用户名: 密码: 验证码:
大小兴安岭森林生态系统碳平衡模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成生物圈模型(IBIS)是目前最复杂的基于动态植被模型的陆面生物物理模型之一,它集成了大范围的生物物理、生理以及生态过程,通过一种综合考虑各主要过程之间作用的模块化结构将陆地表面生物物理、陆地碳通量和全球植被动态表达出来,并且这种模式框架能够直接与大气环流模式(AGCMs)进行耦合。该模型从设计上就体现了植被既在分钟至世纪尺度上受到大气化学和气候变量的影响,同时也在同样时间尺度上反馈于大气化学和气候。
     本文选择IBIS模型作为研究对象,对模型进行了相应的改造并结合气象、植被数据等相关资料,将模型应用于东北林业大学帽儿山森林生态系统定位研究站,并利用植被的野外实测数据对模拟结果进行了验证,对次生林碳通量的模拟中,IBIS模型模拟的CO_2通量与实测通量之间相关性比较理想。在此基础上,将模拟从局部地点扩大到区域尺度上,对2004-2005年间大小兴安岭森林生态系统碳通量,包括净第一性生产力(NPP)、土壤呼吸、净生态系统生产力(NEP)等的时空分布格局进行了较为全面的定量估算,这不仅对于评估大小兴安岭森林生态系统碳收支非常关键,而且为最终建立适用于我国森林生态系统的耦合模型提供基础。通过研究,主要得到以下几方面的认识:
     大小兴安岭森林植被年均NPP值为494.7gC·m~(-2)·a~(-1),年吸收0.06Pg的大气碳。从研究区内不同植被类型单位面积NPP平均水平来看以温带软阔叶林最高,为577.2gC·m~(-2),从年NPP的总量来看,以温带针阔混交林植被的年NPP最高,为17.001×10~6tC·a~(-1),占NPP总量的27.16%。研究区年均NPP的空间分布主要受热量条件的影响,大兴安岭地区基本上呈现出由北向南增加的趋势,小兴安岭地区除单位面积年均NPP大于1.1KgC·m~(-2)·a~(-1)在小兴安岭北部孙吴和逊克地区分布外,基本上呈现出均匀分布的趋势。
     大小兴安岭森林植被年均土壤呼吸总量39.262×10~6tC·a~(-1)相当于0.04PgC·a~(-1),约占东北森林年均土壤呼吸总量(0.19PgC·a~(-1))的21%。单位面积年均土壤呼吸值为317.3gC·m~(-2)·a~(-1),是东北森林平均水平558.2gC·m~(-2)·a~(-1)的57%。从土壤呼吸的平均水平来看,以温带软阔叶林为最高为412.5gC·m~(-2)·a~(-1),从年土壤呼吸的总量来看,以寒温带落叶针叶林植被的年土壤呼吸最高,为10.947×10~6tC·a~(-1),占土壤呼吸总量的27.88%。大小兴安岭森林生态系统土壤呼吸空间分布的基本特点是:大兴安岭地区呈现出由北向南部减少的趋势,小兴安岭地区基本上呈现出均匀分布的趋势。
     大小兴安岭森林单位面积年均NEP值为313.4gC·m~(-2)·a~(-1),每年净固定碳量为38.779×10~6tC相当于0.04PgC,约占东北森林年均NEP总量(0.15PgC·a~(-1))的27%。从不同植被类型单位面积NEP的平均水平来看,以温带针阔叶林最高,为370.8gC·m~(-2)·a~(-1),从年NEP的总量来看,以温带针阔混交林植被的年NEP最高,为11.016×10~6tC·a~(-1),占NEP总量的28.25%。研究时段内大小兴安岭森林表现为一个碳汇,大兴安岭地区除单位面积年均NEP大于0.6KgC·m~(-2)·a~(-1)在松岭区和加格达奇分布外,基本上呈现出由北向南增加的趋势;小兴安岭地区除单位面积年均NEP大于0.6KgC·m~(-2)a~(-1)在小兴安岭北部孙吴和逊克地区分布外,基本上呈现出均匀分布的趋势,其单位面积年均NEP值在0-0.6KgC·m~(-2)a~(-1)之间。研究区研究时段内单位面积年均NEP空间变化显著,大兴安岭地区除加格达奇和松岭区显著减少外,这一时段内的NEP的增长区和减少区呈现交错分布;小兴安岭地区除孙吴和逊克地区减少外,其余地区都呈增加趋势。整体上看,全区在波动中有所增加,72.9%(1247个站点)的地区植被年均NEP呈增加趋势,27.1%(452个站点)的地区年均NEP减少。经分析主要因为该时段内,加格达奇和松岭区降水量的下降导致NPP减少明显,同期的土壤呼吸量却显著增加造成NEP减少。
     IBIS的模拟结果通过与实测资料和其他模型的对比以及森林清查数据的验证表明:IBIS的模拟结果基本落实在实测值的范围之内,说明模拟结果比较准确。当然,限于目前区域时空尺度陆地碳循环模拟研究的水平和发展阶段以及获取模拟所需数据的困难性,研究工作还需要从模型的参数化、区域尺度的观测和数据获取转换等方面得以改进和完善。最后指出将宏观的格局分析与微观的机制研究有效地结合起来是未来碳循环研究的一个重要的发展方向,在本文工作的基础上,经过完善和改进的IBIS模型可以进一步与区域气候模式(大气环流模式)相耦合,在陆面生物物理一大气相互作用、区域气候变化机理及陆地生态系统碳循环等研究领域具有广泛的应用前景。
The Integrated Biosphere Simulator (IBIS) is one of the most sophisticated models in simulating terrestrial biosphere processes based on dynamic vegetation schemes. IBIS is designed to integrate a variety of terrestrial ecosystem phenomena within a single, physically consistent model that can be directly incorporated within AGCMs. To facilitate this integration, the model is designed around a hierarchical, modular structure and uses a common state description throughout.
