用户名: 密码: 验证码:
傅立叶变换红外光谱对再生丝蛋白二级结构的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝蛋白是一类具有广泛应用前景的生物大分子,丝蛋白材料的形貌、力学性能、降解速度及适用性等各种理化性质的控制,都会涉及到对丝蛋白二级结构的调控问题。本论文利用了傅立叶红外光谱在分子结构检测中的高灵敏性和特殊技术手段的有效适用性,对丝蛋白二级结构进行了详尽地表征,主要采用近红外、衰减全反射红外光谱方法研究丝蛋白膜在含水量、温度变化、化学试剂处理等过程中的结构变化;并将红外光谱与流变表征结合,从微观的丝蛋白分子链结构变化来解释其溶液的宏观流变行为;同时,通过二维相关光谱分析技术,对中红外及近红外动态光谱做了详细分析探讨,将光谱信息与相关的微观反应和机理联系了起来。
     丝蛋白溶液性质对于我们充分理解并改善再生丝蛋白材料结构和性能是至关重要的。利用流变测试技术考察了丝蛋白溶液性质,通过比较不同分子量范围和不同浓度的丝蛋白溶液,发现了丝蛋白溶液的浓度是其流变性质重要影响因素,丝蛋白溶液浓度在低于临界浓度C_g时会转变为弱凝胶状态。我们将丝蛋白/水相互作用、丝蛋白构象形态转变用于解释丝蛋白溶液/凝胶流变性质变化的原因。C_g以下,肽链主要以无规线团构象存在于水中,肽链与水形成的弱凝胶网络是由于疏水区域的减少和肽链的伸展,肽链与肽链间、肽链与水间的氢键成为物理凝胶点。C_g以上,肽链倾向于形成更稳定的分子内氢键结合,β-折叠含量增加。这种氢键的变化使丝蛋白溶液的流变行为近似于缠结高分子亚浓溶液粘度与浓度的标度关系。
     基于对丝蛋白溶液性质的认识,我们将近红外光谱技术用于表征各种溶液在不同条件下所制备的丝蛋白膜的二级结构。在采集不同构象丝蛋白膜的近红外谱线后,结合中红外光谱、核磁共振测试结果进行比较分析,得到了丝蛋白近红外光谱的峰位归属并发现了位于4530 cm~(-1)的峰是丝蛋白β-折叠构象的特征峰。由此证明,近红外光谱可作为一种简便有效的手段对丝蛋白构象进行定性和定量分析,其优势在于可对潮湿环境中相对较厚的膜作透射测试。这些结果为近红外光谱研究丝蛋白结构的动态变化过程奠定了基础。
     在近红外光谱监测丝蛋白二级结构动态变化过程中,考察了丝蛋白膜在水分、温度、化学试剂等因素诱导下近红外光谱的动态变化,重点研究并阐明了水在丝蛋白构象转变中的作用。动态光谱显示,湿膜中丝蛋白构象转变与水的变化之间是密切相关的。吸收峰变化规律说明水与肽链之间氢键解缔,取而代之,肽链与肽链之间形成具有强氢键的β-折叠。由光谱变化结合DSC结果,证明了可冻结水在热诱导丝蛋白构象变化过程中发挥着增塑剂的作用。一方面水与肽链间的弱氢键结合赋予了肽链运动的弹性,另一方面足够水分子存在为多肽链运动提供了运动的自由空间,使链段调整成为可能。二维相关分析方法帮助我们认识到,构象转变过程各种分子基团变化的顺序是:首先,水与多肽之间的氢键解缔,无规卷曲结构发生调整;其次,肽链与肽链之间重排形成更强的氢键,实现构象转变。
     高温环境下丝蛋白膜的动态近红外光谱研究表明,以无规线团和/或螺旋结构为主的丝蛋白膜,在空气氛围内升温至220℃会发生氧化分解,出现位于5050cm~(-1)处的氧化特征峰,同时,在此温度下也存在发生链段重排并形成β-折叠的可能性。此外,醇溶液诱导丝蛋白的构象转变的实验,证明了近红外光谱同样适用于动态监测丝蛋白/有机溶剂体系中丝蛋白的二级结构变化。
     最后,采用时间分辨衰减全反射红外光谱原位地监测丝蛋白膜在不同溶剂氛围内发生结构变化的动态过程,并结合二维相关分析来研究醋酸诱导丝蛋白构象转变的作用机理、室温下水分子在丝蛋白膜中的吸附和脱附过程。实验结果表明,醋酸能够诱导丝蛋白形成高含量的β-折叠结构,醋酸分子渗透到丝蛋白聚集体中破坏了其原有氢键是肽链构象转变的一个先决条件。同时,证实了丝蛋白水含量是影响醋酸的扩散速度以及丝蛋白多肽链重排速度的一个重要因素。通过对水在丝蛋白中脱附和吸附的时间分辨光谱研究,确认了在丝蛋白/水体系中存在三种不同状态的水分子:自由水、弱氢键结合水和强氢键结合水,分别对应于不同波数的吸收。二维相关分析的结果显示,水脱附过程中,自由水先于结合水去除,而吸附过程则是结合水先于自由水进入丝蛋白中,通过与肽链形成氢键来进行扩散。由此证明,时间分辨光谱可以作为蛋白质结构变化机理研究的一种有效方法。
Silk fibroin based materials possess many attractive properties that make them assuitable candidates for various potential applications.Understanding the secondarystructure of silk fibroin is vital if we are ever to truly capitalize upon its superiormechanical properties.Fourier transform infrared spectroscopy is very sensitive tomolecular structure and has been extensively used in the study of protein structure aswell as conformation transition.Hereby near-infrared (NIR) and attenuated totalreflectance (ATR) spectroscopy were employed in our study to investigate the effectof external disturbance,namely water content,thermal and chemical treatment,on thestructural modification of silk fibroin.Additionally,spectral results revealed that theconformation of peptide chains might be contributive to the rheological characteristicof silk solution.The dynamic spectra were analyzed by 2D correlation method whichcan not only provide better resolution,but also distinguish the motion sequential orderof different functional groups of materials.Thus progress had been made regardingthe relationship between molecular mechanisms and spectral signals.
     The ability to control the processing of silk protein based materials is the key tosuccessful applications of this important and high performance biopolymer.Rheological measurements were applied to regenerated silk fibroin solution withdifferent molecular weight cut-offs and concentrations,observations revealed theexistence of critical concentration Cg below which an extended gel network can form.This concentration dependence was explained as the preponderance for reconstitutedsilk molecules to form either inter- or intra- molecular bonds depending on theirconcentration.It showed that a change in rheological properties can be linked to achange in fibroin structures present in solution.The results may have importantimplications for future successful artificial processing of silk.
     Based on our comprehension on silk fibroin solution,NIR spectra of various silkfibroin films cast from its aqueous solution were collected for the characterization ontheir secondary structure.Clear band assignment was made and the peak at 4530 cm~(-1) was assigned to the combination mode of amide A and amideⅢcharacteristic ofβ-sheet.In the NIR spectrum of silk fibroin,analysis on the combination modes ofamide groups could lead to a profile of conformation ratio,which was confirmed bythe ATR and NMR observation.Therefore,NIR spectroscopy was proved to be arapid and effective tool to investigate qualitatively or even quantitatively theconformation of the RSF (regenerated silk fibroin) film with different thicknessesregardless of the disturbance effect of water.
