能够实现由目前的高能耗、高物耗、高排放和高污染的高碳农业向低能耗、低物耗、低排放和低污染的低碳农业的转型。
     11.黑龙江省农作物碳吸收总量呈明显增加的趋势,碳吸收总量从2000年的2124万t上升到2009年的4685万t,涨幅为121%。农田生态系统碳排放基本上呈逐渐增加的趋势,碳排放总量从2000年的301万t增长到2009年的532.6万t,农田生态系统碳汇呈明显增加趋势,碳汇量与碳吸收量的年际变化趋势相似。
     12. 2000-2009年黑龙江省畜禽碳排放总量上升从2000年的39.71万t上涨到2009年的60.88万t,涨幅为56%。2009年黑龙江省畜禽养殖产生的碳排放,反刍动物碳排放量约占畜禽养殖碳排放总量的70%。
     13.黑龙江省农村人口碳排放呈逐渐下降的趋势,碳排放总量从2000年的601万t下降到2009年的559万t,降幅幅为6.9%。
     14. 2009年黑龙江省农村生活用能碳排放量为5797t。
     15.黑龙江省耕地土壤呼吸释放的碳量呈明显增加的趋势碳吸收总量从2000年15387万t上升到2009年的20797万t,涨幅为34%。
     16.通过对黑龙江省农业生态系统碳平衡的估算,2009年黑龙江省农业生态系统碳吸收量为4685万t,碳排放量为28089万t,碳源量为23404万t。
     17.在分析黑龙江省村域农业生态系统碳平衡现状、低碳农业发展潜力基础上,提出了黑龙江省发展低碳农业的对策,主要包括:建立发展低碳农业的地方法规政策体系、建立黑龙江省发展低碳农业的技术保障体系、采用低碳施肥技术、低碳种植技术、低碳畜禽养殖技术、加大农村可再生能源的开发与利用、建设低碳村域人居环境、积极探索发展农业碳交易。
Global climate change has attracted worldwide attention. Human activities, industrial emissions and the use of fossil fuels lead to the increase of carbon dioxide emissions and the global greenhouse effects have been added. The ecological system of agriculture has played an important role in global greenhouse gas circulation. Agriculture is not only carbon cool but also carbon source. On the one hand crops may fix carbon, on the other hand soil respiration, the use of chemical fertilizers, raising livestock and agricultural wastes can cause carbon emissions. The climate change caused by greenhouse effects will influence the agricultural industry and the agriculture is influenced by climate change easily. Facing the serious challenge of climate change, our government has decided that carbon dioxide emissions will be declined 40% ~ 45% in 2020 contrast to 2005. The FAO puts forward that low carbon agriculture can curb climate change, increase agricultural production in developing countries and maintain the sustainable development of agriculture and fixing carbon ability, which have the dual positive meaning for our country's food security and mitigating climate change trend. Heilongjiang province is a big province in food grown and animal husbandry and carbon fixation and emissions occupies a high proportion. Because straw return to the field ratio is low,carbon emissions from livestock production and residents living energy-using are big and agricultural waste do not recycle effectively, at present most countries in Heilongjiang province adopt conventional agriculture mode named high investment, high consumption , high emissions and low efficiency mode. Heilongjiang province is exploring a development way of ecological agriculture, circulating agricultural and organic agriculture. Different regions has formed different development modes in Heilongjiang province, which promote the development of circulating agriculture and low carbon agriculture of Heilongjiang.
     This paper,bonded by village and taking year as unit, has estimated and ayalysed the carbon pool, carbon source and carbon absorption, fixation,emissions and transfer of four village regions in agricultural ecosystem in Heilongjiang province through using survey, experimental analysis and model calculation methods. Also we researched the stabilities of agricultural ecosystem of four village ecosystem by using logistics compartment model. We have made forecast on carbon emission trend on the four villages’agriculture ecosystem by way of recursive model.We estimated carbon emissions of farm ecosystem and raising livestock during agricultural industry of Heilongjiang province. At last we presented the strategy of improving carbon fixation, decreasing carbon emissions and developing low carbon agriculture in Heilongjiang province.
     The paper drawed an inference following conclusions from analysis above:
     1. Our paper selected four typical villages as our studies. They are Xinzhuang village which developed organic agriculture by using methane, Xingsheng village that founded a indent mode in seed industry named company,base plus farmer, Fenglin village that was a urbanization village and developed a recycling agriculture mode and Tongle village that developed conventional agriculture.
     2. Crops carbon uptake contents of Xinzhuang village,Xingsheng village, Tonghe village and Fenglin village were 8414t,5699t,9138t and 7301t,respectively.The crops carbon abporption value in growth period is proportional to village crop’s output. Carbon uptake intensity were 7.2t/hm~2,4.2 t/hm~2,6.8 t/hm~2 and 9.1 t/hm~2,respectively. Carbon uptakeintensity of crops were proportional to crop output per unit area.The more output comes from unit area, the more carbon absorption from crop in growth period. The average carbon absorption intensity for the four villages is 6.8t/hm~2. . The carbon absoption intensity of each crop ecosystem in proper order is: potato>beets>corn>sunflower>soybean>kidney been in point view of carbon absorption capability of farmland ecosystem.
     3.Carbon uptake contents in agricultural ecosystem of Xinzhuang village,Xingsheng village, Tonghe village and Fenglin village were 11323t,13725t,16762t and 14156t,respectively. Carbon uptake intensity were 9.1thm~2,8.5thm~2,10.6thm~2 and 14.1 thm~2,respectively. Carbon uptake contents in agricultural ecosystem of four village regions were different significantly. The reason was that four village regions have different soil type, land areas, crops yields and planting types.From the point of carbon absorption capability, Carbon uptake capacities of woodland were much higher than those of farmland.
     4.Carbon emissions in agricultural ecosystem of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 29201t, 30414t, 36532t and 18541t, respectively. Carbon emissions value in agricultural ecosystem of four village regions were different significantly.
     (1) Carbon emissions contents of crops planting of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 1243t,578t,522t and 335t.Rice areas of Xinzhuang village were very big and carbon emissions contents caused by crops planting were much higher than those of other three villages. There are four carbon emissions ways during crops planting such as agricultural electricity, field irrigation, chemical fertilizers and agricultural machinery use. Carbon emissions contents caused by chemical fertilizers were the most and the ratios of carbon emissions contents caused by chemical fertilizers and carbon emissions contents of crops planting were 35%,91%,85% and 87%, respectively.