     For the purposes of validating IBIS, climate and vegetation database have been set up, and the IBIS, which has been improved.With supports of database and IBIS model, we applied it in Mao'er mount forest ecosystem orientation research station of Northeast forestry university, comparisons between simulated secondary forests carbon fluxes and actual measurement data showed that the model was capable of simulating CO_2 flux. On the basis of this analysis, simulation would extend to regional scale form local spot. Carbon fluxes, such as net primary production (NPP), soil respiration and net ecosystem production (NEP) from 2004 to 2005 have been quantified in the studying area. This study aimed to not only evaluate forest ecosystem carbon budgets in study areas and provided a basis for establishing coupling model which was applicable to forest ecosystem of China. It estimated results have suggested that:
     In this study, using the inventory and meteorological data in Daxing'anling and Xiaoxing'anling of northeastern China during 2004 - 2005 and IBIS, we quantified the net primary production (NPP) and its spatio-temporal distribution in this region. The mean NPP was 494.7gC·m~(-2)·a~(-1),absorbing 0.06PgC·a~(-1) from the atmosphere in the whole region. The highest vegetation type of the annual NPP per unit area was temperate softwood forest, which was 577.2gC·m~(-2).The highest vegetation type of the total annual mean NPP was temperate mixed coniferous and broad-leaf forest (equivalent to 17.001×10~6tC·a~(-1)), which accounted for 27.16%.The spatial distribution of the mean NPP was affected by heat regime, which increased from north to south in Daxing'anling region, and well-distributed in Xiaoxing'anling region except Sunwu and Xunke.
     Based on datasets and IBIS, the terrestrial soil respiration and its spatial-temporal change in Da and Xiaoxing'anling during 2004-2005 were studied. As a result, a total annual mean soil respiration was 39.262×106tC·a~(-1) (equivalent to 0.04PgC·a~(-1)) and the annual soil respiration per unit area was 317.3gC·m~(-2)·a~(-1).The highest vegetation type of the annual soil respiration per unit area was temperate softwood forest, which was 412.5gC·m~(-2)·a~(-1).The highest vegetation type of the total annual mean soil respiration was cold temperate deciduous coniferous forest (equivalent to 10.947×106tC·a~(-1)), which accounted for 27.88%. The distribution of annual mean soil respiration was obvious, which was decreased from north to south in Daxing'anling and well-distributed in Xiaoxing'anling.
     Based on datasets and IBIS, the terrestrial net ecosystem production (NEP) and its spatial-temporal change in Da and Xiaoxing'anling during 2004-2005 were studied. As a result, theannual NEP per unit area was 313. 4gC·m~(-2)·a~(-1) and a total annual mean NEP was 38.779×10~6tC (equivalent to 0.04PgC), which accounted for 27% of the Northeast forest's total. The highest vegetation type of the annual NEP per unit area was temperate mixed coniferous and broad-leaf forest, which was 370.8gC·m~(-2)·a~(-1).The highest vegetation type of the total annual mean NEP was temperate mixed coniferous and broad-leaf forest (equivalent to 11.016×l0~6tC·a~(-1)), which accounted for 28.25%.The forest ecosystem in study areas was carbon sink in the period. The distribution of annual mean NEP was obvious, which was increased from north to south in Daxing'anling and well-distributed in Xiaoxing'anling. The spatial-temporal change of annual NEP in study areas was distinct. During 2004-2005, the annual NEP of Xunke, Sunwu, Jagedaqi and Songling areas were decreased and the annual NEP of other places in study areas was increased. By analysis, quantity of heat and precipitation leaded to this result.
     On the whole, though a series of numerical simulation in forest ecosystem of China, it could be concluded that IBIS may be a good choice for carbon simulation in China, with its good performance. Meanwhile, improvements and advancements are still needed for the model, especially incorporated within AGCMs. Combined macro and micro methods is the further study priorities on forest carbon cycling simulation.
引文
[1] Post, W. M. and Emanuel, W. R. Soil carbon pools and world life zones. Nature, 1982,298:156-159
    [2] 中华人民共和国林业部.全国森林资源统计(1989-1993).1996
    [3] 陈泮勤,黄耀,于贵瑞.地球系统碳循环.北京:科学出版社,2004:357-386 13-12
    [4] 于贵瑞,孙晓敏等.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006,4-7
    [5] Walker, B. and Steffen, W. A synthesis of GCTE and related research. In: IGBP Science No 1.Stockholm: IGBP Secretariat. 1997:23
    [6] 方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602
    [7] IPCC, Land use, land-use change, and forestry, A special report of the IPCC, Cambridge University Press, 2000
    [8] Rodle, H. A comparison of the contribution of various grasses to the greenhouse effect.Science, 1990, 248:1217-1219
    [9] Keeling, CD. and Whorf, T.P. Atmospheric CO_2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Oak Ridge, TN:Carbon Dioxide Information Analysis Center, 2004
    [10] IPCC, Climate Change 2001: Impaction, and vulnerability, Cambridge University Press,2001
    [11] 龚道溢.大尺度大气环流变化及其对北半球冬季温度的影响.地学前缘,2000,7(增刊):203-208
    [12] 周广胜.全球碳循环.气象出版社,2003:14-23
    [13] Houghton,全球变暖,北京:气象出版社,1998:56-57
    [14] Tao, S., Chen, P., Riches, M.R., and Wang, W.C. Greenhouse effect and climate change.Beijing:China Ocean Press, 1999:345-356
    [15] Riches, M.R., Wang, W.C, and Chen P.Q. Recent progress in the joint agreements on "Global and Regional Climate Change" study between the United States and the People's Republic of China. Bulletin of the American Meteorological Society, 2000, 81(3):491-499
    [16] IPCC. Climate Chance 1994, Cambridge University Press, 1995
    [17] IPCC Climate Change 1995, The science of climate change, Cambridge University Press,1996
    [18] 王诩亭等.环境学导论.北京:清华大学出版社,1985:77-80
    [19]周广胜,王玉辉,蒋延玲,杨利民.陆地生态系统转变与碳循环.植物生态学报,2002,26(2):250~254
    [20]Grow,M,Hall,J.,and Susank,W.Strategies to estimate national forest carbon stocks from inventory data:The 1980 New Zealand baseline.Global Change Boil.1978,7:389~403
    [21]Bolin,B.The Carbon cycle,Science,Amer.1970,223:124~132
    [22]Bolin,B.,Degens,T.,and Duvigneand,P.The global biogeochemical carbon cycle.In:Bolin B,et al,eds.The Global Carbon Cycle,SCOPE 13.Chichester:John Wiley & Sons,1979:1~56
    [23]Houghton,J.T.,Ding,Y.,and Griggs,D.J.Climate Change 1983:The Scientific Basis.Cambridge,UK:Cambridge University Press,1983.