     Furthermore,NIR spectroscopy was used to monitor dynamic changes in thehydration and secondary structure of silk fibroin induced by thermal and chemicaltreatment.Inspired by differential scanning calorimetry (DSC) observations wesuggested that the formation ofβ-sheets in wet film should be strongly related to thedissociation of hydrogen bonds between water and peptide residues,and the freezingwater might facilitate the movement of peptide chains and thereby contribute to theconformational transition at 60℃.In addition,structural changes of fibroin inducedby higher temperature and ethanol aqueous solution were also analyzed respectively.By monitoring the dynamic variations of the spectral components,an NIR procedurefor tracking the conformational transition of silk fibroin was established.
     At last,time-resolved ATR infrared spectroscopy was used to monitor thestructural change of silk fibroin in water and chemical vapor respectively in situ,thereafter the mechanism of the conformation transition as well as water absorptionand de-association in silk fibroin at room temperature was discussed.The ATRobservations showed that acetic acid was contributive to the highly dominatingcontent ofβ-sheet conformation in silk fibroin film.The kinetic curve of solventdiffusion was similar to theβ-sheet growth,which indicated that the access of aceticacid into silk fibroin architecture was a necessary step to break the original hydrogenbond of silk fibroin and to force the re-alignment of peptide chains.Meanwhile,threetypes of water were distinguished in this dynamic system,whose motion sequentialorder was illustrated by the two-dimensional correlation analysis.
引文
[1]Shao Z.Z.,Vollrath F.,Materials:Surprising strength of silkworm silk.Nature,2002,418(6899):741-741.
    [2]Zhou C.Z.,Confalonieri F.,Jacquet M.,Perasso R.,Li Z.G.,Janin J.,Silk fibroin:Structural implications of a remarkable amino acid sequence.Proteins-Structure Function and Genetics,2001,44(2):119-122.
    [3]Jin H.J.,Kaplan D.L.,Mechanism of silk processing in insects and spiders.Nature,2003,424(6952):1057-1061.
    [4]Yamane T.,Umemura K.,Nakazawa Y.,Asakura T.,Molecular dynamics simulation of conformational change of poly(Ala-Gly)from silk Ⅰ to silk Ⅱ in relation to fiber formation mechanism of Bombyx mori silk fibroin.Macromolecules,2003,36(18):6766-6772.
    [5]Asakura T.,Yao J.M.,Yamane T.,Umemura K.,Ultrich A.S.,Heterogeneous structure of silk fibers from Bombyx mori resolved by C-13 solid-state NMR spectroscopy.Journal of the American Chemical Society,2002,124(30):8794-8795.
    [6]Hardy J.G.,Romer L.M.,Scheibel T.R.,Polymeric materials based on silk proteins.Polymer,2008,49(20):4309-4327.
    [7]Omenetto F.G.,KapLan D.L.,A new route for silk.Nature Photonics,2008,2(11):641-643.
    [8]Altman G.H.,Diaz F.,Jakuba C.,Calabro T.,Horan R.L.,Chen J.S.,Lu H.,Richmond J.,Kaplan D.L.,Silk-based biomaterials.Biomaterials,2003,24(3):401-416.
    [9]Ohgo K.,Bagusat F.,Asakura T.,Scheler U.,Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR Spectroscopy.Journal of the American Chemical Society,2008,130(12):4182-4186.
    [10]Ye H.M.,Peng M.,Xu J.,Guo B.H.,Chen Q.,Yun T.L.,Ma H.,Conformation transition and molecular mobility of isolated poly(ethylene oxide) chains confined in urea nanochannels. Polymer, 2007, 48(25):7364-7373.
    [11]Hakimi O., Knight D.P., Vollrath F., Vadgama P., Spider and mulberry silkworm silks as compatible biomaterials. Composite Part B-Engineering, 2007, 38(3):324-337.
    [12]Nakamae K., Nishino T., Ohkubo H., Elastic-Modulus of the Crystalline Regions of Silk Fibroin. Polymer, 1989, 30(7):1243-1246.
    [13]Sirichaisit J., Brookes V.L., Young R.J., Vollrath F., Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman Spectroscopy. Biomacromolecules, 2003, 4(2):387-394.
    [14]Liu Y., Liu H., Qian J., Deng J., Yu T., Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen-peroxide utilizing methylene-blue as electron shuttle. Analytica Chimica Acta, 1995, 316(l):65-72.
    [15]Inouye K., Kurokawa M., Nishikawa S., Tsukada M, Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. Journal of Biochemical and Biophysical Methods, 1998, 37(3): 159-164.
    [16]Li C, Vepari C, Jin H.-J., Kim H.J., Kaplan D.L., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27(16):3115-3124.
    [17] Yeo J.H., Lee K.G, Lee Y.W., Kim S.Y., Simple preparation and characteristics of silk fibroin microsphere. European Polymer Journal, 2003, 39(6):1195-1199.
    [18] Vepari C, Kaplan D.L., Silk as a biomaterial. Progress in Polymer Science, 2007, 32:991-1007.
    [19]Akai H., The Structure and Ultrastructure of the Silk Gland. Experientia, 1983, 39(5):443-449.
    [20] Baker D., A surprising simplicity to protein folding. Nature, 2000, 405(6782):39-42.
    [21]Komatsu K., Polymeric Materials Encyclopedia, 1996:7711-7721.
    [22]Magoshi J., Magoshi Y, Nakamura S., Mechanism of Fiber Formation of Silkworm. Silk Polymers: Materials Science and Biotechnology, 1994; Vol. 544, pp 292-310.
    [23]Magoshi J., Magoshi Y, Nakamura S., Biospinning (silk fiber formation, multiple spinning mechanisms). Polymeric Materials Encyclopedia, Salamone, J. C, Ed. CRC: 1996; Vol. l,pp 667-679.
    [24]Liu Y, Yu T., Yao H., Yang F., PIXE analysis of silk. Journal of Applied Polymer Science, 1997,66:405-408.
    [25]Liu Y, Shao Z.Z., Sun Y, Yu T., The structure and properties of silk fibroin. Chinese polymer bulletin, 1998, 3:17-23.
    [26]Chevillard M., Couble P., Prudhomme J.C., Complete Nucleotide-Sequence of the Gene Encoding the Bombyx- Mori Silk Protein-P25 and Predicted Amino-Acid-Sequence of the Protein. Nucleic Acids Research, 1986, 14(15):6341-6342.
    [27]Tanaka K., Kajiyama N., Ishikura K., Waga S., Kikuchi A., Ohtomo K., Takagi T., Mizuno S., Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1999,1432(l):92-103.
    [28]Tanaka K., Inoue S., Mizuno S., Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochemistry and Molecular Biology, 1999,29(3):269-276.
    [29]Mita K., Ichimura S., James T., Highly repetitive structure and its organization of the silk fibroin gene. Journal of Molecular Evolution, 1994, 38(6):583-592.
    [30]ExPASy, Expert Protein Analysis System:P05790;P07856.
    [31]Zhou C.-Z., Confalonieri F, Medina N., Zivanovic Y., Esnault C, Yang T., Jacquet M., Janin J., Duguet M., Perasso R., Li Z.-G, Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research, 2000, 28(12):2413-2419.
    [32]Lotz B., Cesari EC, The chemical structure and the crystalline structures of Bombyx mori. Biochimie, 1979, 61:205-214.
    [33]Manning R.F., Gage L.P., Physical Map of Bombyx-Mori DNA Containing Gene for Silk Fibroin. Journal of Biological Chemistry, 1978, 253(6):2044-2052.
    [34]Ohshoma Y, Suzuki Y, Proceeding National Acadamic Science of USA, 1977, 74(5363).
    [35]Shen Y, Johnson M.A., Martin D.C., Microstructural Characterization of Bombyx mori Silk Fibers. Macromolecules, 1998,31(25):8857-8864.