     (2)Carbon missions of raising livestock of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 41t,64t,12t and 39t. Carbon emissions of raising livestock were connected with numbers and types of raising livestock.
     (3)Carbon emissions of soil respiration of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 19465t,24240t,24034t and 14782t. Carbon emissions contents of soil respiration were connected with soil areas and soil types.Village land mainly is farmland and so carbon emissions of soil respiration of farmland were the most. The ratios of carbon emissions of farm accounting for carbon emissions of soil respiration were 96 % ,91 % ,90 % and 87%,respectively.
     (4) Carbon emissions of persons of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 1007t,611t,1245t and 438t, respectively.Evident differences of carbon emissions of persons of four villages were connected with numbers of persons.
     (5) Carbon emissions of live energy were 7572t,4921t,10630t and 2927t.The average carbon emission intentity of live energy per year are 2.3t、2.6 t、2.8 t、2.2t respectively. This was connected with live energy consumption structure of farmers. Straw was the main live energy of Tonghe village and Xingsheng village with low efficiency of energy usage and high carbon emissions of live energy.Xinzhuang Village use straw and biagas as live energy.Fengling Village use straw fixation fuel as energy of warming and use biogas as energy for cooking,which has obvious effect on energy conservation and emission reduction.
     5. Carbon fixations of agricultural ecosystem of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village in 2010 were 669t, 532t, 302t and 800t, respectively. Carbon fixations of Xinzhuang village which developed organic agriculture and Fenglin village which developed cycling agriculture were very high.
     6.Carbon contents transferred out of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 3897t、2746t、5212t、5192t,, respectively in the year of 2010,The carbon value transferred out of village ecosystem in proper order is Tongle> Fengling> Xinzhuang> Xingsheng.The percentage of Crop transferred carbon value accounting for carbon value transferred out of village ecosystem is 98%、92%、99%、77% respectively.The carbon value transferred out of vallige ecosystem is mainly from agriculture product and livestock prodocut take few percentage.
     7. By way of estimating analysis on carbon absorption value and carbon emission value of farm ecosystem in four typical villages, we get the result that carbon emission is much lower than carbon absorption.Carbon uptake contents were 11 times higher than carbon emissions contents. All these showed that farm ecosystem of village regions in Heilongjiang Province had high carbon pool abilities. Carbon pool contents of farm ecosystem of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 7171t,5121t,8527t and 6946t,respectively and carbon pool intensity were 6.17t/ hm~2,3.74t/ hm~2,6.3t/ hm~2 and 8.7t/ hm~2,respectively.The average carbon pool intensity is 6.2t/hm~2
     8. By way of estimating analysis on carbon absorption value and carbon emission,carbon fixation and carbon transfer,carbon emissions contents of agricultural ecosystem of four village regions were much higher than carbon uptake contents and carbon emissions contents were 2 times higher than carbon uptake contents. All these showed that agricultural ecosystem of village regions were carbon emission source. Carbon emissions source of Xinzhuang village, Xingsheng village, Tonghe village and Fenglin village were 17485、16690t、19970t、4385t,respectively and carbon emissions source intensity were 14t/hm~2、10.4t/hm~2、12.6t/hm~2、4.4t/hm~2,respectively.The arerage carbon emission intensity of the four village is 10.4t/hm~2
     9.Logistic compartment method show that Xingzhuang village in organic ariculture mode, Fengling village with developing cycle agriculture mode and Xingsheng village with developing high efficient and specific agriculture is tend to reach a stable agriculture ecosystem as long as they maintain current agriculture structure and current status of carbon emission and carbon absorption.Tongle Village with developing tradition agriculture production mode is tend to unstable agriculture ecosystem based on current agriculture production structure.
     10.Estimations of carbon balance of agricultural ecosystem in view of different agricultural development projects showed that carbon emissions of farm ecosystem were the lowest,carbon absorption contents were the highest and high carbon agriculture of high energy consumption,high material consumption, high emission and high pollution might be transformed to low carbon agriculture of low energy consumption,low material consumption, low emission and low pollution if the project that adopted 10% traditional agriculture,50% cycling agriculture plus 40% efficient agriculture was carried out.
     11.The recursive mode has demonstrates that crop carbon absorption value is in obvious increase in Heilongjiang Province.Carbon absorption has increased from 21240000t of the year of 2000 into 46850000t in the year of 2009 with 121% increase.Farmland ecosystem carbon emission basiclly is in increase gradually trend and carbon emission has increase from 3010000t in the year of 2000 into 5326000t in the year of 2009.Farmland ecosystem carbon pool demonstrates obvious intensitive trend.The yearly change trend of carbon pool and carbon absorption are similar.
     12. Carbon emission total value of livestock in Heinglongjiang province from 2000 to 2009 has increase from 397100t for the year of 2000 into 608800t for the year of 2009, with 56% increase. Carbon emission from ruminant animals accourts for 70% of raising livestock for the carbon emission of livestock in Heilongjiang Province in 2009.
     13.Carbon emissions of rural population of Heinglongjiang province were declining gradually. Carbon emissions declined from 6010000t of 2000 to 5590000t of 2009. Carbon emissions declined 6.9% in 2009 contrast to 2000.
     14. Carbon emissions of live energy of village of Heinglongjiang province in 2009 were 5797t.
     15. Carbon emissions from soil respiration of plowland of Heinglongjiang province increased evidently. Carbon absorption rised from 153870000t of 2000 to 207970000t of 2009. Carbon absorption increased 34% in 2009 contrast to 2000.
     16. It was estimated that carbon absorptions of agricultural ecosystem of Heilongjiang province in 2009 were 46850000t and carbon emissions were 280890000t. Carbon pool contents were 234040000t.
     17.Based on analysis on current status of agriculture ecosystem carbon cycle in villiges in Heilongliang province, developing mode of village low carbon emission agriculture and rserve force of village low carbon emission, this paper has proposed coutermeasures of developing low carbon emission agriculture in Heilongjiang villges.The measures mainly includes establish and develop local regulations for low carbon emission agriculture, establish technoloty guarantee system for developing village low carbon emission agriculture in Heilongjiang Province, adopt low carbon fertilization technology low carbon emission plant technology and low carbon emission livestock raising technology, strengthen exploring and usage of agriculture renewable resourses,establish low carbon emission village and explore positively on developing agriculture.