    [24]Cooper,C.F.Carbon storage in managed forests.Can.J.For.Res.1983,3:155~166.
    [25]Raich,J.W.,and Nadelhoffer,K.J.Below ground carbon allocation in forest ecosystems:global trends.Ecology,1989,70:1346~1354
    [26]Post,W.M.,Emanuel,W.R.,and Zinke,P.J.Soil carbon pools and life zones.Nature,1982,298:156~159.
    [27]Kohlmaier,G.H.and Sire,E.O.Carbon exchange between atmosphere and ocean in a latitude-dependent advection-diffusion model.RADIOCARBON.1980,25:459~471
    [28]Houghton,R.A.,Hackler,J.L.,and Lawrence,K.T.The U.S.carbon budget:contributions from land-use change.Science,1988,285:574~578
    [29]Adams,J.M.,Valentini,R.,and Oechel,W.Strategies for measuring and modeling carbon dioxide and water vapor fluxes over terrestrial ecosystems.Global Change Biol.,1990,2:159~168
    [30]Apps,G.,Ball,J.T.,and Grivet,C.Physiological and environmental regulation of stomatal conductance,photosynthesis and transpiration:a model that includes a laminar boundary layer.Agriculture and Forest Meteorology,1990,54:107~136
    [31]Fang,J.Y.,Wang,G.G.,and Liu,G.H.Forest biomass of China:a estimated based on the biomass-volume relationship.Ecological Application,1998,8(4):1084~1091
    [32]Kauppi,P.E.,and Mielikainen,K.Biomass and carbon buget of Eupean forest 1971 to 1990.Science,1992,256:70~79
    [33]Amthor,J.S.,and Loomis,R.S.Integrating knowledge of crop responses to elevated CO_2 and temperature with mechanistic simulation models:model components and research needs in carbon dioxide and terrestrial ecosystem.San Diego:Academic Press,1996:443
    [34]Koch,G.W.,and Mooney,H.A.Response of Terrestrial ecosystem to elevated CO_2:A synthesis and summary.In:Carbon Dioxide and terrestrial Ecosystem.San Diego:Academic Press.1996:415~429
    [35] Houghton, R A. Land-use change and terrestrial carbon: the temporal record. In: Apps M J,Price D T (eds). Forest Ecosystem, Forest Management and the Global Carbon Cycle.NATO ASI Series I, Vol 40.Berlin: Springer Verlag. 1996:117-134
    [36] IPCC, Climate Change 1990, The IPCC scientific assessment,Cambridge University Press. 1990
    [37] Hibbard, K., and Pollard, D. A global climate model (GENESIS) with a land surface transfer scheme (LSX). Part 1: Present day climate. Climate, 2002, 8:732-761
    [38] Keeling, C.D.Climate change and carbon dioxide: An introduction.National Academy of Science, 2005, 94:8273-8274
    [39] Watson, R.T., and Verardo, D.J. Land-use change and forestry.Cambridge University Press, 2005
    [40] Woflsy, S.C, and Pollard, D. A global climate model (GENESIS) with a land surface transfer scheme (LSX). Part 2:CO_2 sensitivity. J. Climate, 2004, 8:1104-1121
    [41] 曲建升,孙成权.全球变化研究中的“科学政治化”倾向-以美国气候政策为例.气候与环境研究,2005,6(2):228-233
    [42] Foley, J.A., Levis, S., and Prentice, I.C. Coupling dynamic models of climate and vegetation. Global Change Biology ,1998, 4:561-579
    [43] Li, K.Y., Coe, M.T., and Ramankut, N. Regional hydrological modeling in Africa:Calibration and performance test of IBIS. Geophysical Research Abstracts, 2003,5:13006
    [44] 刘辉志,董文杰,符淙斌,等.半干旱地区吉林通榆“干旱化和有序人类活动”长期观测实验.气候与环境研究,2004,9(2):378-389
    [45] Falkowski, P., Scholes, R.J., and Boyle, E. The Global Carbon Cycle: A test of Our Knowledge of Earth as a System. Science, 2004, 290:291-296
    [46] Budyko, M.L. The Earth's Climate Past and Future.New York, Academic Press, 2004.
    [47] 李文华,李飞.中国森林资源研究.北京:中国林业出版社,1996:25-36
    [48] 冯宗炜.森林生态系统生物量和碳储存量的研究历史.见:王如松,方精云,高林,等.现代生态学的热点问题研究.北京:中国科学技术出版社,1999:335-347.
    [49] 罗天祥.中国主要森林类型生物生产力格局及其数学模型.1996
    [50] 罗天祥.区域尺度陆地生态系统生物生产力研究方法.资源科学,1998,20(1):23-34
    [51] 莫兴国,陈丹,林忠辉,等.不同水分条件麦田能量和C02通量变化特征研究.中国生态农业学报,2003,11(4):77-81
    [52] 方精云 徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508
    [53] 温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO_2交换量中的不确定性.地球科学进展,2004,19(4):658-663
    [54] 刘世荣等.中国暖温带森林生物多样性研究.北京:中国林业出版社,1998,37-44
    [55] 张宪洲.我国自然植被第一性生产力的估算与分布.自然资源,1993,(1):15-21
    [56] 周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学,1995,19(3):193-200
    [57] 张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO_2通量的测定.地理学报,2002,57(3):333-342
    [58] 李迪强,等.中国潜在植被生产力的分布与模拟.植物学报,1998,40(6):560-566
    [59] 肖向明,等.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应.植物学报,1996,38(1):45-48
    [60] 孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究.地理学,2000,55(1):36-45
    [61] 朴世龙,方精云.最近18年来中国植被覆盖的动态变化.第四纪研究,2001,21:294-302
    [62] 朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.生态学杂志,2002,21(2):53-57
    [63] 张娜.基于遥感和地面数据的景观尺度生态系统生产力的模拟.植物生态学报,2003,27(3):325-376
    [64] 高志强,刘纪远,曹明奎,等.土地利用和气候变化对区域净初级生产力的影响.地理学报,2004,35(6):465-472
    [65] Joos, F., Meyer, R., and Bruno, M. The variability in the carbon sinks as reconstructed for the last 1000 years. Gephysical research letters. 2003, 26:1437-1441.