    [36] Yao J.R., Synthesis and Characterization of Silk-Protein like Polymers and their Blends with Silk Fibroin. PhD Dissertation, 2003:1 -102.
    [37]Tsukada M., Freddi G, Gotoh Y, Kasai N., Physical and chemical-properties of tussah silk fibroin films. Journal of Polymer Science part B-Polymer Physics, 1994, 32(8):1407-1412.
    [38]Kobayashi M., Tanaka T., Inoue S., Tsuda H., Magoshi Y, Magoshi J., Structure and dynamics of liquid silk studied by pulse NMR. Abstracts of Papers of the American Chemical Society, 2002, 223:040-POLY
    [39]Asakura T., Murakami T., NMR of Silk Fibroin. 4. Temperature-Induced and Urea-Induced Helix-Coil Transitions of the -(Ala)N-Sequence in Philosamia-Cynthia-Ricini Silk Fibroin Protein Monitored by C-13 NMR Spectroscopy. Macromolecules, 1985, 18(12):2614-2619.
    [40]Chen X., Shao Z.Z., Knight D.P., Vollrath F., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007, 68(1):223-231.
    [41]Matsumoto A., Chen J., Collette A.L., Kim U.J., Altman G.H., Cebe P., Kaplan D.L., Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B, 2006, 110(43):21630-21638.
    [42]Chen X., Shao Z., Marinkovic N.S., Miller L.M., Zhou P., Chance M.R., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89(l):25-34.
    [43]Yao J.M., Nakazawa Y., Asakura T., Structures of Bombyx moriand Samia cynthia ricini Silk Fibroins Studied with Solid-State NMR. Biomacromolecules, 2004, 5:680-688.
    [44]Zhou L., Chen X., Shao Z., Huang Y., Knight D.P., Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm, Bombyx Mori. Journal of Physical Chemistry B, 2005, 109(35): 16937-16945.
    [45]Zong X., Zhou P., Shao Z.Z., Chen S.M., Chen X., Hu B.W., Deng F., Yao W.H., Effect of pH and copper (Ⅱ) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry, 2004, 43:11932-11941.
    [46]Rossle M., Panine P., Urban V.S., Riekel C, Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers, 2004, 74(4):316-327.
    [47]Magoshi J., Magoshi Y., Becker M.A., Kato M., Han Z., Tanaka T., Inoue S., Nakamura S., Crystallization of silk fibroin from solution. Thermochimica Acta, 2000, 352:165-169.
    [48]Kaplan D.L., Adams W.W., Viney C., Farmer B.L.e., Silk Polymers: Materials Science and Biotechnology. ACS Books: Washington, 1994; Vol. Symposium Series 544, p 1-370.
    [49]Mo C.L., Wu P.Y., Chen X., Shao Z.Z., Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin. Applied Spectroscopy, 2006, 60(12):1438-1441.
    [50] Marsh R.E., Corey R.B., L P., Structure of Tussah silk fibroin. Acta Crystallographica, 1955, 8:710-715.
    [51]Warwicker J., Comparative studies of fibroins Ⅱ. The crystal structures of various fibroins. Journal of Molecular Biology, 1960, 2:350-362.
    [52]Valluzzi R., Gido S.P., Zhang W.P., Muller W.S., Kaplan D.L., Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules, 1996,29(27):8606-8614.
    [53]Valluzzi R., Gido S.P., The crystal structure of Bombyx mori silk fibroin at the air- water interface. Biopolymers, 1997,42(6):705-717.
    [54]Valluzzi R., Gido S.P., Muller W., Kaplan D.L., Orientation of silk Ⅲ at the air-water interface. International Journal of Biological Macromolecules, 1999, 24(2-3):237-242.
    [55]Termonia Y., Molecular Modeling of Spider Silk Elasticity. Macromolecules, 1994,27(25):7378-7381.
    [56]Chen X., Zhou L., Shao Z.Z., Zhou P., Knight D.P., Vollrath F, Conformation transition of silk protein membranes monitored by time-resolved FT-IR spectroscopy - Conformation transition behavior of regenerated silk fibroin membranes in alcohol solution at high concentrations(in Chinese). Acta Chimica Sinica, 2003, 61(4):625-629.
    [57]Hossain K.S., Ohyama E., Ochi A., Magoshi J., Nemoto N., Dilute-solution properties of regenerated silk fibroin. Journal of Physical Chemistry B, 2003, 107(32):8066-8073.
    [58]Nam J., Park Y.H., Morphology of regenerated silk fibroin: Effects of freezing temperature, alcohol addition, and molecular weight. Journal of Applied Polymer Science, 2001, 81(12):3008-3021.
    [59]Nazarov R., Jin H.J., Kaplan D.L., Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 2004, 5(3):718-726.
    [60]Urn I.C., Kweon H.Y., Park Y.H., Hudson S., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 2001,29(2):91-97.
    [61]Couble P., Garel A., Prudhomme J., Complexity and diversity of polyadenylated messenger-ma in the silk gland of bombyx-mori - changes related to fibroin production. Developmental Biology, 1981, 82(1):139-149.
    [62]Lizardi P.M., Mahdavi V., Shields D., Candelas G, Discontinous translation of silk fibroin in a reticulocyte cell-free system and in intact silk gland cells. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(12):6211-6215.
    [63]Sumida M., Takimoto S., Ukai M., Matsubara F., Occurrence of fibroinase in degenerating silk gland in the pharate adult of the silkworm, bombyx-mori. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1993, 105(2):239-245.
    [64]Tang H., Cai J., Li Z., Yac-base transfer of fibroin gene from antheraea-yamamai to domestic silkworm bombyx-mori .1. identification of fibroin clones from a yac library of antheraea-yamamai constructed from its posterior silk gland. Science in China Series B-Chemistry Sciences & Earth Sciences, 1995, 38(5):590-595.
    [65]Asakura T., Sakaguchi R., Demura M., Manabe T., Uyama A., Ogawa K., Osanai M., Invitro Production of Bombyx-Mori Silk Fibroin by Organ-Culture of the Posterior Silk Glands - Isotope Labeling and Fluorination of the Silk Fibroin. Biotechnology and Bioengineering, 1993, 41(2):245-252.
    [66]Asakura T., Yao J., 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Science, 2002, 11(11):2706-2713.
    [67]Asakura T., Yang M., Kawase T., Nakazawa Y, 13C solid-state NMR study of structural heterogeneity in peptides containing both polyalanine and repeated GGA sequences as a local structural model of nephila clavipes dragline silk (spidroin 1). Macromolecules, 2005, 38(8):3356-3363.
    [68]Sonoyama M, Nakano T., Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FTIR spectroscopy combined with digital signal processing. Applied Spectroscopy, 2000, 54(7):968-973.
    [69] Monti P., Taddei P., Freddi G, Asakura T., Tsukada M., Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk Ⅰ. Journal of Raman Spectroscopy, 2001, 32(2):103-107.
    [70] Demura M., Minami M., Asakura T., Cross T.A., Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society, 1998, 120(6):1300-1308.
    [71]Wu J.G, Application of Modern Fourier Transform Infrared Spectroscopy. 1993; p 253-255.
    [72]Heigl N., Petter C.H., Rainer M., Najam-Ul-Haq M., Valiant R.M., Bakry R., Bonn GK., Huck C.W., Near infrared spectroscopy for polymer research, quality control and reaction monitoring. Journal of Near Infrared Spectroscopy, 2007, 15(5):269-282.
