用户名: 密码: 验证码:
单轴压缩与冻融作用下粉质粘土电阻率特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国寒区工程建设项目的增多,冻土的强度与变形问题以及冻胀融沉特性研究成为面临的最重要任务,但是由于冻土的复杂性,现有的冻胀机理相关研究尚不成熟,大多还是研究已冻土和融土物理力学性质差别,缺乏对正冻正融过程的相关研究。
     本文得到冻土工程国家重点试验室开放基金“冻土冻融过程的细观变形机理和结构性模型研究”的资助,针对青藏铁路北麓河粉质粘土,利用自主研发的电阻率测试设备,结合冻土单轴压缩试验设备和冻融循环试验设备,通过室内单轴压缩试验,系统的研究了单轴载荷下冻土电阻率的变化规律以及电阻率与力学指标间的关系;通过冻融循环过程电阻率试验,对正冻正融土体电阻率特性展开了初步研究。
     本文所研究内容及获得的结论主要包括以下几个方面:
     (1)分别用不同电源类型(直流电压、交流电源)、不同电路组成(伏安法、参比电阻法)在不同电压下进行试验,最终确定用10V直流稳压电源伏安法电阻测试方法能满足冻土电阻测试要求,并且通过试验获得了电极与土体间的接触电阻,并提出了真实电阻的修正方法。
     (2)通过不同干密度、不同含水量、不同温度冻土单轴载荷下电阻率-应力-应变试验研究表明单轴载荷下冻土经历压密、弹性变形、塑性屈服、破裂后四个阶段,诸阶段对应着电阻率变化趋势是减小至最小、电阻率平衡阶段、稳定增加、剧烈增加,并从细观角度上解释了四个阶段的应力应变电阻率机制。研究了冻土温度、干密度及含水量对电阻率的影响规律,建立了电阻率与单轴抗压强度的关系。
     (3)开展了封闭系统、开放系统下冻融过程电阻率试验,分析了封闭系统与开放系统下电阻率特性的异同性;分别针对冻融循环过程中土体的变形的五个阶段:冷缩、冻结剧增、冻胀稳定发展、融化骤减、完全融化后变形稳定阶段,进行电阻率变化机理研究。
     (4)通过饱和粉质粘土封闭系统下反复冻融过程电阻率试验表明:每次冻融中冻土电阻率随着冻融次数增加呈指数关系减小,融土电阻率随冻融次数增加呈指数关系增加;每次冻胀量与融沉量随冻融次数的增加而减小,平均干密度随冻融次数增加而增加,并且经过5次冻融循环后冻胀融沉量和干密度均趋于稳定。
     (5)通过单轴载荷与冻融作用下冻土电阻率特性试验研究表明土体电阻率与应力-应变关系、正冻正融过程以及土体温度的变化具有很好的同步性,说明利用电阻率实时观测的方法研究冻融循环过程、冻融作用对土体结构影响以及载荷作用下土体强度与变形问题是可行的。
In China,more and more constructions in cold regions appear,Strength and deformationof frozen soil,characteristics of frost heave and thaw collapse have become the major task forcold regional construction.But researches on mechanism of frost heaving are still not maturedowing to complexity of frozen soil,and the current study,thinking little of the freezing andthawing process,mostly focuses on the different physical and mechanical properties betweenfrozen soil and thawed soil.
     It is funded by“research on the submacroscopic deformation mechanism and structuralcharacteristics of silty clay under freeze-thaw cycles”(an open fund of State Key Laboratoryof Frozen Soil Engineering).Using uniaxial compression and freeze-thaw cycle apparatuscombined with electrical resistivity observation for whole process,tests are performed for thesilty clay in Beilu River.Based on the experimental results,changes of electrical resistivity offrozen silty clay under uniaxial compression as well as the relationship between resistivityand mechanical properties have been studied systemically,and an Preliminary study onresistivity characteristics has been carried out for freezing and thawing soil.The main resultsof this paper are in detail listed in the following:
     (1)Orthogonal tests have been performed under different types of power(DC voltage,AC power),different circuit(voltammetry,reference resistor method)and different testvoltages.Through these experiments,the author introduces a new practical device forlaboratory measurement of frozen soil electrical resistivity,which uses two electrodes,10VDC regulated power and voltammetry circuit.Contact resistance between soil sample andelectrodes is obtained,and modified method of real resistance is proposed.Pilot test resultsshow that the equipment is effect and feasible in measuring electrical resistivity of frozen soil.