    [66] 刘燕华,葛全胜,张雪芹.关于中国全球环境变化人文因素研究发展方向的思考.地球科学进展,2004,19(6):889-895
    [67] Tans, Conway, T. J., and Nakazawa, T. Observational constraints on the global at mospheric carbon dioxide budget. Science, 2004, 247:1431-1438
    [68] 刘纪远,于贵瑞,王绍强,岳天祥,高志强.陆地生态系统碳循环及其机理研究的地球信息科学方法初探.地理研究,2003,22(4):397-405
    [69] Ciais, P., Tans, and White, J.W. A large northern hemisphere terrestrial CO_2 sink indicated by the 13~C/14~C ratio of atmospheric CO_2.Science, 2005, 269:1098-1102
    [70] Woodward, F.I., Smith, T.M., and Emanuel, W.R. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9(4):471-490
    [71] 耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展,2000,19(4):297-307
    [72] Leemans, R. Effects of global change on agricultural land use: scaling up from physiological processes to ecosystem dynamics//Jackson L,ed. Ecology in Agriculture.San Diego: Academic Presss, 1997:415-452.
    [73] 于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006,324-326
    [74] Moore,I.B.,and Braswell,J.B.H.刘文新译,田学文校.地球的新陈代谢:了解碳循环.人类环境杂志,1994,23(1):4-12
    [75] Esser, G.Sensitivity of global carbon pools and fluxes to human and potential climatic impacts.Tellus,1987,39(B):245~260
    [76]Emanuel,W.R.,King,A.W.,and Post,W.M.A dynamic Model of Terrestrial Carbon Cycling.The Global Cycles,Springer-Verlag Berlin Heidelberg,1993:339~258
    [77]Potter,C.S.,Randerson,J.T.,and Field,C.B.Terrestrial ecosystem production,a process model based on global satellite and surface data.Global Biogeochemical Cycles,1993,7:811~841
    [78]Potter,C.S,Matson,P.A.,and Vitousek,P.M.Evaluation of soil database attributes in a global carbon cycle model:implications for global change research.In:Environmental information management and analysis:ecosystem to globalscales(ed.W.Michener)Taylor and Francis.London,UK,1994:281~302
    [79]Potter,C.S.,and Klooster,S.A.Global model estimates of carbon and nitrogen storage in litter and soil pools:response to changes in vegetation quality and biomass allocation.Tellus,1997,49(B):1~17
    [80]Walker,B.H.,刘金勋,杨修译.陆地生态系统对全球变化从景观到区域范围的效应.人类环境杂志,1994,23(1):67~73.
    [81]Xiao,X.,Kicklighter,D.W.,and Melillo,J.Linking a global terrestrial biogeochemical model and a 2-dimensionalclimate model:implications for the global carbon budget.Tellus,1997,49(B):18~37
    [82]Warnant,P.,Francois,L.,and Strivary,D.CARAIB:A global model of terrestrial biological productivity.Global Biogeochemical Cycles,1994,8(3):255~270
    [83]Woodward,F.I.,Smith,T.M.,and Emanuel,W.R.A global land primary productivity and phytogeography model.Global Biogeochemical Cycles,1995,9(4):471~490
    [84]Raich,J.W.,and Potter,C.S.Global patterns of carbon dioxide emissions from soils.Global Biogeochemical Cycles,1995,9(1):23~36
    [85]King,A.W.,Emanuel,W.R.,and WuUschleger,S.D.A search of the missing carbon sink:a model of terrestrial biospheric response to land-use change and atmospheric CO_2.Tellus,1995,47(B):501~519
    [86]Foley,J.A.An equilibrium model of the terrestrial carbon budget.Tellus,1995,47(B):310~319
    [87]Leemans,R.,Amstel,A.,and Battjes,C.The land cover and carbon cycle consequences of large scale utilization of biomass as an energy source.Global Environmental Change,1996,6(4):335~357.
    [88]Qi,Y.,Hall,C.S.,and Tian,H.A Rule-Based Spatial Model for Simulating Land-Use Change and Carbon Dynamics.Geographic Information Science,1996,2(1):21~36
    [89]Emanuel,W.R.Modeling carbon cycling on disturbed landscapes.Ecological Modelling,1996,89:1~12
    [90] Chan, Y., Chan, D., and Higuchui, K. A two-dimensional energy balance climate model coupled interactively to a land carbon cycle model. Tellus, 1996,48(B):329-346
    [91] Denning AS, Collatz G J, Zhang C et al. Simulations of terrestrial carbon metabolism and atmospheric CO_2 in a general circulation model. Tellus, 1996,48(B):521-542
    [92] Svirezhev Y M, von Bloh W. Climate, vegetation, and global carbon cycle: the simplest zero-dimensional model. Ecological modelling, 1997,101:79-95
    [93] 周广胜,张新时,郑元润.中国陆地生态系统对全球变化的反应模式研究进展.地理科学进展,1997,12(3):270-275
    [94] 美国国家航空和宇航管理局地球系统科学委员会.地球系统科学.地震出版社,1992:1-178
    [95] 陈育峰.自然植被对气候变化响应的研究.地理科学进展,1997,16(2):71-77
    [96] 陈育峰.自然植被对气候变化响应的研究.地理科学进展,1997,16(3):24-28
    [97] 康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计.应用生态学报,1996,7(3):230-234
    [98] 石广玉,丁一汇,张鹏,等.中国森林CO_2释放与吸收的评估.中国的气候变化与气候影响研究.气象出版社.1997:85-94
    [99] Zhao, J.F., Zhou, G. S., and Jia, G.S. Simulating the responses of forest net primary productivity and carbon budget to climate change in Northeast China. Acta Ecologica Sinica. 2008, 28(1):92-102
    [100] 刘兴良,鄢武先,向成华,蒋俊民.沱江流域亚热带次生植被生物量极其模型.植物生态学报,1997,21(5):441-454
    [101] 李文华,罗天洋.中国云杉林生物生产力格局及其数学模型.生态学报,1997,17(5):511-588
    [102] 康德梦,张孟威,陈利项.中国环境中碳、氮元素变化与大气温室效应的系统分析.地震出版社,1992:211-269
    [103] 仪垂祥.地球表层动力学理论研究:陆地表层系统.北京师范大学学报(自然科学版),1994,4:511-515.