    [73]Siesler H.W., Ozaki Y., Kawata S., Heise H.M., Near-infrared spectroscopy - Principles, instruments, applications. Near-Infrared Spectroscopy: Principles, Instruments, Applications, 2002:1-10.
    [74] Kawata S., New techniques in near-infrared spectroscopy. Near-Infrared Spectroscopy: Principles, Instruments, Applications, 2002:75-84.
    [75]Togersen G, Isaksson T., Nilsen B.N., Bakker E.A., Hildrum K.I., On-line NIR analysis of fat, water and protein in industrial scale ground meat batches. Meat Science, 1999, 51(1 ):97-l02.
    [76]Wang Y., Murayama K., Myojo Y., Tsenkova R., Hayashi N., Ozaki Y, Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. Journal of Physical Chemistry B, 1998,102(34):6655-6662.
    [77]Holly S., Egyed O., Jalsovszky G., Assignment problems of amino acids, di- and tripeptides and proteins in the near infrared region Spectrochimica Acta Part A: Molecular Spectroscopy, 1992,48(l):101-109.
    [78]Wang J., Sowa M.G, Ahmed M.K., Mantsch H.H., Photoacoustic near-Infrared Investigation of Homo-Polypeptides. Journal of Physical Chemistry, 1994, 98(17):4748-4755.
    [79]Izutsu K.I., Fujimaki Y., Kuwabara A., Hiyama Y., Yomota C, Aoyagi N., Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids. J. Pharmaceutic Science, 2006, 95(4):781-789.
    [80]Segtnan V.H., Isaksson T., Temperature, sample and time dependent structural characteristics of gelatine gels studied by near infrared spectroscopy. Food Hydrocolloids, 2004,18(1):1-11.
    [81]Miyazawa M., Sonoyama M., Second derivative near infrared studies on the structural characterisation of proteins. Journal of near Infrared Spectroscopy, Vol 6 1998,1998:A253-A257.
    [82]Rammelsberg R., Boulas S., Chorongiewski H., Gerwert K., Set-up for time-resolved step-scan FTIR spectroscopy of noncyclic reactions. Vibrational Spectroscopy, 1999,19:143-149.
    [83] Palmer R.A., Manning C.J., Chao J.L., Noda I., Dowrey A.E., Marcott C, Application of Step-Scan Interferometry to 2-Dimensional Fourier-Transform Infrared (2d Ft-Ir) - Correlation Spectroscopy. Applied Spectroscopy, 1991,45(1):12-17.
    [84]McFarlane K., Lee B., Bridgewater J., Ford P.C., time resolved infrared spectroscopy as a technique to study reactive organometallic intermediates. Journal of Organometallic Chemistry, 1998, 554:49-61.
    [85] Palmer R.A., Smith GD., Chen P.Y., Breaking the nanosecond barrier in FTIR time-resolved spectroscopy. Vibrational Spectroscopy, 1999,19:131-141.
    [86]Bordiga S., Bertarione S., Damin A., Prestipino C., Spoto G., Lamberti C., Zecchina A., On the first stages of the ethylene polymerization on Cr2+/SiO2 Phillips catalyst: time and temperature resolved IR studies. Journal of Molecular Catalysis a-Chemical, 2003,204:527-534.
    [87]Gilmanshin R., Williams S., Callender R.H., Woodruff W.H., Dyer R.B., Fast events in protein folding: Relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(8):3709-3713.
    [88]Gilmanshin R., Williams S., Callender R.H., Woodruff W.H., Dyer R.B., Fast events in protein folding: Relaxation dynamics and structure of the I form of apomyoglobin. Biochemistry, 1997, 36(48): 15006-15012.
    [89]Chen P.Y., Palmer R.A., Ten-nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy. Applications to excited states of transition metal complexes. Applied Spectroscopy, 1997, 51(4):580-583.
    [90]Chen P.Y., Palmer R.A., Time-resolved infrared spectroscopy of excited states of d(6) metal complexes. Abstracts of Papers of the American Chemical Society, 1996, 211:215-Inor.
    [91]Czarnecki M.A., Okretic S., Siesler H.W., Reorientation of nematic liquid-crystals and liquid-crystalline polymers in an electric field studied by FT-IR time-resolved spectroscopy and 2D-correlation analysis. Journal of Physical Chemistry B, 1997, 101(3):374-380.
    [92]Hilber W., Helm M., Alavi K., Pathak R.N., Hot-electron power loss in a doped GaAs/AlGaAs superlattice at intermediate temperature studied by infrared differential spectroscopy. Applied Physics Letters, 1996, 69(17):2528-2530.
    [93]Hilber W., Helm M, Peeters F.M., Alavi K., Pathak R.N., Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGal-xAs superlattice. Physical Review B, 1996, 53(11):6919-6922.
    [94]Chen X., Knight D.P., Shao Z.Z., Vollrath F., Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry, 2002, 41(50): 14944-14950.
    [95]Wu P.G, Li Y.K., Talalay P., Brand L., Characterization of the 3 Tyrosine Residues of Delta(5)-3-Ketosteroid Isomerase by Time-Resolved Fluorescence and Circular-Dichroism. Biochemistry, 1994, 33(23):7415-7422.
    [96]Reinstadler D., Fabian H., Backmann J., Naumann D., Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Biochemistry, 1996, 35(49): 15822-15830.
    [97]Chen X., Shao Z.Z., Marinkovic N.S., Miller L.M., Zhou P., Chance M.R., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89(1):25-34.
    [98]Groot M.L., van Wilderen L., Di Donato M., Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochemical & Photobiological Sciences, 2007, 6(5):501-507.
    [99]Noda I., Bulletin of American Physical Society, 1986, 31:520.
    [100]Noda I., Generalized Two-dimensional correlation method applicable to infrared, Raman and other trypes of spectroscopy. Applied Spectroscopy, 1993, 47(9):1329-1336.
    [101]Izawa K., Ogasawara T., Masuda H., Okabayashi H., O'Connor C.J., Noda I., 2D gel permeation chromatography (2D GPC) correlation studies of the growth process for perfluoro-octyltriethoxysilane polymer aggregates. Physical Chemistry Chemical Physics, 2002,4(6):1053-1061.
    [102] Noda I., 2-Dimensional Infrared (2D IR) Spectroscopy - Theory and Applications. Applied Spectroscopy, 1990,44(4):550-561.
    [103] Coda I., Dowrey A.E., Marcott C, Recent Developments in 2-Dimensional Infrared (2d-Ir) Correlation Spectroscopy. Applied Spectroscopy, 1993, 47(9):1317-1323.
    [104] Noda I., Marcott C, Two-dimensional Raman (2D Raman) correlation spectroscopy study of non-oxidative photodegradation of beta-carotene. Journal of Physical Chemistry A, 2002,106(14):3371-3376.
    [105] Noda I., Determination of two-dimensional correlation spectra using the Hilbert transform. Applied Spectroscopy, 2000, 54(7):994-999.
    [106] Noda I., Dowrey A.E., Marcott C, Story GM., Ozaki Y., Generalized two-dimensional correlation spectroscopy. Applied Spectroscopy, 2000, 54(7):236A-248A.
    [107] Noda I., Two-Dimensional Infrared-Spectroscopy. J. Am. Chem. Soc, 1989,111(21):8116-8118.
    [108] Wilson R.C., Pfohl W.F., Study of cross-linking reactions of melamine/formaldehyde resin with hydroxyl functional polyester by generalized 2-D infrared spectroscopy. Vibrational Spectroscopy, 2000,23(1):13-22.