引文
詹文博,刘磊.2009.黑龙江省清洁发展机制项目潜力分析[J].节能技术.27(154):135~139.
    张象枢.1987.农业系统工程概论[M].济南:山东科学技术出版社.
    方精云.1996.中国陆地生态系统碳库.现代生态学的热点问题研究[M].北京:中国科学技术出版社
    方精云,郭兆迪,朴世龙等.2007.1981—2000年中国陆地植被碳汇的估算[J].中国科学(D 辑)37(6):804~812.
    蒲勇健.2010.解读哥本哈根气候峰会—博弈论视角[J].重庆大学学报.16(1):1~11.
    徐世晓,赵新全.2001.人类不合理活动对全球气候变暖的影响[J].生态经济.59(6): 59~61.
    潘根兴,赵其国.2005.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展20(4):385~392 .
    韩贵清.2010.发展低碳农业经济的必然选择和目标模式[J].新农业.7:8~9.
    潘根兴.2008.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展.4 (5):282~289.
    潘根兴,李恋卿,张旭辉等.2003.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].18(4):609~618.
    潘根兴.2008.中国农业土壤固碳潜力与气候变化[J].科技通报.15(5):330~332.
    史利江.2009.基于遥感和GIS的上海土地利用变化与土壤碳库研究[D].上海:华东师范大学.
    侯鹏程,徐向东,潘根兴等.2007.不同土地利用方式对农田表土有机碳库的影响—以太湖地区吴江市为例[J].南京农业大学学报.(2): 68~72.
    王成己,潘根兴,田有国等.2009.不同施肥下农田表土有机碳含量变化分析:基于中国农业生态系统长期试验资料[J].农业环境学报.28(12):2464~2475.
    劼鹏.2004.河西绿洲农田生态系统土壤碳汇时空演变研究[D].兰州.甘肃农业大学.
    郭运功.2009.特大城市温室气体排放量测算与排放特征分析[D].华东师范大学.
    高崇升,杨国亭,王建国.2008.移耕农业制度下黑土农田土壤有机碳的演变[J].农业系统科学与综合研究.24(1):87~89.
    张春华,王宗明,任春颖等.2010.松嫩平原玉米带农田土壤有机碳时空格局[J].农业工程学报.26(1):300~307.
    刘允芬.1995.农业生态系统碳循环研究[J].自然资源学报.10(1):1~8.
    刘允芬.1998.中国农业系统碳汇功能[J].农业环境保护.17(5):197~202.
    陈正华,麻清源,王建等.2008.利用CASA模型估算黑河流域净第一性生产力[J].自然资源学报.23(2):16~19.
    王效科,欧阳志云,苗鸿.2001.DNDC模型在长江三角洲农田生态系统的排放量估算中的应用[J].环境科学.22(3):16~19.
    陈四清.2002.基于遥感和GIS的内蒙古锡林河流域土地利土地覆盖变化和碳循环研究.[D].北京:中国科学院遥感应用研究所.
    高鲁鹏,梁文举,姜勇等.2004.利用CENTURY模型研究东北黑土有机碳的动态变化[J].应用生态学报.15(5):772~776.
    赵荣钦.2004.农田生态系统源/汇的时空差异及增汇技术研究——以中国沿海为例[D].河南:河南大学.
    王明星,戴爱国,黄俊等.1993.中国CH4排放量的估算[J].大气科学.17(1): 52~64.
    李道西.2007.控制灌溉稻田甲烷排放规律及其影响机理研究[D].南京:河海大学.
    张广斌,马静,徐华等.中国稻田CH4排放量估算研究综述[J].土壤学报.46(5):907~916.
    黄耀,张稳,郑循华等.2006.基于模型和GIS技术的中国稻田甲烷排放估计[J].生态学报.26(4):980~988.
    刘金剑,吴萍萍,谢小立.2008.长期不同施肥制度下湖南红壤晚稻田CH4的排放[J].生态学报.28(6):2878~2885.
    蔡祖聪,徐华,卢维盛等..1998.冬季水分管理方式对稻田CH4排放量的影响[J].应用生态学报.9(2):171~175.
    樊霞,董红敏,韩鲁佳.2006.反刍动物甲烷排放预测模型研究现状[J].农业工程学报20(4):250~254.
    胡向东,王济民.2010.中国畜禽温室气体排放量估算[J].农业工程学报26(10):247~252.
    娜仁花,董红敏,陶秀萍.2010.不同类型日粮奶牛体外消化性能与甲烷产生量比较[J].农业环境科学学报.29(8):1576~1581.
    徐晓嘉,雷国平,张慧等.2010.黑龙江省松嫩平原南部表层土壤肥力质量评价研究[J].水土保持研究.17(5):268~272.
    卞正富.2000.国内外煤矿区土地复垦研究综述[J].中国土地科学.14(1):7~11.
    李克让.2002.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社.
    邓可蕴.2000.中国农村能源综合建设理论与实践[M].北京:中国环境科学出版社.
    焦燕,胡海清. 2005.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报.16(12): 2248~2252.
    段茂盛,王革华.2003.畜禽养殖场沼气工程的温室气体减排效益及利用清洁发展机制的影响分析[J].太阳能学报. 24(3):386~389.
    王飞,丰志勇,陈建.2010.英国发展低碳经济的经验浅谈[J].生态经济.(4):49~50.
    郭然,王效科,逯非等. 2008.中国草地土壤生态系统固碳现状和潜力[J].生态学报.12(2): 862~867.
    李道西.2007.控制灌溉稻田甲烷排放规律及其影响机理研究[D].南京:河海大学.
    魏婷婷.2008.郑州东区生态系统碳循环研究[D].郑州:河南农业大学.
    戴万宏,王益权,黄耀等. 2004.农田生态系统土壤CO2释放研究[J].西北农林科技大学学报.32(12):1~6.
    杨金艳.2005.东北天然次生林生态系统地下碳动态研究[D].哈尔滨:东北林业大学.
    王娓,宋日,郭继勋.2002.东北松嫩草原碱茅群落的土壤呼吸同枯枝落叶分解释放CO2贡献量研究[J].草业学报.11(2):45~50.