    [104] 仪垂祥.地球表层动力学理论研究:动力学方程组.北京师范大学学报(自然科学版),1994,4:516-524
    [105] 延晓冬,赵士洞.温带针阔混交林林分碳贮量动态的模拟模型I.乔木层的碳贮量动态.生态学杂志,1995,14(2):6-12
    [106] 陈育峰.气候-森林响应过程敏感性的初步研究-以四川西部紫果云杉群落为例.地理学报,1996,51(增刊):58-65
    [107] 陈育峰,李克让.应用林窗模型研究全球气候变化对森林群落的可能影响-以四川西部紫果云杉群落为例.地理学报,1996,51(增刊):73-80
    [108] 方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库.温室气体浓度和排放监测及相关过程.中国环境科学出版社,1996:109-128
    [109] 方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义.中国环境科 学出版社,1996:129-139
    [110] 聂道平,徐德应,王兵.全球碳循环与森林关系的研究-问题与进展.世界林业研究,1997,5:33-40
    [111] 李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟.应用生态学报,1998,9(4):365-370
    [112] 庄亚辉.全球生物地球化学循环研究的进展.地学前缘,1997,4(12):163-168
    [113] 毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环型.应用生态学报.2006,17(11):2189-2195
    [114] 程肖侠,延晓冬.气候变化对中国东北大兴安岭森林演替的影响.生态学杂志,2007,26(8):1277-1278
    [115] 王绍刚,何国金,刘定生.森林碳循环模型方法研究进展.科技导报,2008,26(9):72-73
    [116] Li, K.Y., and Coe, M.T., Ramankutty, N. Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology, 2007, 337:258-268
    [117] 巴特尔·巴克,张旭东,彭镇华,等.森林生态系统碳循环模型.世界林业研究,2008,21(1):9-12
    [118] Ji, J.J. A climate -vegetation interaction model: simulating physical and biological processes at the surface. Journal of Biogeography, 1995 , 22:445-451
    [119] 程肖侠,延晓冬.气候变化对中国东北主要森林林型的森林影响.生态学报.2008,28(2):534-543
    [120] 延晓冬,赵士洞,符淙斌,等.气候变化背景下小兴安岭天然林的模拟研究.自然资源学报.1999,14(4):374-376
    [121] 延晓冬.林窗模型的几个基本问题的研究I.模拟样地面积的效应.应用生态学报,2001,12(1):17-22
    [122] 李慧.福建省森林生态系统NPP和NEP时空模拟研究.福建师范大学博士论文,2008:61-85
    [123] 陈雄文,王凤友.林窗模型BKPF模型模拟红松林阔叶混交林群落对气候变化的潜在反应.植物生态学报,2000,24(3):327-331
    [124] 夏朝宗,熊利亚,庄大方,等.基于MODIS的陆地植被光合过程参数反演研究.地理科学进展,2004,23(4):10-18
    [125] 赵敏,周广胜.中国北方林生产力变化趋势及其影响因子分析.西北植物学报,2005,25(3):466-471.
    [126] 赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报,2008,28(1):92-102
    [127] Valentini, R., Matteueei, G., and Dolman, A.J. Respiration as the main determinant of carbon balance in European forests, Nature, 2000,404:861-865
    [128] Han, S.J., Zhang, J.H., and Zhou, Y.M. Dynamics of soil CO_2 profiles of pinus sylvestria var.sylvestriformis seedlings under CO_2 concentration Doubled. Acta Botanica Sinca, 2002,44(7):852-857
    [129] Wang, M, Li, Q.R., and Xiao, D.M. Effects of soil temperature and soil water content on soil repiration in three forest types in Changbai Mountain. Journal of Forestry Research,2004,15(2):113-118
    [130] 林丽莎,韩士杰,王跃思,等.长白山四种林分土壤CO_2释放通量的研究.生态学杂志,2004,23(5):42-45
    [131] 王淼,韩士杰,王跃思.影响阔叶红松林土壤CO_2排放的主要因素.生态学杂志,2004,23(5):24-29
    [132] Foley, J.A., Prentice, I.C., and Ramankutty, N. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996,10(4):603-628
    [133] Delire, C., Foley ,J.A. Evaluating the performance of a land surface/ ecosystem model with biophysical measurements from contrasting environments. J. Geophys.Res., 1999,104(D14):16,895-16,909
    [134] Kucharik, C.J., Foley, J.A., and Delire, C. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000,14(3):795-826
    [135] Maayar, M.E., Price, D.T., and Andrew, B.T. Sensitivity tests of the integrated biosphere simulator to soil and vegetation characteristics in a Pacific coastal coniferous forest. Atmosphere-Ocean, 2002,40(3):313-332
    [136] Maayar, M.E., Kucharik, C. Simulation of the seasonal and interannual variability of carbon and water cycles within three mid-latitude forests using a dynamic global vegetation model. Paper Presented at the Annual Meeting of the American Geophysical Union (AGU), San Francisco,CA,2003,12
    [137] Li, K.Y., Coe, M.T., Ramankutty, N. Regional hydrological modeling in Africa:Calibration and performance test of IBIS. Geophysical Research Abstracts, 2003,5:13006
    [138] 姜纪峰,延晓冬,黄耀,等.半干旱区农田和草地与大气间二氧化碳和水热通量的模拟研究.气候与环境研究,2006,11(3):414-422.