    [109] Wu Y.Q., Murayama K., Czarnik-Matusewicz B., Ozaki Y, Two-dimensional attenuated total reflection/infrared correlation spectroscopy studies on concentration and heat-induced structural changes of human serum albumin in aqueous solutions. Applied Spectroscopy, 2002, 56(9):1186-1193.
    [110] Peng X., Shao Z., Chen X., Knight D.P., Wu P., Vollrath F., Further Investigation on Potassium-Induced Conformation Transition of Nephila Spidroin Film with Two-Dimensional Infrared Correlation Spectroscopy. Biomacromolecules, 2005,6(1):302-308.
    [111] Richard J.A., Kelly I., Marion D., Auger M., Pezolet M., Structure of beta-purothionin in membranes: A two-dimensional infrared correlation spectroscopy study. Biochemistry, 2005,44(1):52-61.
    [112] Buchet R., Wu Y, Lachenal G, Raimbault C, Ozaki Y., Selecting two-dimensional cross-correlation functions to enhance interpretation of near-infrared spectra of proteins. Applied Spectroscopy, 2001, 55(2):155-162.
    [113] Kimura F., Komatsu M., Kimura T, Two-dimensional vibrational correlation spectroscopic study on the crystallization process of poly(ethylene-2,6-naphthalate). Applied Spectroscopy, 2000, 54(7):974-977.
    [114] Zhang J.M., Duan Y.X., Shen D.Y., Yan S.K., Noda I., Ozaki Y, Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules, 2004, 37(9):3292-3298.
    [115] Shen Y, Wu P.Y., Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film: Water bending vibration. Journal of Physical Chemistry B, 2003, 107(18):4224-4226.
    [116] Musto P., Two-dimensional FTIR spectroscopy studies on the thermal-oxidative degradation of epoxy and epoxy-bis(maleimide) networks. Macromolecules, 2003, 36(9):3210-3221.
    [117] Choi H.C., Jung Y.M., Noda I., Kim S.B., A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS-Raman correlation analysis. Journal of Physical Chemistry B, 2003, 107(24):5806-5811.
    [118] Morita S., Shinzawa H., Noda I., Ozaki Y, Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Applied Spectroscopy, 2006, 60(4):398-406.
    [1]Vollrath F.,Knight D.P.,Liquid crystalline spinning of spider silk.Nature,2001,410(6828):541-548.
    [2]Shao Z.Z.,Vollrath F.,Materials:Surprising strength of silkworm silk.Nature,2002,418(6899):741-741.
    [3]Altman G.H.,Diaz F.,Jakuba C.,Calabro T.,Horan R.L.,Chen J.S.,Lu H.,Richmond J.,Kaplan D.L.,Silk-based biomaterials.Biomaterials,2003,24(3):401-416.
    [4]Hakimi O.,Knight D.P.,Vollrath F.,Vadgama P.,Spider and mulberry silkworm silks as compatible biomaterials.Composites Part B:Engineering,2007,38(3):324-337.
    [5]Lawrence B.D.,Cronin-Golomb M.,Georgakoudi I.,Kaplan D.L.,Omenetto F.G.,Bioactive Silk Protein Biomaterial Systems for Optical Devices.Biomacromolecules,2008,9(4):1214-1220.
    [6]Omenetto F.G.,Kaplan D.L.,A new route for silk.Nature Photonics,2008,2(11):641-643.
    [7]Holland C.,Terry A.E.,Porter D.,Vollrath F.,Natural and unnatural Silks.Polymer,2007,48:3388-3392.
    [8]Zhou G.Q.,Shao Z.Z.,Knight D.P.,Yan J.P.,Chen X.,Silk fibers extruded artificially from aqueous solutions of regenerated bombyx mori silk fibroin are tougher than their natural counterparts.Advanced Materials,2009 21(3):366-370.
    [9]Tanaka T.,Ohnishi S.,Yamaura K.,Phase separation in poly(vinyl alcohol)/gelatin blend systems.Polymer International,1999,48(9):811-818.
    [10]Zhou C.-Z.,Confalonieri F.,Medina N.,Zivanovic Y.,Esnault C.,Yang T.,Jacquet M.,Janin J.,Duguet M.,Perasso R.,Li Z.-G.,Fine organization of Bombyx mori fibroin heavy chain gene.Nucleic Acids Research,2000,28(12):2413-2419.
    [11]Baker D.,A surprising simplicity to protein folding.Nature,2000,405(6782):39-42.
    [12]Holland C.,Vollrath F.,Biomimetic principles of spider silk for high performance fibres.In Biologically Inspired Textiles,Ellison,M.S.;Abbott,A.G.,Eds.Woodhead Publishing:Cambridge,UK,2008.
    [13]Yamada H.,Nakao H.,Takasu Y.,Tsubouchi K.,Preparation ofundegraded native molecular fibroin solution from silkworm cocoons.Materials Science & Engineering C-Biomimetic Materials Sensors and Systems,2001,14(1-2):41-46.
    [14]Iridag Y.,Kazanci M.,Preparation and characterization of Bombyx mori silk fibroin and wool keratin.Journal of Applied Polymer Science,2006,100(5):4260-4264.
    [15]Zuo B.,Dai L.,Wu Z.,Analysis of structure and properties of biodegradable regenerated silk fibroin fibers.Journal of Materials Science,2006,41(11):3357-3361.
    [16]Asakura T.,Kuzuhara A.,Tabeta R.,Saito H.,Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR,x-ray diffraction,and infrared spectroscopy.Macromolecules,1985,18(10):1841-1845.
    [17]Li M.Z.,Lu S.Z.,Wu Z.Y.,Yan H.J.,Mo J.Y.,Wang L.H.,Study on porous silk fibroin materials.I.Fine structure of freeze dried silk fibroin.Journal of Applied Polymer Science,2001,79(12):2185-2191.
    [18]Nazarov R.,Jin H.J.,Kaplan D.L.,Porous 3-D scaffolds from regenerated silk fibroin.Biomacromolecules,2004,5(3):718-726.
    [19]Gardlund L.,Wagberg L.,Norgren M.,New insights into the structure of polyelectrolyte complexes.Journal of Colloid and Interface Science,2007,312(2):237-246.
    [20]Holland C.A.,Terry A.E.,Porter D.,Vollrath F.,Comparing the rheology of native spider and silkworm spinning dope.Nature Materials,2006,5:870-874.
    [21]Ferry J.D.,Viscoelastic properties of polymers.3rd edition;Wiley VCH:New York,1980.
    [22]Ochi A.,Hossain K.S.,Magoshi J.,Nemoto N.,Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm.Biomacromolecules,2002,3(6):1187-1196.
    [23]Hossain K.S., Ohyama E., Ochi A., Magoshi J., Nemoto N., Dilute-solution properties of regenerated silk fibroin. Journal of Physical Chemistry B, 2003, 107(32):8066-8073.
    [24]Chen X., Shao Z.Z., Vollrath F., The spinning processes for spider silk. Soft Matter, 2006, 2(6):448-451.
    [25]Li G, Zhou P., Shao Z.Z., Xie X., Chen X., Wang H., Chunyu L., Yu T., Natural silk spinning process. European Journal of Biochemistry, 2001, 269:1-8.
    [26]Magoshi J., Magoshi Y., Becker M.A., Nakamura S., Biospinning by Bombyx mori silkworm. Abstracts of Papers of the American Chemical Society, 1996, 212:53-CELL.
    [27]Iizuka E., Mechanism of fiber formation by the silkworm Bombyx Mori. Biorheology, 1966, 3:141-152.
    [28]Byler D.M., Susi H., Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers, 1986, 25(3):469-487.