    徐长勇,尚杰.2009.黑龙江省农村能源利用及生物质能发展实证研究[J].林业经济.5: 58~60.
    王革华.1999.农村能源建设对减排SO2和CO2贡献分析方法[J].农业工程学报.3(1):169~172.
    姚宗路,赵立欣,田宜水等.2009.黑龙江省农作物秸秆资源利用现状及中长期展望[J].农业工程学报.25(11):288~292.
    全国农业技术推广服务中心.1999.中国有机肥料养分志[M].中国农业出版社.
    方精云,刘国华,徐嵩龄.1996.中国陆地生态系统的碳循环及其全球意义.温室气体浓度和排放监测及相关过程[M].中国环境科学出版社.
    石剑华,李志国,王英杰等.2007.畜禽粪便有机肥对土壤肥力的影响[J].当代畜牧.9.
    郭强,牛冬杰,程海静等. 2005.沼渣的综合利用[J].中国资源综合利用.12:11~15.
    彭靖.2009.对我国农业废弃物资源化利用的思考生态环境学报.18:(2)794~798.
    刘连馥.2005.绿色农业初探[M].中国财政经济出版社.
    政府间气候变化专门委员会.2007.气候变化2007:联合国政府间气候变化专门委员会第四次评估报告,联合国政府间气候变化专门委员会第27次会议[C].
    王昀. 2008.低碳农业经济略论[J].中国农业信息.(8):12~15.
    杨景成,韩兴国,黄建辉等. 2003.土地利用变化对陆地生态系统碳储量的影响[J].应用生态学报.14(8):1385~1390.
    任万辉,许黎,王振会.2004.中国稻田甲烷产生和排放研究Ⅰ[J].产生和排放机理及其影响因子.气象.6.
    陈冠荣. 2001.化肥工业须快做出战略性调整[J].科学新闻.12.
    贾小黎. 2006.秸秆直接燃烧供热发电项目资源可供性调研和相关问题的研究[J].太阳能.(2):9~15.
    王峰.2010.黑龙江省农村生物质能产业发展模式研究[D].哈尔滨:东北农业大学.
    李大全.2007.黑龙江省发展循环经济战略研究[D].哈尔滨:东北农业大学.
    国家林业局应对气候变暖课题组.2007.高度重视发挥林业在应对气候变暖中的重大作用[J].绿色中国.3:46~49.
    于海琳.2008.黑龙江省发展生物质能源问题的研究[J].经济研究导刊.3.
    欧阳志云,王如松,赵景柱. 1999.生态系统服务功能及其生态经济价值评价[J].应用生态学报.10(5):635~640.
    许广月. 2010.中国低碳农业发展研究[J].经济学家.10:72~78.
    尹成杰.2007.农业多功能性与推进现代农业建设[J].中国农村经济.(7):4~9.
    王松良,C.D.Caldwell,祝文烽. 2010.低碳农业:来源、原理和策略[J].农业现代化研究.31(5):604~607.
    陈宗良,禹仲举.1992.不同农业管理方式对北京地区稻田甲烷排放的影响研究[J].环境科学研究.5(4):1~7.
    郭玉华,朱继强.2005.对黑龙江省有机肥产业化问题的初步探讨.腐植酸.3.
    罗岚. 2008.农作物秸杆资源循环利用效益研究[D].成都:四川师范大学.
    樊霞.2004.肉牛甲烷排放与粪便肥料成分含量快速预测方法和模型的研究[D].北京:中国农业大学.
    潘根兴,赵其国,蔡祖聪.2010.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学.(2): 12~18.
    邱建军,唐华俊,LICS. 2003.北方农牧交错带耕地土壤有机碳储量变化模拟研究——以内蒙古自治区为例[J].中国生态农业学报.11(4):86~88.
    何英.2008.黑龙江省农村能源结构现状分析及优化建议[J].农场经济管理.3:50~51.
    金成,李楠,王昌礼. 2002.黑龙江省农村住宅利用太阳能采暖的实践[J]..可再生能源.5.
    崔明,赵立欣,田宜水等. 2008.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程学报.24(12):291~296.
    王飞,丰志勇,陈建. 2010.英国发展低碳经济的经验浅谈.生态经济.4:49~51.
    夏庆利.2010.基于碳汇功能的我国农业发展方式转变研究[J].生态经济.10:106~109.
    李军,陈薇. 2010.清洁发展机制在黑龙江省的应用前景及对策建议[J].经济研究导刊. 14:241~243.
    王英姿,黄毅斌,翁伯琦等. 2010.中国农业CDM发展现状及潜力研究[J].福建农林大学学报(哲学社会科学版).13(4):26~29.
    罗怀良.2009.川中丘陵地区近55年来农田生态系统植被碳储量动态研究——以四川省盐亭县为例[J].自然资源学报.24(2):251~258.
    李克让,王绍强,曹明奎等.2003.中国植被和土壤碳储量[J].中国科学.33(1):72~80.
    杨学明,张晓平,方华军.2003.农业土壤固碳对缓解全球变暖的贡献[J].地理科学.23(1):101~106.
    王绍强,许君,周成虎.2001.土地植被变化对陆地碳循环的影响—以黄河三角洲河口地区为例[J].遥感学报.5(2):142~148.
    王绍强,周成虎,刘纪远等.2001.东北地区陆地碳循环平衡模拟分析[J].地理学报.56(4):390~400.
    王绍强,周成虎,李克让等.2000.中国土壤有机碳库及空间分布特征分析[J].地理学报.55(5):533~544.
    王春祥,李学达等.1998.四位一体生态农业模式及其应用[J].生态农业研究.6(1):77~79.
    周昱,谢振华,刘英苓等.2004.户用“猪-沼-果”生态模式经济评价[J].中国生态农业学报.(4):201~203.
    骆世明.2000.农业生态学近年研究动向[J].世界科技研究与发展.22(10):42~44.
    谢军屹,李丘娥.2002.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象.23(14):47~52.
    高广生,李丽艳.2002.气候变化国际谈判进展及其核心问题[J].中国人口、资源与环境.12(3):42~46.
    罗怀良. 2009.川中丘陵地区近55年来农田生态系统植被碳储量动态研究——以四川省盐亭县为例[J].自然资源学报.24(2):252~258.