    [139] Thompson, S.L., and Pollard, D. A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part 2:CO_2 sensitivity. Journal of Climate, 1995,8:1104-1121
    [140] Farquhar, G.D., Caemmerer, S., and Berry, J.A. A biochemical model of photosynthetic CO_2 assimilation in leaves of C_3 species. Planta, 1980,1 49:78-90
    [141] Collatz, G.J., Ball, J.T., and Grivet, C. Physiological and environmental regulation of stomatal conductance,photosynthesis and transpiration: A model that includes a laminar boundary layer,Agriculture and Forest Meteorology,1991,53:107~136
    [142]Parton,W.J.,Schimel,D.S.,and Cole,C.V.Analysis of factors controlling soil organic ematter levels in Great Planis grasslands.Soil Society of America Journal,1987,51:1173~1179
    [143]Lloyd,J.,and Farquhar,G.D.C13 discrimination during CO_2 assimilation by the terrestrial biosphere,Oecologia,1994,99:201~215
    [144]Dewar,R.C.Interpretation of an empirical model for stomatal conductance in terms of guard cell function,Plant Cell and Environment,1995,18:365~372
    [145]Ball,J.T.,Woodrow,I.E.,and Berry,J.A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions,Progress in Photosynthesis Research,1986,4:221~224
    [146]Leuning,R.A critical appraisal of a combined stomatal photosynthesis model for C_3 plants,Plant Cell and Environment,1995,18:339~355
    [147]Amthor,J.S.The role of maintenance respiration in plant growth,Plant Cell and Environment,1984,7:561~569
    [148]Zobler,L.A word soil file for global climate modeling,NASA,1986
    [149]Snyder,P.K.,Foley,J.A.,and Hitchman,M.H.Analyzing the effects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget:An application to Africa.Journal of Geophysical Research,2004,109(D21),D21102,DOI:10.1029/2003JD004462.
    [150]Cramer,W.,Bondeau,A.,and Woodward,F.I.Global response of terrestrial ecosystem structure and function to CO_2 and climate change:results from six dynamic global vegetation models.Global Change Biology,2001,7:357~373
    [151]Liu,J.,Chen,J.M.,and Cihlar,J.A peocess-based Boreal Ecosystems Productivity Simulator using remote sensing inputs.Remote Sensing of Environment,1997,62:158~175
    [152]Liu,J.,Chen,J.M.,and Cihlar,J.Net primary productivity distribution in the BOREAS study region from a process model driven by satellite and surface data.Journal of Geophysical Research,1999,104(D22):27,735~27,754
    [153]Running,S.W.,and Hunt,E.R.Generalization of a forest ecosystem process model for other biomes.BIOME-BGC and an application for global-scale models.In:Ehleringer J R,Field C B,ed.Scaling Physiological Processes:Leaf to Globe.San Diego:Academic Press,1993:141~158
    [154]Ji,J.J.A climate-vegetation interaction model:simulating physical and biological processes at the surface.Journal of Biogeography,1995,22:445~451
    [155]Sellers,P.J.,Randall,D.A.,and Collatz,G.J,A revised land surface parameterization (SiB2)for atmospheric GCMs.Part I:Model formulation.J.Climate,1996,9(4):676~705
    [156]McGuire,A.D.,Mellio,J.M.,and Kicklighter,D.W.Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide:sensitivity to changes in vegetation nitrogen concentration.Global Biogeochemical Cycles,1997,11:173~189
    [157]McGuire,A.D.,Mellio,J.M.,and Randerson,J.T.Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions:Comparison with measurements of atmospheric carbon dioxide in high latitudes.Biogeochemistry 2000,48:91~114
    [158]Dickinson,R.E.,Henderson,S.A,and Kennedy,P.J.Biosphere Atmosphere Transfer Scheme(BATS)for the NCAR CCM.CAR/TN-275-STR,National Center for Atmospheric Research,Boulder,Colorado,1986
    [159]Running,S.W,and Coughlan,J.C.A general model of forest ecosystem processes for regional applications.I.Hydrological balance,canopy gas exchange and primary production processes.Ecological Modeling,1988,42:125~154
    [160]Amthor,J.S.,Chen,J.M.,and Clein,J.S.Boreal forest CO_2 exchange and evapotranspiration predicted by nine ecosystem process models:Inter-model comparisons and relationships to field measurements.Journal of Geophysical Research,2001,106(24):33
    [161]Baldocchi,D.,Finnigan,J.,and Wilson,K.On measuring net ecosystem carbon exchange over tall vegetation on complex terrain.Boundary-Layer Meteorology,2000,96:257~291
    [162]Bosilovich,M.G,and Irawford,R.Coordinated Enhanced Observation Period(CEOP)international workshop,Bulletin of American Meteorology Society,2002,83(10):1495~1499
    [163].Finnigan,J.J.,Clement,R.,and Malhi,Y.A Re-Evaluation of Long Term Flux Measurement Techniques Part Ⅰ:Averaging and Coordinate Rotation,Boundary-Layer Meteorology,2002,107:1~48
    [164]Finnigan,J.J.A re-evaluation of long-term flux measurement techniques,Part Ⅱ:Coordinate systems.Boundary-Layer Meteorology,2004,113:1~41
    [165]Ju,W.M.,Chen,J.M.,and Black,T.A.Hydrological effects on carbon cycles of Canada's forests and wetlands.Tellus,2006,58B(1):16~30.
    [166]Keeling,C.D.,and Whorf,T.P.Atmospheric CO_2 records from sites in the SIO air sampling network.In:Trends:A compendium of data on global change.Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,Oak Ridge, Tenn., USA. 2000
    [167] Kell,W.,Allen, G, and Eva, F. Energy Balance Closure at FLUXNET sites.Agricultural and Forest Meteorology, 2002,113:223-243
    [168]. Thompson, S.L, and Pollard, D. A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part 1: Present-day climate. Journal of Climate, 1995,8:732-761
    [169] Thompson, S.L,and Pollard, D. A global climate model (GENESIS) with a land-surface-transfer scheme (LSX).Part 2: CO_2 sensitivity. Journal of Climate, 1995b, 8:1104~1121.
    [170] Viovy, N. Description of the PILPSC-1 experiment. February 19, 2002.