    [29]Chen X., Shao Z.Z., Knight D.P., Vollrath R, Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007, 68(1):223-231.
    [30]Teramoto H., Miyazawa M., Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromolecules, 2005, 6(4):2049-2057.
    [31]Mo C.L., Wu P.Y., Chen X., Shao Z.Z., Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin. Applied Spectroscopy, 2006, 60(12):1438-1441.
    [32]Chen X., Shao Z., Marinkovic N.S., Miller L.M., Zhou P., Chance M.R., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89(1):25-34.
    [33]Surewicz W.K., Mantsch H.H., New Insight into Protein Secondary Structure from Resolution-Enhanced Infrared-Spectra. Biochimica Et Biophysica Acta, 1988, 952(2):115-130.
    [34]Haris P.I., Chapman D., The conformational-analysis of peptides using Fourier-Transform infrared spectroscopy. Biopolymers, 1995, 37(4):251-263.
    [35]Matsumoto A., Chen J., Collette A.L., Kim U.J., Altman G.H., Cebe P., Kaplan D.L., Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B, 2006, 110(43):21630-21638.
    [36]Kaplan D.L., Adams W.W., Viney C, Farmer B.L.e., Silk Polymers: Materials Science and Biotechnology. ACS Books: Washington, 1994; Vol. Symposium Series 544, p 1-370.
    [37]Porter D., Vollrath F., The role of kinetics of water and amide bonding in protein stability. Soft Matter, 2008,4:328-336.
    [38]Yang Y.H., Shao Z.Z., Chen X., Zhou P., Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules, 2004, 5(3):773-779.
    [39]Teraoka I., Thermodynamics and dynamics of semidilute solutions. John Wiley & Sons, Inc.: New York, 2002 p277.
    [40]Knight D.P., Knight M.M., Vollrath F., Beta transition and stress-induced phase separation in the spinning of spider dragline silk. International Journal of Biological Macromolecules, 2000,27(3):205-210.
    [41]Knight D.P., Vollrath F., Liquid crystals and flow elongation in a spider's silk production line. Proceedings of the Royal Society of London Series B-Biological Sciences, 1999,266(1418):519-523.
    [42]Xie F., Zhang H., Shao H., Hu X., Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. International Journal of Biological Macromolecules, 2006, 38(3-5):284-288.
    [43]Chen X., Knight D.P., Vollrath F., Rheological characterization of Nephila spidroin solution. Biomacromolecules, 2002,3(4):644-648.
    [44]Kang G.D., Nahm J.H., Park J.S., Moon J.Y., Cho C.S., Yeo J.H., Effects of poloxamer on the gelation of silk fibroin. Macromolecular Rapid Communications, 2000,21(11):788-791.
    [45]Kim U.J., Park J.Y., Li C.M., Jin H.J., Valluzzi R., Kaplan D.L., Structure and properties of silk hydrogels. Biomacromolecules, 2004, 5(3):786-792.
    [1]Sonoyama M.,Miyazawa M.,Katagiri G.,Ishida H.,Dynamic FT-IR spectroscopic studies of silk fibroin films.Applied Spectroscopy,1997,51(4):545-547.
    [2]Eberhardt E.S.,Panasik N.,Raines R.T.,Inductive effects on the energetics of prolyl peptide bond isomerization:Implications for collagen folding and stability.Journal of the American Chemical Society,1996,118(49):12261-12266.
    [3]Heimburg T.,Schunemann J.,Weber K.,Geisler N.,FTIR-spectroscopy of multistranded coiled coil proteins.Biochemistry,1999,38(39):12727-12734.
    [4]Kotting C.,Gerwert K.,Proteins in action monitored by time-resolved FTIR spectroscopy.Chemphyschem,2005,6(5):881-888.
    [5]Shen Y.,Johnson M.A.,Martin D.C.,Microstructural Characterization of Bombyx mori Silk Fibers.Macromolecules,1998,31(25):8857-8864.
    [6]Magoshi J.,Magoshi Y.,Nakamura S.,Mechanism of Fiber Formation of Silkworm.In Silk Polymers:Materials Science and Biotechnology,1994;Vol.544,pp 292-310.
    [7]Sonoyama M.,Nakano T.,Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FTIR spectroscopy combined with digital signal processing.Applied Spectroscopy,2000,54(7):968-973.
    [8]Ha S.-W.,Tonelli A.E.,Hudson S.M.,Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.Biomacromolecules,2005,6(3):1722-1731.
    [9]Lee K.A.B.,Comparison of Mid-Ir with Nir in Polymer Analysis.Applied Spectroscopy Reviews,1993,28(3):231-284.
    [10]Lefevre T.,Arseneault K.,Pezolet M.,Study of protein aggregation using two-dimensional correlation infrared spectroscopy and spectral simulations.Biopolymers,2004,73(6):705-715.
    [11]Miyazawa M.,Sonoyama M.,Second derivative near infrared studies on the structural characterisation of proteins.Journal of near Infrared Spectroscopy,Vol 6 1998,1998:A253-A257.
    [12]Cher X.,Shao Z.,Marinkovic N.S.,Miller L.M.,Zhou P.,Chance M.R.,Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophysical Chemistry,2001,89(1):25-34.
    [13]Magoshi J.,Nakamura S.,Studies on Physical-Properties and Structure of Silk-Glass-Transition and Crystallization of Silk Fibroin.Journal of Applied Polymer Science, 1975, 19(4):1013-1015.
    [14]Magoshi J., Magoshi Y., Becker M.A., Kato M., Han Z., Tanaka T., Inoue S., Nakamura S., Crystallization of silk fibroin from solution. Thermochimica Acta, 2000, 352:165-169.
    [15]Tanaka T., Magoshi Y., Magoshi J., Thermal Properties of the Liquid Silk for Silkworms - Domestic and Mutant Domestic and Wild Silkworm. NetsuSokutei (in Japanese), 2003, 30(3): 111 -115.
    [16]Lotz B., Cesari F.C., The chemical structure and the crystalline structures of Bombyxmori. Biochimie, 1979, 61:205-214.
    [17]Valluzzi R., Gido S.P., The crystal structure of Bombyx mori silk fibroin at the air-water interface. Biopolymers, 1997, 42(6):705-717.
    [18]Czarnik-Matusewicz B., Murayama K., Tsenkova R., Ozaki Y, Analysis of near-infrared spectra of complicated biological fluids by two-dimensional correlation spectroscopy: Protein and fat concentration-dependent spectral changes of milk. Applied Spectroscopy, 1999, 53(12):1582-1594.
    [19]Wang J., Sowa M.G, Ahmed M.K., Mantsch H.H., Photoacoustic near-infrared investigation of homo-polypeptides. Journal of Physical Chemistry, 1994, 98:4748-4755.
    [20]Wang Y, Murayama K., Myojo Y, Tsenkova R., Hayashi N., Ozaki Y, Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. Journal of Physical Chemistry B, 1998, 102(34):6655-6662.
    [21]Wu Y.Q., Czamik-Matusewicz B., Murayama K., Ozaki Y, Two-dimensional near-infrared spectroscopy study of human serum albumin in aqueous solutions: Using overtones and combination modes to monitor temperature-dependent changes in the secondary structure. J. Phys. Chem. B, 2000, 104(24):5840-5847.
    [22]Buchet R., Wu Y, Lachenal G, Raimbault C, Ozaki Y, Selecting two-dimensional cross-correlation functions to enhance interpretation of near-infrared spectra of proteins. Applied Spectroscopy, 2001, 55(2):155-162.