    廖媛红.2010.低碳农业的发展模式研究[J].作物研究.24(2):228~231.
    赵荣钦,刘英,丁明磊等.2010.河南省农田生态系统碳源/汇研究[J].河南农业科学. 7: 40~44.
    赵荣钦,黄爱民,秦明周等. 2004.中国农田生态系统碳增汇/减排技术研究进展[J].河南大学学报.34(1):60~65.
    赵荣钦,黄贤金,钟太洋等.2010.中国不同产业空间的碳排放强度与碳足迹分析[J].地理学报.65(9)1050~1053.
    岳超,胡雪洋,贺灿飞等. 2010. 1995—2007年我国省区碳排放及碳强度的分析——碳排放与社会发展Ⅲ[J].北京大学学报(自然科学版). 46(4):510~516.
    漆雁斌,陈卫洪. 2010.低碳农业发展影响因素的回归分析[J].农村经济.2:19~23.
    韦恒,柴方营,李友华. 2010.黑龙江省低碳经济发展战略研究[J].商业研究. 8132~135.
    高旺盛,陈源泉,董文.2010.发展循环农业是低碳经济的重要途径[J].中国生态农业学报.18(5):1106~1109.
    陈克亮,朱晓东.2005.循环经济在城市生态农业中的应用[J].生态经济.(6):7 8~81.
    陈卫洪,漆雁斌.2010.农业产业结构调整对发展低碳农业的影响分析——以畜牧业与种植业为例[J].农村经济.8:51~55.
    许广月.2010.中国低碳农业发展研究经济学家[J].10:72~78.
    王效华,冯祯民.2004.中国农村生物质能源消费及其对环境的影响[J].南京农业大学学报.27(1):108~110.
    王英姿,黄毅斌,翁伯琦等.2010.中国农业CDM发展现状及潜力研究[J].福建农林大学学报(哲学社会科学版). 13(4):26~29.
    高春雨,李宝玉,邱建军.2009.农业CDM发展现状、障碍与对策措施[J].中国沼气.27(6):11~14.
    徐小锋,宋长春.2004.全球碳循环研究中“碳失汇”研究进展[J].中国科学院研究生院学报.21(2):145~152.
    赵秀兰.近50年中国东北地区气候变化对农业的影响[J].东北农业大学学报.41(9)144~149.
    姚延婷,陈万明.2010.农业温室气体排放现状及低碳农业发展模式研究[J].科技进步与对策. 27(22):48~51.
    吕庆堂,王俊茹,郭迎伟.2010.气候变化对农业生产的影响及对策[J].现代农业科技. 15:344~348.
    张剑,罗贵生,王小国等.2009.长江上游地区农作物碳储量估算及固碳潜力分析[J].西南农业学报.22(2):48~51.
    王绍强,周成虎,李克让等.2000.中国土壤有机碳库及空间分布特征分析[J].地理学报.55(5):402~408.
    王绍强,周成虎,罗承文.1999.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展.18(3):238~244.
    王绍强,周成虎,刘纪远等.2001.东北地区陆地碳循环平衡模拟分析[J].地理学报.56(4):390~400.
    庄亚辉.1997.全球生物地球化学循环研究的进展[J].地学前缘.4(1~2):163~168.
    董红敏,李玉娥,陶秀萍等.2008.中国农业源温室气体排放与减排技术对策[J].农业工程学报.24(10)269~273.
    汪业勖.1998.陆地碳循环研究中的模型方法[J].应用生态学报.9(6):658~664.
    李长生. 2000.土壤碳储量减少:中国农业之忧患—中美农业生态系统碳循环对比研究[J].第四纪研究.(20):345~349.
    邢继俊,赵刚.2007.中国要大力发展低碳经济[J].中国科技论坛.(10):87~92.
    马友华,王桂苓,石润圭,等.低碳经济与农业可持续发展.生态经济,2009,(6):116~118.
    王效华,冯祯民.2004.中国农村生物质能源消费及其对环境的影响.南京农业大学学报. 27(1):108~110.
    陈晓春,唐姨军,胡婷.2010.中国低碳农村建设探析.云南社会科学.2:107~112.
    张安宁,唐在富.2009.发达国家发展低碳经济的实践与启示[J].中国财政.8.
    赵行姝.2005.农村社会转型与低碳排放路径[J].环境经济.3.
    钱海燕,樊哲文,方豫等. 2009.江西省发展低碳农业的潜力分析.第三届全国农业环境科学学术研讨会论文集.717~722.
    叶堂林.2006.农业低碳经济:模式与途径[M].北京:新华出版社.104~106.
    姚愉芳,依绍华.2010.中国能源温室气体排放与可持续发展[J].中外能源.15(3):1~7.
    李晓燕,王彬彬.2010.低碳农业:应对气候变化下的农业发展之路[J].农村经济.3:10~12.
    姚宗路,赵立欣,田宜水.2009.黑龙江省农作物秸秆资源利用现状及中长期展望[J].农业工程学报.25(11):10~12.
    李颖,黄贤金,甄峰.2008.江苏省区域不同土地利用方式的碳排放效应分析[J].农业工程学报.24(9):102~107.
    张秀梅,李升峰,黄贤金等.2010.江苏省1996年至2007年碳排放效应及时空格局分析[J].资源科学.32(4):768~775.
    徐国泉,刘则渊,姜照华.2006.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口.资源与环境.16(6):158~161.
    何勇.2006.中国气候、陆地生态系统碳循环研究[M].气象出版社.
    陈广生,田汉勤.2007.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报.31(2)189~204.
    王铮,朱永彬.2008.我国各省区碳排放量状况及减排对策研究[J].战略与决策研究.23(2):109~115.
    何建坤,刘滨.2004.作为温室气体排放衡量指标的碳排放强度分析[J].清华大学学报(自然科学版)44(6):740~743.
    何建坤,刘滨,张阿玲等.2002.中国未来减缓CO2排放的潜力分析[J].清华大学学报(哲学社会科学版).17(6):75~80.
    王伟中,陈滨,鲁传一等.2002.《京都议定书》和碳排放权分配问题[J].清华大学学报(哲学社会科学版).17(6):81~85.
    兰希平,高明和,梁成华.发展低碳农业减缓温室气体排放[J].可持续发展.29~31.