    [171] Bradford, J.B., Hicke, J.A., and Lauenroth, W.K.The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sensing of Environment, 2005,96:246-255
    [172] Canadell, J.G., Dickson, R., Hibbard, K., Raupach, M., and Young,O.Global Carbon Project Science framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1,Canberra. 2003
    [173] Lobell, D.B, Hicke, J.A., Asner, G.P., Field, C.B., Tucker, C. J., and Los, S.O.Satellite estimates of productivity and light use efficiency in United States agriculture,1982-1998. Global Change Biology, 2002, 8:722-735
    [174] Ma, M., Veroustraete, F., Wang, P., and Wang, X. A classification of forest and grassland in the Gansu Province of China using integrated SPOT/VEGETATION,topographical and meteorological data. SPIE, 2004,5574:384-394
    [175] Maisongrande, P., Duchemin,B., and Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. International Journal of Remote Sensing, 2004, 25:9-14
    [176].Woflsy, S., and Harriss, R.C. The North American Carbon Program, Report of the NACP Committee of the U.S. Intemgency Carbon Cycle Science Program, Washington,D.C: U.S. Global Change Research Program. 2002
    [177] 姜纪峰.应用生物物理-动态植被耦合模型对典型生态系统二氧化碳和水热通量的模拟研究.南京农业大学硕士论文,2006:3-15 46-47
    [178] 杜晓军,刘常富.长白山主要森林生态系统根系生物量研究,沈阳农业大学学报,1998,29(3):229-232.
    [179] 关德新,吴家兵,于贵瑞,等.主要气象条件对长白山阔叶红松林CO_2通量的影响,中国科学,D辑,2004,34(增刊Ⅱ):103-107
    [180] 黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000,24(2):175-179
    参考文献
    [181] 刘允芬,宋靛,孙晓敏,等.千烟洲人工针叶林CO_2通量季节变化及其环境因子的影响,中国科学,D辑,2004,34(增刊n):109-117
    [182] 罗毅,欧阳竹,于强,等.SPAC系统中水热CO_2通量与光合作用的综合模型(Ⅰ):模型建立,水利学报,2001,2:90-97
    [183] 罗毅,欧阳竹,于强,等.SPAC系统中水热CO_2通量与光合作用的综合模型(Ⅱ):模型验证,水利学报,2001,3:58-63
    [184] 莫江明,方运霆,彭少麟,等.鼎湖山南亚热带常绿阔叶林碳素积累和分配特征.生态学报,2003,23(10):1970-1976
    [185] Http://www.cfern.org/tzxx/tzxxDisplay.asp?Id=14
    [186] Http://www.cfern.org/tzxx/tzxxDisplay.asp?Id=15
    [187] 胡隐樵,高由禧.黑河实验(HEIFE)-对干旱区陆面过程的一些新认识.气象学报,1994,52(3):285-296
    [188] 吕达仁,陈佐忠,陈家宜,等.内蒙古半干旱草地土壤-植被-大气相互作用(MGRASS)综合研究.地学前缘,2002,(2):295-306
    [189] 王业逮.阔叶红松林.哈尔滨:东北林业大学出版社,1994:62-84
    [190] 陈大坷,周晓峰,祝宁,等.天然次生林-结构功能动态与经营.哈尔滨:东北林业大学出版社,1994:23-25
    [191] 徐文静,王政权,范志强,孙海龙,贾淑霞,吴楚.遮阴对水曲柳苗木细根衰老的影响.植物生态学报,2006,30(1):104-111
    [192] 杨金艳,杨万勤,王开运,等.木本植物对CO_2浓度和温度升高的相互作用的响应.植物生态学报,2003,27,(3):304-310
    [193] 杨金艳,范晶.森林生态系统内氮矿化、氮饱和和氮循环的研究进展.林业研究,2003,14(3):239-243
    [194] 杨金艳,赵惠勋,王传宽.森林对氮饱和的响应.应用与环境生物学报,2004,10(4):507-511.
    [195] 杨金艳,范晶.红松光合特性对CO_2浓度升高的响应.东北林业大学学报,2004,32(6):16-18.
    [196] Wang, C.K., Sun, H.Z., and Hu, C.X. Long-term Forest Ecosystem Research in China.In: Proceedings of the International Workshops on Biodiversity Conservation of Forest Ecosystem in North-East Asia. Harbin, China, Northeast Forestry University Press.2004:18-26
    [197] 王传宽,杨金艳.北方森林土壤呼吸和木质残体分解释放出的CO_2通量.生态学报,2005,25(3):633-638
    [198] 国家林业局中国森林生态系统定位研究网络(CFERN),2009
    [199] 杨金艳.东北天然次生林生态系统地下碳动态研究.东北林业大学博士论文,2005:17-18
    [200] 杨金艳,王传宽.东北东部森林生态系统土壤呼吸组分的分离量化.2006,26(6):1640-1647
    [201] 杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.2005,25(11):2875-2882
    [202] Peng, S.L., Zhao, P., and Ren, H. The possible heat-driven pattern variation of zonal vegetation and agriculture ecosystem along the north-south transect of China under the global change. Earth Science Frontiers, 2002,9(1):217-226
    [203] 周琳.东北气候.北京:气象出版社,1991:1-366
    [204] 郝占庆,代为民,贺红士,等.气候变暖对长白山主要树种的潜在影响.应用生态学报,2001,12(5):653-658
    [205] 刘延春,于振良,李世学,等.气候变迁对中国东北森林影响的初步研究.吉林林学院学报,1997,13(2):63-69
    [206] 彭少麟,赵平,任海,等.全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化.地学前缘,2002,9(1):217-226
    [207] 郝永萍,陈育峰.植被净初级生产力估算模型及其对气候变化的响应研究进展.地球科学进展,1998,13(6):564-571
    [208] 方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973
    [209] TurnerD P, Koepper G J, HanmonM E, et al.A carbon budget for forests of the continental United States. Ecol Appl,1995,5:421-436
    [210] Fang, J.Y., Chen, A. P., and Peng, C.H. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001,292(5525):2320-2322
    [211] Hao, Y.P., and Chen, Y.F. Progress in estimation of net primary productivity and its responses to climate change. Advance in Earth Sciences, 1998,13(6):564-571
    [212] Liang, N., and Maruyama, K. Interactive effects of CO_2 enrichment and drought stress an gas exchange and water-use efficiency in Alnus Firma.Environmental and Experimental Botany, 1995, 35:353-361