    [23]Bai S.J., Nayar R., Carpenter J.F., Manning M.C., Noninvasive determination of protein conformation in the solid state using near infrared (NIR) spectroscopy. Journal of Pharmaceutical Sciences, 2005, 94(9):2030-2038.
    [24]Wu P., Siesler H.W., Fourier transform NIR study of liquid diffusion processes in Nylon 11 films: Comparison of water with alcohols. Chemistry of Materials, 2003, 15(14):2752-2756.
    [25]Rossle M., Panine P., Urban V.S., Riekel C, Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers, 2004, 74(4):316-327.
    [26]Asakura T.,Sugino R.,Yao J.M.,Takashima H.,Kishore R.,Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin(silk Ⅰ)and in the processed silk fiber(silk Ⅱ)from Bombyx mori using solid-state C-13,N- 15,and H-2 NMR.Biochemistry,2002,41(13):4415 -4424.
    [27]Asakura T.,Yao J.M.,Yamane T.,Umemura K.,Ultrich A.S.,Heterogeneous structure of silk fibers from Bombyx mori resolved by C-13 solid-state NMR spectroscopy.Journal of the American Chemical Society,2002,124(30):8794-8795.
    [28]Zhou P.,Li G.Y.,Shao Z.Z.,Pan X.Y.,Yu T.Y.,Structure of Bombyx mori silk fibroin based on the DFT chemical shift calculation.Journal of Physical Chemistry B,2001,105(50):12469-12476.
    [1]Chen X.,Shao Z.,Marinkovic N.S.,Miller L.M.,Zhou P.,Chance M.R.,Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophysical Chemistry,2001,89(1):25-34.
    [2]Magoshi J.,Magoshi Y.,Becker M.A.,Kato M.,Han Z.,Tanaka T.,Inoue S.,Nakamura S.,Crystallization of silk fibroin from solution.Thermochimica Acta,2000,352:165-169.
    [3]Izutsu K.I.,Fujimaki Y.,Kuwabara A.,Hiyama Y.,Yomota C.,Aoyagi N.,Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids.J.Pharm.Sci.,2006,95(4):781-789.
    [4]Ozaki Y.,Murayama K.,Wang Y.,Application of two-dimensional near-infrared correlation spectroscopy to protein research.Vib.Spectrosc.,1999,20(2):127-132.
    [5]Chen X.,Shao Z.Z.,Vollrath F.,The spinning processes for spider silk.Soft Matter,2006,2(6):448-451.
    [6]Cao Z.B.,Chen X.,Yao J.R.,Huang L.,Shao Z.Z.,The preparation of regenerated silk fibroin microspheres.Soft Matter,2007,3(7):910-915.
    [7]Jiang C.Y.,Wang X.Y.,Gunawidjaja R.,Lin Y.H.,Gupta M.K.,Kaplan D.L.,Naik R.R.,Tsukruk V.V.,Mechanical properties of robust ultrathin silk fibroin films.Advanced Functional Materials,2007,17(13):2229-2237.
    [8]Mo C.L.,Wu P.Y.,Chen X.,Shao Z.Z.,Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin.Appl.Spectrosc.,2006,60(12):1438-1441.
    [9]Ping Z.H.,Nguyen Q.T.,Chen S.M.,Zhou J.Q.,Ding Y.D.,States of water in different hydrophilic polymers DSC and FTIR studies.Polymer,2001, 42(20):8461-8467.
    [10]Tanaka T.,Kobayashi M.,Inoue S.I.,Tsuda H.,Magoshi J.,Biospinning:Change of water contents in drawn silk.J.Polym.Sci.Pt.B-Polym.Phys.,2003,41(3):274-280.
    [11]Liu Y.,Shao Z.Z.,Vollrath F.,Extended wet-spinning can modify spider silk properties.Chem.Commun.,2005,(19):2489-2491.
    [12]Tsukada M.,Freddi G.,Kasai N.,Monti P.,Structure and molecular conformation of tussah silk fibroin films treated with water-methanol solutions:Dynamic mechanical and thermomechanical behavior.J.Polym.Sci.Pt.B-Polym.Phys.,1998,36(15):2717-2724.
    [13]Min B.M.,Jeong L.,Lee K.Y.,Park W.H.,Regenerated silk fibroin nanofibers:Water vapor-induced structural changes and their effects on the behavior of normal human cells.Macromol.Biosci.,2006,6(4):285-292.
    [14]Noda I.,Two-Dimensional Infrared-Spectroscopy.J.Am.Chem.Soc.,1989,111(21):8116-8118.
    [15]Noda I.,2-Dimensional Infrared(2D IR)Spectroscopy - Theory and Applications.Appl.Spectrosc.,1990,44(4):550-561.
    [16]Noda I.,Generalized 2-Dimensional Correlation Method Applicable to Infrared,Raman,and Other Types of Spectroscopy.Appl.Spectrosc.,1993,47(9):1329-1336.
    [17]Chen X.,Shao Z.Z.,Marinkovic N.S.,Miller L.M.,Zhou P.,Chance M.R.,Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophys.Chem.,2001,89(1):25-34.
    [18]Wu Y.Q.,Czamik-Matusewicz B.,Murayama K.,Ozaki Y.,Two-dimensional near-infrared spectroscopy study of human serum albumin in aqueous solutions:Using overtones and combination modes to monitor temperature-dependent changes in the secondary structure.J.Phys.Chem.B,2000,104(24):5840-5847.
    [19]Magoshi J.,Magoshi Y.,Becker M.A.,Kato M.,Han Z.,Tanaka T.,Inoue S.,Nakamura S.,Crystallization of silk fibroin from solution.Thermochim.Acta,2000,352:165-169.
    [20]Holland C.,Terry A.E.,Porter D.,Vollrath F.,Comparing the rheology of native spider and silkworm spinning dope.Nat.Mater.,2006,5(11):870-874.
    [21]Hu X.,Kaplan D.,Cebe P.,Dynamic protein-water relationships during beta-sheet formation.Macromolecules,2008,41(11):3939-3948.
    [22]Motta A.,Fambri L.,Migliaresi C.,Regenerated silk fibroin films:Thermal and dynamic mechanical analysis.Macromolecular Chemistry and Physics,2002,203(10-11):1658-1665.
    [23]Porter D.,Vollrath F.,The role of kinetics of water and amide bonding in protein stability. Soft Matter, 2008, 4(2):328-336.
    [24]Soles C.L., Chang F.T., Gidley D.W., Yee A.F., Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(5):776-791.
    [25]Hodge R.M., Edward G.H., Simon G.P., Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer, 1996, 37(8):1371-1376.
    [26]Nagura M., Saitoh H., Gotoh Y, Ohkoshi Y., States of water in poly(vinyl alcohol)/poly(sodium L-glutamate) blend hydrogels. Polymer, 1996, 37(25): 5649-5652.
    [27]Knight D.P., Knight M.M., Vollrath F., Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int. J. Biol. Macromol., 2000, 27(3):205-210.
    [28]Peng X.N., Chen X., Wu P.Y., Shao Z.Z., Investigation on the conformation transition of regenerated silk fibroin films under thermal treatment by two-dimensional (2D) correlation FT-IR spectroscopy. Acta Chimica Sinica, 2004, 62(21):2127-2130.
    [29]Zhang H., Magoshi J., Becker M., Chen J.Y., Matsunaga R., Thermal properties of Bombyx mori silk fibers. Journal of Applied Polymer Science, 2002, 86(8):1817-1820.
    [30] Magoshi J., Mizuide M., al. e., Physical properties and structure of silk. VI. conformational changes in silk fibroin induces by immersion in water at 2 to 130 C. Journal of Polymer Science Part A-Polymer Chemistry, 1979, 17:515-520.