    刘德辉,陶永祥.2000.土壤、农业与全球气候变化[J].火山地质与矿产.21(4):190~195.
    隋跃宇,张兴义,张少良等. 2008.黑龙江典型县域农田黑土土壤有机质现状分析.土壤通报.39(1)187~188.
    李晶,王明星,陈德章.1998.水稻田甲烷的减排方法研究及评价.大气科学.22(3): 354~362.
    李怒云,章升东,宋维明.2005.中国林业碳汇管理现状与展望.绿色中国(理论版). (3): 23~26
    方华军,杨学明,张晓平.2004.东北黑土有机碳储量及其对大气CO2的贡献.水土保持学报. 17(3):9~12.
    翟青,刘星,杨玉峰. 2004.CDM项目温室气体减排成本的不确定性分析.环境科学学报.24(4): 649~654.
    岳进,梁巍,吴杰等.2003.黑土稻田CH4与N2O排放及减排措施研究.应用生态学报.14(11): 2015~2018.
    郑淮,张阿玲,何建坤等. 2003.对我国未来减排温室气体的评价模型及应用.数量经济技术经济研究.(10): 81~85.
    黄耀,张稳,郑循华2006等.2006基于模型和GIS技术的中国稻田甲烷排放估计.生态学报,. 26(4): 980~988.
    李长生.2000.土壤碳储量减少:中国农业发展之隐患——中美农业生态系统碳循环对比研究.第四纪研究.20(4):345~350.
    许黎,丁一汇,罗勇等.2005.中国稻田甲烷排放在减少.气候变化研究进展. 3(1): 126~128.
    王礼茂.2004.几种主要碳增汇P减排途径的对比分析[J].第四纪研究.24(2):191~197.
    张厚瑄.1998.农业减排温室气体的技术措施[J].农业环境与发展.(2):17~21.
    蒲勇健.2010.解读哥本哈根气候峰会——博弈论视角[J].重庆大学学报(社会科学版)16(1):1~12.
    鲁春霞,谢高地,肖玉等.2005.我国农田生态系统碳蓄积及其变化特征研究[J].中国生态农业学报.13(3):35~37.
    杨学明,张晓平,方华军.2003.农业土壤固碳对缓解全球变暖的贡献[J].地理科学.23(1):101~106.
    方精云.2000.全球生态学[M].高等教育出版社.246~257.
    徐小锋,田汉勤,万师强.2007.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报.31(2):175~188.
    李玉强,赵哈林,陈银萍.2005.陆地生态系统碳源与碳汇及其影响机制研究进展[J].生态学杂志.24(1))37~42.
    王静,冯永忠,杨改河等.2010.山西农田生态系统碳源/汇时空差异分析[J].西北农林科技大学学报(自然科学版).38(1):195~200.
    林而达.2001.气候变化与农业可持续发展[M].北京出版社.
    林而达,李玉娥.1998.全球气候变化和温室气体清单编制方法[M].北京:气象出版社.
    白莉萍,林而达.2003. CO2浓度升高与气候变化对农业的影响研究进展[J].中国生态农业学报.11(2):132~134.
    华盛.2003.能源与农业生产方式[J].山西能源与节能.4:21~22.
    汪曾涛.2009.碳税征收的国际比较与经验借鉴[J].理论探索.(7):68~71.
    卞林根,高志球,陆龙骅等.2005.长江下游农业生态区CO2通量的观测试验[J].应用气象学报.(12):828~834.
    董宇,马晶,张涛等.2010.秸秆利用途径的分析比较[J].中国农学通报26(19):327~332
    中国可持续发展战略研究组.2009.中国可持续发展战略报告——探索中国特色的低碳道路[M].科学出版社.
    王义祥,翁伯琦,黄毅斌.2005.全球气候变化对农业生态系统的影响及研究对策[J].亚热带农业研究.2(3):203~208.
    中国科学院可持续发展战略研究组.2009.2009中国可持续发展战略研究报告:探索中国特色的低碳道路[M].科学出版社.
    肖国举,张强,王静.2007.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报.18(8):1877~1885.
    马友华,王桂苓,石润圭等.2009.低碳经济与农业可持续发展[J].生态经济.(6): 116~118.
    王昀.2008.低碳农业经济略论[J].中国农业信息.(8):12~15.
    刘慧,成升魁,张雷.2002.人类经济活动影响碳排放的国际研究动态[J].地理科学进展. 21(5): 420~429.
    贾利,李友华,董濮.2006.黑龙江省农业可持续发展评价及策略研究[J].中国农村小康科技.(3):9~l0.
    李友华.2008.关于发展中国碳汇经济的几个问题[J].学术交流.(3):87~91.
    高树婷.1994.我国温室气体排放量估测初探[J].环境科学研究.7(6):56~59.
    张云辉.2006.循环经济与黑龙江生态农业的发展[J].黑龙江发展研究. 151( 10 ):114~[J]l16.
    陈清泰.2004.中国能源发展战略与政策研究[M].经济科学出版社.
    王媛.2009.基于投入产出分析的中国国际贸易碳排放研究[J].北京师范大学学报:自然科学版.45(4):413~419.
    王增远,徐雨昌,李震等.1998.稻田甲烷排放及其控制[J]作物杂志.(3):10~11.
    王彧,黄耀,张稳等.2006.中国农业植被净初级生产力模拟(Ⅱ)——模型的验证与净初级生产力估算[J].自然资源学报.21(6):916~925.
    曾丽璇,张秋云,曾宝强.2006农业可持续发展与环境保护的公众参与[J].生态经济.(9):93~95.
    张培栋,李新荣,杨艳丽等.2008.中国大中型沼气工程温室气体减排效益分析[J].农业工程学报.24(9):239~243.
    中国环境与发展国际合作委员会.2004.中华人民共和国气候变化初始国家信息通报[M]北京:中国计划出版社.15~20.
    樊霞,董红敏,韩鲁佳等.2006.肉牛甲烷排放影响因素的试验研究[J].农业工程学报. 22(8):179~183.
    曾波,钟荣珍,谭支良.2009.畜牧业中的甲烷排放及其减排调控技术[J].中国生态农业学报.17(4):811~816.
    Robertson G P,Paul E A,Harwood R R.2000.Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere.Science.289:1922~1925.