    [213] Janack, J. Stomatal limitation of photosynthesis as affected by water stress and CO_2 concentration. Photosynthetica, 1997, 34 (3):473-476
    [214] Meier, A., and Fuhrer, J. Effect of elevated CO_2 on orcharad grass and red clover grown in mixture at two levels of nitrogen or water supply. Environmental and Experimental Botany, 1997, 38:251-262
    [215] 曾昭文,罗春雨,王洋,等.大小兴安岭生态功能区发展对策研究.国土与自然资源研究.2008,3:69-70
    [216] 国庆喜,李具来,刘继新,张玉民.大小兴安岭森林植被交错区生态系统在全球气候变化研究中的科学意义.东北林业大学学报.2001,29(5):1-3
    [217] 牛文元.生态环境脆弱带,Ecotone的基础.生态学报,1989,9(2):97-104
    [218] 倪健,李宜垠,张新时.从生态地理特征论中国东北样带(NECT)在全球变化研究中的科学意义.生态学报,1999,19(5):622-629
    [219] 张新时,高琼,杨奠安,等.中国东北样带的梯度分析及其预测.植物学报,1997,39(9):785-799
    [220] 周以良.黑龙江树木志.哈尔滨:黑龙江科学技术出版社,1986
    [221] 气候中心.中国气象资料.北京:气象出版社,2008
    [222] 中华人民共和国林业部.全国森林资源统计(1999-2003).北京:中国林业出版社,2004
    [223] 黑龙江省环境保护局.黑龙江省生态功能区划.2004.12
    [224] 李景文.黑龙江森林.哈尔滨:东北林业大学出版社,1993.9
    [225] Lieth, H., and Whittaker, R.H. Primary Productivity of the Biosphere. New York:Springer-Verlad Press, 1975
    [226] 彭少麟,侯爱敏,周国逸.气候变化对陆地生态系统第一性生产力的影响研究综述.地球科学进展,2000,15(6):717-722
    [227] 孙睿,朱启疆.植被净第一性生产力模型及中国净第一性生产力的分析.北京师范大学学报,1997,34:132-137
    [228] 刘世荣,徐德应,王兵,等.气候变化对中国森林影响研究.北京:中国科学技术出版社,1997:75-93
    [229] 朴世龙,方精云.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608
    [230] 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社.1999:226-227
    [231] 国志兴,王宗明,张柏,等.2000年-2006年东北地区植被NPP的时空特征及影响因素分析.资源科学,2008,30(8):1227-1232
    [232] 何勇,董文杰,季劲均,等.基于AVIM的中国陆地生态系统净初级生产力模拟.地球科学进展.,2005,20(3):345-349
    [233] 冯险峰,刘高焕,陈述彭,周文佐.陆地生态系统净第一性生产力过程模型研究综述.自然资源学报,2004,19(3):370-372
    [234] 周晓峰.中国森林生态系统定位研究.东北林业大学出版社,1994.12
    [235] 刘世荣,郭泉水,王宾.中国森林生产力对气候变化响应的预测研究.生态学报,1998,18(5):478-483
    [236] 赵岭,周锁铨.气候因子对寒温带落叶针叶林NPP影响的数值试验分析.气象,2005,31(3):27-30
    [237] 张小全,吴可红.森林细根生产和周转研究.林业科学,2001,37(3):126-138
    [238] Raich, J.W. and Schlesinger, W.H. The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44B:81-90.
    [239] Raich, J.W. and Potter, C.S. Global patterns of carbon dioxide emissions from soils.Global Biochemical Cycles, 1995, 9:23-36
    [240] 刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469-476
    [241] Liebig, M.A, Doran, J.W., and Gardner, J.C. Evaluation of a field test kit for measuring selected soil quality indicators. Agronomy Journal, 1996, 88(4):683-686
    [242] Palmborg, C, Bringmark, L., and Bringmark, E. Multivariate analysis of microbial activity and soil organic matter at a forest site subjected to low level heavy metal contamination. Ambio, 1998, 27(1):53-57
    [243] Espeleta, J.F, and Eissenstat, D.M. Responses of citrus fine roots to localized soil drying:a comparison of seedlings with adult fruiting trees. Tree Physiology, 1998, 18(2):113-119.
    [244] 高永刚,温秀卿,顾红,姬菊芝.黑龙江省气候变化趋势对自然植被第一生性净生产力的影响.西北农林科技大学学报,2007,35(6):172-176
    [245] 孙睿.气候变化对中国陆地生态系统净第一性生产力影响的初步研究.遥感学报,2001,5(1):58-61
    [246] Raich, J.W., and Tufekcioglu, A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000,48:71-90
    [247] 刘卫国.新疆陆地生态系统净初级生产力和碳时空变化研究.新疆大学博士论文,2007:95-107
    [248] 张慧东.寒温带兴安落叶松林土壤二氧化碳释放特征研究.内蒙古农业大学硕士论文,2007:34-39
    [249] Malhi, Y., Baldocchi, D.D., and Jarvis, P.G. The carbon balance of tropical, temperature and boreal forests. Plant, Cell and Environment, 1999, 22:715-740
    [250] Melillo, J.M. Effects on ecosystems. In: Houghton, J.T., Jenkins, G.J., Ephraums, J.J. eds.Climate change-the IPCC scientific assessment:report prepared for IPCC by Working Group, Cambridge: Cambridge University Press. 1990:283-310
    [251] 毛子军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002,26:731-738
    [252] Woodwell, GM., Whittaker, R.H., and Refiners, W.A. The biota and the world carbon budget. Science, 1978.19(9):141-146
    [253] 赵敏.中国主要森林生态系统碳储量和碳收支评估.中国科学院研究生院博士学位论文,2004,6:67-68
    [254] 焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报2005,16(12):2248-2252
    [255] 王绍刚,何国金,刘定生,等.森林生态系统碳循环模型的研究.科技导报,2008,26(9):72-73
    [256] Delire, G, Foley, JA, and Thompson, S. Evaluating the carbon cycle of a coupled atmosphere-biosphere model, Global Biogeochem Cycles, 2003, 17(1),1012,doi:10.1029/2002GB001870
    [257] Kucharik, C.J., Barford, C.C., and Maayar, M.E. A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure,phenology, soil temperature, and CO_2 and H_2O vapor exchange. Ecological Modelling,2006,196:1-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700