     (2)The test results under different dry density,water content and different temperatureshow that stress-strain curve can be separated into compression stage,elastic stage,plasticflow stage,break-up stage corresponding to decreasing fast stage,decreasing to minimumstage,steady increasing stage,unsteady increasing stage in resistivity-strain curve,themechanism of soil conductivity in every stage has been explained separately.The relationshipbetween resistivity and uniaxial strength is established.
     (3)This paper analyzes on the similarities and differences of resistivity characteristicsunder freeze-thaw cycle in closed system and in open system.The deformation in wholeprocess of freeze-thaw cycle can be divided into five stages:Cold-contraction,Dramaticincreasing,steady increasing,Dramatic decreasing owing to thawing,stability stage after complete thawing.The author analyzes electrical resistivity properties in differentdeformation stage separately.
     (4)The resistivity of saturated silty clay in closed system under repeated freeze-thawcycles is studied.The resistivity of frozen soil decreases and that of thawed soil increasesexponentially with increasing of freezing-thawing times.The amount of frost heave,thawcollapse and average dry density in every freeze-thaw cycle rise with increasing offreezing-thawing times,and they are trend to stability after 5 freeze-thaw cycles.
     (5)Researches show that changes of resistivity,temperature,pressure and deformationduring freezing-thawing cycles are real-time and synchronical,which proves that it is feasibleto study the changes of soil structure during freezing-thawing and problem of strength-deformation under external load by using electrical resistivity method.
引文
[1]崔托维奇 H.A.冻土力学[M].张长庆,朱元林译.北京:科学出版社,1985.
    [2]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [3]邱国庆,周幼吾,程国栋,等.中国冻土[M].北京:科学出版社,2000.
    [4]马巍.关于青藏铁路建设的若干重大问题.武汉:2l世纪的岩土力学与岩土工程.2003:90-101.
    [5]程国栋.青藏铁路工程与多年冻土相互作用及环境效应[J].中国科学院院刊.2002,1:21-25.
    [6]吴紫汪,程国栋,朱林楠等.冻土路基工程[M].兰州:兰州大学出版社,1988.
    [7]陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [8]齐吉琳,程国栋等.冻融作用对土工程性质影响的研究现状[J].地球科学进展,2005,20(8):887-892.
    [9]铁道部第三勘察设计院编著.冻土工程[M].北京:中国铁道出版社,1994.
    [10]崔建恒.青藏公路多年冻土路基整治探讨[J].冰川冻土.1993,15(2).
    [11]李金城.2001-2006年青藏铁路多年冻土区冻害调查与分析[J].冰川冻土.2008,30(1):9-16.
    [12]吴青柏,蒋观利,蒲毅彬,等.青藏高原天然气水合物的形成与多年冻土的关系[J].地质通报.2006,25(1):29-33.
    [13]邱国庆.论季节冻结区盐渍土改良问题[J].冰川冻土.199l,13(1):9-16.
    [14]王绍令.青藏高原冻土退化的研究[J].冰川冻土.1997,12(2):164-167.
    [15]吴青柏,沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的研究[J].冰川冻土.2003,25(3):250-255.
    [16]王绍令.晚更新世以来青藏高原多年冻土形成及演化的探讨[J].冰川冻土.1989,11(1):69-75,99,100.
    [17]维亚诺夫 C.C,查列茨基,果罗捷茨基.人工冻结土强度与蠕变计算[M].沈忠言译.兰州:中国科学院兰州冰川冻土研究所图书情报室.
    [18]木下诚一.冻土物理学[M].王异,张志权译.长春:吉林科学技术出版社,1985
    [19]Andersland,O.B.,Ladanyi,B..Frozen Ground Engineering(second edition)[M].Press:John Wiley & Sons.Inc.