    FrancisC,Lieblein G,Gliessman S,etal.2003.Agroecology:the ecology of food systems[J].Journal of Sustainable Agriculture.(22):99~118.
    Weber C, Matthews HS.2008. Food-miles and the relative climate impacts of food choices in the United States[J].Environmental Sciences & Technology.42(10):3508~Francis C,Lieblein G,Gliessman S,et al.Agroecology:the ecology of food systems[J].Journal of Sustainable Agriculture,2003(22):99~18.
    Battle M,Bender ML,Tans P,et al.2000.Global carbon sink sand their variability inferred from atmosphere CO2[J].Science,287:2467~2470.
    Houghton J T.1996.Climate change 1995:The science of climate change, published for IPCC,in colloaboration with the World Meteorological Organization and the Union Nations Environment Programme[M].UK:Cambridge University Press.4~15.
    Houghton J T,Jenkins G J,Ephratmls J J.1990.Climate change:The IPCC scientific assessment [R]. Cambridge: Cambridge University Press.1~15.
    Suo L B,Gifford R M.2002.Soil carbon stocks and land usechange:a meta analysis[J].Global Change Biology.8:345~360.
    Nefiel A,Mocr E,Oeachger H,et al.1985.Evidence from polar ice comes for the increase in atmospheric CO2 in the past centuries[J].Nature.315:45~47.
    Bouwman A F.Soils and the greenhouse effect[M].Chichester:John Wiley &Sons,1990.
    Carswell FE,et al.2002.Seasonality in CO2and H2O flux at an eastern Amazonian rain forest[J].J.Geophys.Res.107:8076.
    Lal R ,Bruce J P.1999 .The potential of world cropland soils to sequester C and mitigate the greenhouse effect[J] .Environmental Science & Policy .2:177~185.
    Lal R. 2000.Carbon sequest ration in dryland [J] .Annual Arid Zone.39 (1):1~10.
    IPCC.Climate Change 2007:Mitigation of climate change.Contribution of working group III to the fourth assessment report of the intergovernmental panel climatechange[M].Cambridge,United Kingdom,Cambridge University Press.2007:63~67.
    Rosenzweig C, Hillel D.2000.Soils and global climate change:challenges and opportunities.Soil Science.165(1):47~56.
    Olesen J E,Bindi M. 2002.Consequences of climate change for European agricutural productivity,land use and policy.European Journal of Agronomy.16(4):239~262.
    West T O,Marland G A. 2002.Synthesis of carbon sequest ration,carbon emissions and net
    carbon flux in agriculture:comparing tillage practices in the UnitedStates[J].Agriculture Ecosystems and Environment.91:217~232.
    Mohan K W,Fatih E,Tristram O,et a1. 1999.Assess in terrestrial ecosystem sustainability:Useful nessofregional carbon and nitrogen models[J].Nature&Resources.35(4):21~33.
    Cai Zucong,Kang Guoding,Tsuruta H,et al.2005.Estimate of CH4 Emissions from Year-Round Flooded Rice Field During Rice Growing Season in China[J].Pedosphere,15(1):66~71.
    Suo L B,Gifford R M.2002.Soil carbon stocks and land use change:a meta analysis[J].Global Change Biology.8:345~360.
    ]G. Philip Robertson,EldorA. Pau,l Richard R.Harwood.2000.Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere [J] .Science.289(15):1922~1925.
    POTTERCS,RANDERSONJT,FIELDC B,etal.1993.Terrestrial ecosystempro-duction,a process model based on global satellite and surface data[J].Global Biogeochemical Cycles.7:811~841.
    WARNANT P,FRANCOISL,STRIVARY D,et al.1994..CARAIB:Aglobal model of terrestrial biological productivity[J].Global Biogeochemical Cycles.8(3):255~270.
    Schutz H,Holzapfel-Pschom A ,Conrad R,etal.1989.A 3-year continuous record on the influence of daytime season and fertilizer Treatment on methane emission rates from an Italian rice paddy field[J].Geophy Res.94:(16)405~416.
    CrutzenP.J.,Aselmann I.,Seiler W.Methane production bydomestic animals,wild ruminants,other herbivorous fauna and humans[J].Tellus,Series B:Chemical and Physica Meteorology.38(3):271~284.
    KhalilM A K,ShearerM J,Rasmussen R A.1993.Methane sources in China:Historicaland currentemissions. Chemosphere.26:127~142.
    Singh J S,Gupta S R. 1997.Plant decomposition and soil respiration in terrestrial ecosystems[J].Botany Review.43:449~528.
    Canadel J G,Mooney H A,Baldocchi D D,etal.2003.Carbon Metabolism of the Terrestrial biosphere:Amultitechnique approach for improved understanding[J].Ecosystems.(3):115~130.
    Termon J F,Oudot C,Dessier A.2000.A seasonal tropical sink for atmospheric CO2 in the Atlantic Ocean:The role of the Amazon River discharge[J].Marine Chemistry .68(3)183~201.
    Jenkinson D S,Adams D E,Wild A.1991.Model estimates of CO2emission from soil in response to global warming[J].Nature.351:304~306.
    Raich J W,Schlesinger W H.1992.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus.44:81~99.
    WestT.O.Gregg Marland.2002.A synthesis of carbon sequestration,carbon emissions,and net Carbon flux in agriculture:comparing tillage practices in the United States[J].Agrieulture,Ecosystems and Enviroent.91:217~232.
    Fang J.Y,Chen A.P.,Peng C.H.et al2001.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science.292:2320~2322.
    Fontana,D.C.,Weber,E.,Ducati,J.R.et al.2000.A case study for crop monitoring and harvest forecast in south Brazil.Proceedings of the 28th International Symposium on Remote Sensing For Environment,Margo 2000.CapeTown,Africa.ICRSE.91~94.
    Gillon J,Yaki D.2001.Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2.Science.291:2584~2587.
    M,J,Grubb,FRANKJ.Transaction costs,institutional rigidities and the size of the clean development mechanism[J].Energy Policy,2005(33):511~523.
    FangJ.Y,ChenA.P,PengC.H.etal.2001.Changes in forest biomass carbon storage in China Between 1949 and1998[J].Seienee.292:2320~2322.
    PHILIP M FEARNSIDE.2000.Global Warming and Tropical Land-Use Change:Greenhouse Gases Emissions from Biomass Burning,Decomposition and Soils in Forest Conversion Shifting Cultivation and Secondary Vegetation[J].Climate Change.(6):115~158.