    [31]Magoshi J., Nakamura S., Studies on Physical-Properties and Structure of Silk - Glass-Transition and Crystallization of Silk Fibroin. Journal of Applied Polymer Science, 1975, 19(4):1013-1015.
    [32]Sun D., Structure and Properties of Expanded Tussah Silk and Heat Treatment-Induced Conformation Transition Mechanism in Regenerated Tussah Silk Fibroin Film. Master Thesis, 2005.
    [33]Tsukada M., Freddi G, Monti P., Bertoluzza A., Kasai N., Structure and molecular-conformation of tussah silk fibroin films - effect of methanol. Journal of Polymer Science Part B-Polymer Physics, 1995, 33(14):1995-2001.
    [34]Chen X., Shao Z.Z., Knight D.P., Vollrath F., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007, 68(1):223-231.
    [1] Zhou P., Xie X., Deng R, Ping Z., Xun X., Feng D., Effects of pH and calciumions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry, 2004, 43(35): 11302-11311.
    [2] Zhou L., Chen X., Shao Z., Huang Y., Knight D.P., Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm, Bombyx Mori. Journal of Physical Chemistry B, 2005, 109(35): 16937-16945.
    [3] Ishida M., Asakura T., Yokoi M., Saito H., Solvent-Induced and Mechanical-Treatment-Induced Conformational Transition of Silk Fibroins Studied by High-Resolution Solid- State C-13 NMR-Spectroscopy. Macromolecules, 1990, 23(1):88-94.
    [4] Zhou GQ., Shao Z.Z., Knight D.P., Yan J.P., Chen X., Silk fibers extruded artificially from aqueous solutions of regenerated bombyx mori silk fibroin are tougher than their natural counterparts. Advanced Materials, 2009 21(3):366-370.
    [5] Sammon C., Yarwood J., Everall N., A FTIR-ATR study of liquid diffusion processes in PET films: comparison of water with simple alcohols. Polymer, 2000, 41(7):2521-2534.
    [6] Li L., Chen Y, Li S.J., Water diffusion behavior in epoxy resins with various fluorine contents. Applied Spectroscopy, 2006, 60(4):392-397.
    [7] Musto P., Mascia L., Mensitieri G., Ragosta G., Diffusion of water and ammonia through polyimide-silica bicontinuous nanocomposites: interactions and reactions. Polymer, 2005, 46(12):4492-4503.
    [8] Philippe L., Sammon C, Lyon S.B., Yarwood J., An FTIR/ATR in situ study of sorption and transport in corrosion protective organic coatings - 1. Water sorption and the role of inhibitor anions. Progress in Organic Coatings, 2004, 49(4):302-314.
    [9] Goormaghtigh E., Raussens V., Ruysschaert J.M., Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochimica Et Biophysica Acta-Reviews on Biomembranes, 1999, 1422(2): 105-185.
    [10]Chen X., Shao J.Z., Knight D., Vollrath F., Conformation Transition of Silk Protein Membranes Monitored by Time-resolved FTIR Spectroscopy: Effect of Alkali Metal Ions on Nephila Spidroin Membrane. Acta Chimica Sinica, 2003, 60(12):2203-2208.
    [11]Groot M.L., van Wilderen L., Di Donato M., Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochemical & Photobiological Sciences, 2007, 6(5):501-507.
    [12]Chen X., Knight D.P., Shao Z.Z., Vollrath F., Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry, 2002, 41(50): 14944-14950.
    [13]Wu P.G., Li Y.K., Talalay P., Brand L., Characterization of the 3 Tyrosine Residues of Delta(5)-3-Ketosteroid Isomerase by Time-Resolved Fluorescence and Circular-Dichroism. Biochemistry, 1994, 33(23):7415-7422.
    [14]Chen X., Shao Z.Z., Marinkovic N.S., Miller L.M., Zhou P., Chance M.R., Conformation transition kinetics of regenerated Bombyx mod silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89(1):25-34.
    [15]Asakura T., Murakami T., Nmr of Silk Fibroin .4. Temperature-Induced and Urea-Induced Helix-Coil Transitions of the -(Ala)N-Sequence in Philosamia- Cynthia-Ricini Silk Fibroin Protein Monitored by C-13 Nmr- Spectroscopy. Macromolecules, 1985,18(12):2614-2619.
    [16]Chen X., Shao Z.Z., Knight D.P., Vollrath F., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007, 68(1):223-231.
    [17] Jeong L., Lee K.Y., Liu J.W., Park W.H., Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor. International Journal of Biological Macromolecules, 2006, 38(2):140-144.
    [18]Terry A.E., Knight D.P., Porter D., Vollrath F., pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules, 2004, 5(3):768-72.
    [19]Chen X., Shao Z., Marinkovic N.S., Miller L.M., Zhou P., Chance M.R., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89(1):25-34.
    [20]Byler D.M., Susi H., Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers, 1986,25(3):469-487.
    [21]Surewicz W.K., Mantsch H.H., New Insight into Protein Secondary Structure from Resolution-Enhanced Infrared-Spectra. Biochimica Et Biophysica Acta, 1988, 952(2): 115-130.
    [22]Haris P.I., Chapman D., The Conformational-Analysis of Peptides Using Fourier-Transform Ir Spectroscopy. Biopolymers, 1995, 37(4):251-263.
    [23]Czarnik-Matusewicz B., Piorz S., Hawranek J.P., Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Analytica Chimica Acta, 2005, 544:15-25.
    [24]Diewok J., Ayora-Canada M.J., Lendl B., 2D Correlation Spectroscopy and Multivariate Curve Resolution in Analyzing pH-Dependent Evolving Systems Monitored by FT-IR Spectroscopy, A Comparative Study. Analytical Chemistry, 2002, 74(19):4944-4954.
    [25]Navea S., De Juan A., Tauler R., Modeling Temperature-Dependent Protein Structural Transitions by Combined Near-IR and Mid-IR Spectroscopies and Multivariate Curve Resolution. Analytical Chemistry, 2003, 75(20):5592-5601.
    [26]Vives M., Gargallo R., Tauler R., Analytical Characterization of the Conformational Transitions of Polynucleotides by Means of Different Molecular Spectroscopies and Multivariate Curve Resolution. Analytical Biochemistry, 2001,291(1):1-10.
    [27]Liu Y., Shao Z.Z., Vollrath F., Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater., 2005, 4(12):901-905.
    [28]Shao J., Zheng J., Liu J., Carr C.M., Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. Journal of Applied Polymer Science, 2005, 96(6): 1999-2004.
    [29]Sammon C, Mura C, Yarwood J., Everall N., Swart R., Hodge D., FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC. Journal of Physical Chemistry B, 1998, 102(18):3402-3411.
    [30]Ide M., Yoshikawa D., Maeda Y, Kitano H., State of water inside and at the surface of poly(ethylene glycol) films examined by FT-IR. Langmuir, 1999, 15(4):926-929.
    [31]Cotugno S., Mensitieri G, Musto P., Sanguigno L., Molecular interactions in and transport properties of densely cross-linked networks: A time-resolved FT-IR spectroscopy investigation of the epoxy/H2O system. Macromolecules, 2005, 38(3):801-811.
    [32]Mo C.L., Wu P.Y., Chen X., Shao Z.Z., The Effect of Water on the Conformation Transition of Bombyx mori Silk Fibroin. Vibrational Spectroscopy, 2009:In press.
    [33]Shen Y, Wu P.Y, Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film: Water bending vibration. Journal of Physical Chemistry B, 2003, 107(18):4224-4226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700