    [20]童长江,管枫年.士的冻胀与建筑物冻害防治[M].北京:水利水电出版社,1985.
    [2l]徐敩祖,王家澄,张立新等.土体冻胀和盐胀机理[M].北京:科学出版社,1995.
    [22]朱林楠,吴紫汪,臧恩穆.冻土退化与道路工程[A].第五届全国冰川冻土学大会论文集(上).兰州:甘肃文化出版社,1996,333-340.
    [23]李述训,南卓铜,赵林.冻融作用对系统与环境问能量交换的影响[J].冰川冻土,2002,24(2):110-115.
    [24]叶尔绍夫主编.冻土工程学[M].张长庆译.莫斯科:莫斯科国立大学出版社,1999.
    [25]吴紫汪,马巍.冻土强度与蠕变[M].兰州:兰州大学出版社,1994.
    [26]Harlan R.L.Analysis of coupled heat-fluid transport in partially frozen soil[J].War.Resour.Res.1973,9(5):13 14-1323.
    [27]Sheshukov A.E.,Egorov A.G Numerical modeling of coupled moisture,solute and heat transport in frozen soils[A].Lewkowicz A G Allard M.The 7~(th)International Permafrost Conference[C].Canada:Laval University,1998,987-992.
    [28]Nixon J.E.,Discrete ice lens theory for frost heave inl soil[J].Can.Geotech.J.1991,28:843-859.
    [29]何平,程国栋,朱元林.土体冻结过程中的热质迁移研究进展[J].冰川冻土,2001,23(1):92-98.
    [30]何平,程国栋,俞祁浩等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,2000,22(2):135-138.
    [31]李萍,徐敩祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展[J].冰川冻土,2000,22(1):90-95.
    [32]马巍.吴紫汪.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土,1995,17(2):152-157.
    [33]苗天德,魏雪霞等.冻土蠕变过程的微结构损伤理论.中国科学(B辑).1995,25(3):309-317.
    [34]马巍,朱元林,马文婷等.冻结粘性土的变形分析[J].冰川冻土,2000,12(1):43-47.
    [35]沈忠言,王家澄,彭万巍.单轴受拉时的冻土结构变化及机理分析[J].冰川冻土,1996,18(3),262-267.
    [36]刘增利,李洪升,朱元林.冻土单轴压缩损伤特征与细观损伤测试[J].大连理工大学学报,2002,42(2):223-227.
    [37]刘增利,李洪升,朱元林等.冻土初始与附加细观损伤的 CT 识别模型[J].冰川冻土,2002,24(5):676-680.
    [38]吴紫汪,马巍等.冻土蠕变过程中结构的CT分析[J].CT理论与应用研究,1995,4(3):31-34.
    [39]吴紫汪,马巍等.冻土单轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1996,18(4):306-311.
    [40]马巍,吴紫汪等.冻土三轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1997,19(1):52-57.
    [4l]吴紫汪,马巍等.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3):1-6.
    [42]沈忠言,吴紫汪.冻土三轴强度破坏准则的基本形式及其与未冻水含量的相关性[J].冰川冻 土,1999,2l(1):22-26.
    [43]Williams P.J.Properties and behavior of freezing soils[R].Oslo:Norwegian.Geotech.Inst.Public.1968.
    [44]Konrad,J.M.Physical processes during freeze-thaw cycles in clayed silts[J].Cold Regions Science and Technology,1989,16(3):291-303.
    [45]李洪升,刘增利,李南生.基于冻土水分温度和外荷载相互作用的冻胀模式[J].大连理工大学学报,1998,38(1):29-33.
    [46]王大雁,马巍等.冻融作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报,2005,24(23):4313-4318.
    [47]徐敩祖,张立新,邓友生.多晶冰中的未冻水含量[J].冰川冻土,1995,17(3):149-152.
    [48]张立新,徐敩祖,邓友生.含氯化钠冻土未冻水含量与冻融过程关系的特征[J].冰川冻土,1993,15(1):258-262.
    [49]盛煜,福田正己,金学三等.未冻水含量对含废弃轮胎碎屑冻土超声波速度的影响[J].岩土工程学报,2003,22(6):716-719.