    IPCC.Climate change 2007:mitigation of climate change contribution of working group iii to the fourth assessment report of the intergovernmental panel on climate change[M].Cambridge:United Kingdom,Cambridge University Press,2007:63~67.
    MICHAEL C.APPLEBY.2005.Sustainable agriculture is humane,humane agriculture is sustainable[J].Journal of Agricultural and Environmental Ethics.(18):293~303.
    Delgadoa JA,ShafferbM J,LalcH,etal.2008. Assessmentof nitrogen losses to the environment with a NitrogenTrading Tool(NTT)[J].Computers and electronics in agriculture. (63): 193~206.
    Valentini R,Matteuccl G,Doman A J,ScHulze E D,etal.2000.Respiration as main determinant of carbon balance in European forests.Nature,404:861~865.
    Zach willey, Bill Chameides. 2007.Harnessing farms and forests in the low-carbon economy how to create, measure and verify greenhouse gas offsets[M]. Duke university press. Hediger W.2006.Modeling GHG emissions and carbon sequestration in Swiss agriculture:An integrated economic approach[J].International Congress Series.(1293):86~95.
    Baer P,Kartha S,Athanasiou Tetal.2009.The greenhouse development rights framework: drawing attention to inequality within nations in the global climate policy debate[J].Development and Change.40(6):1121~1138.
    Meyer A.2004.GCI briefing:contraction convergence[J].Engineering Sustainability.157(4): 189~192.
    Chakravarty S,Chikatur A,Coninck H,etal.2009.Sharing global CO2 emission reductions among one billion high emitters[J].PNAS.106(29):11884~11888.
    Kuzyakov Y,Friedel J K,Stahr K.2000.Review of mechanisms and quantification of priming effects.Soil Biol[J].Biochem.32:1485~1498.
    Morgan J A,LeCain D R,Mosier A R and Milchunas D G.2001.Elevated CO2 enhances water relations and procucdtivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe[J].Global Change Biology.7:451~466.
    Eggleston,S.et al.1998.Treatment of Uncertainties for National Greenhouse Gas Emissions,Report AEAT 2688 for DETR Global Atmosphere Division01998,33(7):80.
    Robertson G P,Paul E A,Harwood R R.2000.Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere[J]..Science.289:1922~1925.
    Dennis D B,Kell B W.2001.Modeling CO2and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales Ecological Modeling.142(5):155~184.
    Kydes A,1999.Energy intensity and carbon emission responses to technological change:The U.S.outlook[J].The Energy Journal.20(3):90~121.
    BraekCL.2002.Pollutionmitigationandcarbonsequestrationbyanurbanforest[J].Environmental Pollution.116(4):195~200.
    Casler S D.1998.Carbon dioxide emissions in the U.S[J].economy.Environmental and Resource Economics.11(3/4):349~363.
    WANG X FENG Z.1995. Atmosphric Carbon Squestration through Agroforestry in China [J].Energy .20(2):117~121.
    ZhuH L.2003. The Original Situation of the Organic Fertilizer Resources in Guilin Region and the Corre sponding Exploitation and Application. [J].Journal of Guangxi Agriculture.(4):55~58.
    KEITH Paustian ,VERNON Cole.1998. CO2 Mitigation by Agriculture:An Overview [J ] . Climate Change.40:135~162.
    Casler S D.1998.Carbon dioxide emissions in the U.S.economy.Environmental and Resource Economics.11(3/4):349~363.
    HA2DUONG M,GRUBB M J,HOURCADE J C.1997.Influence of Socioeconomic Inertia and Uncertainty on Optimal CO2 Emission Abatement [J].NATURE.390 (20):270~273.
    WANG X ,ZHUANG ,FENG Z.1994. Carbon dioxide release due to change in land use in China mainland [J]. Environment Science.6(3):287~295.
    Schipper L.2001.Carbon emissions from manufacturing energy use in 13 IEA countries[J].Energy Policy.29(9):667~688.
    Soytasa U,Sari R,Ewing B T.2007.Energy consumption,income,and carbon emissions in the United States[J].EcologicalEconomics.62(3/4):482~489.
    Sovacool B K,Brown M A.2010.Twelve metropolitan carbon footprints:A preliminary comparative global assessment[J].Energy Policy.38(9):4856~4869.
    Kenny T,Gray N F.2009.Comparative performance of six carbon footprint models for use in Ireland[J].Environmental ImpactAssessment Review.29:1~6.
    Chang Y F,Lin S J.1998.Structural decomposition of industrial CO2 emission in Taiwan[J].Energy Policy.26(1):5~12.
    Peterson G.A.,Halvorson A.D.,etal.1998.Reduced tillage and increasing cropping intensity in the Great Plains conserves soil C[J].Soil Tillage Res.47:207~[J]. 218.
    Lal R.2000.Carbon sequestration in dryland[J]..Annual Arid Zone. 39(1):1~10.
    Delgado J A,Mosier A R.1996.Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux[J].Journal of Environmental Quality.25(5):1105~1111.
    Amthor,J.1995.Terrestrial higher-plant response to increasing atmospheric CO2,in relation to the global carbon cycle[J].Glob.Change Biol.1:243~247.
    G. Philip Roberts on, Eldor A. Paul, Richard R.2000. Har wood. Greenhouse Gases in I ntensive Agriculture: Contributi ons of I ndividual Gases t o the Radiative Forcing of the Atmos phere [J].Science.289(15):1922~1925.
    R.B.Myneni, J.Dong, C.J.Tucker,etal.2001. A large carbon sink in the woody biomass of northern forests[C].Proceedings of the Nati onalA2 cademy of Sciences of the United States of America.98: 14784~14789.
    Tans P P,Fung I Y,Takahaski N P,etal.1990. Observational constraints on the global atmospheric CO2budget[J].Science.247:1431~1438.
    Tian H, Melillo J M, Kicklighter D W, et al.1999.The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2in the United States[J].Tellus.51B:414~452.
    Schimel D,Melillo J,Tian H,etal.2000.Contribution of increasing CO2and climate to carbon storage by ecosystems in the United States[J].Science.287: 2004~2006.
    Raich J W, Schelesinger W H.1992.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus. 44B:81~99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700