    [50]Nakano Y,Arnord R.Acoustic properties of frozen Ottawa sand[J].Water Resources Research,1973,9(1):178-184.
    [51]Nakano Y,Martin A.J.,Smith M.Ultrasonic velocities of the dilatational and shear waves in frozen soil[J].Water Resources Research,1972,8(4):1024-1030.
    [52]Fukuda M.Measurement of ultrasonic velocity of frozen soil near 0℃[J].Low Temperature Science(A),1989,(50):83-86.
    [53]王大雁,朱元林,马魏等.冻土超声波波速与冻土物理力学性质试验研究[J].岩石力学与工程.2003,22(11):1837-1840.
    [54]Archie,G.E.The electric resistivity log as aid in determining some reservoir characteristics[J].Trans.American Institute of Mining,Metallurgical and Petroleum Engineering,1942,14(6):54-62.
    [55]Arulanandan,Muraleetharan.Level ground soil liquefaction analysis using in situ properties,Part Ⅰ[J].J.Geotech.Eng.Div.,ASCE,1988,114(7):771-790.
    [56]Waxman,M H,Smith,L J M.Electrical conductivity in oil-bearing shaly sand [J].Society of Petroleum Engineers Journal,1968,65(5):1577-1584.
    [57]缪林昌,刘松玉,严明良,徐飞.水泥土的电阻率特性研究[J].工程勘察,2000,(5):32~34.
    [58]于小军,刘松玉.电阻率指标在膨胀土结构研究中的应用探讨[J].岩土工程学报,2004,26(3):393~396.
    [59]付伟,汪稔,胡明鉴等.不同温度下冻土单轴抗压强度与其电阻率关系试验研究[J].岩土力学,2009,30(1):73-78.
    [60]王大雁,朱元林,马魏等.超声波法测定冻土动弹性力学参数试验研究[J].岩土工程学报,2002,24(5):612-615.
    [61]陈建兵,章金钊.国际冻土研究动态—第八届国际冻土大会综述[J].公路,2004,第一期,94-98.
    [62]李宁,程国栋,徐敩祖等.冻土力学的研究进展与思考[J].力学进展,200l,3 1(1):95-102.
    [63]陈湘生.冻土力学之研究-2l世纪岩土力学的重要研究领域之一[J].煤炭学报,1998,23(1):53-56
    [64]Andersland,O.B,Akili W.Stress effect on creep rates of a frozen clay soil[J].Geotechnique,1967,17(1):27-39.
    [65]Ladanyi,B.An engineering theory of creep of frozen soil[J].Can.Geotech.J.1972,9(1):63-80.
    [66]Haynes F D,J A Karalius and J Kalafut.(1975).Strain rate effect on the strength of frozen soil.Army Cold Regions Research and Engineering Laboratory,Technical Report 350:27.
    [67]Bragg R.A.and Angersland O.B.(1980).Strain rate,temperature and sample size effects on compression and tensile properties of frozen soil,in Proceedings of 2~(nd)Int.Symp.On Ground Freezing,Trondheim,Norway 1,34-47.
    [68]马巍,吴紫汪.高围压下冻土强度弱化的机理分析[J].冰川冻土,1999,21(1):27-33.
    [69]朱元林,张家懿,彭万巍等.冻土的单轴压缩本构关系[J].冰川冻土,1992,14(3):210-217.
    [70]李海鹏,朱元林,林传年.饱和冻结粘土在场应变速率下的单轴抗压强度.中科院寒区旱区环境与工程研究所冻土工程国家重点实验室年报.2002,Vol.12,68-76.
    [71]李洪升,杨海天等.冻土抗压强度对应变速率的敏感性分析[J].冰川冻土,1995,17(1):40-48.
    [72]马芹永.人工冻土单轴抗拉、抗压强度的试验研究[J].岩土力学,1998,17(3):77-81.
    [73]何平,朱元林,常小晓.冻土的变形性能和泊松比[J].地下空间,1999,19(5):504-507.
    [74]常小晓,马巍,吴紫汪等.三轴条件下冻土的弹性模量[C].第五届全国冰川冻土学大会论文集,甘肃文化出版社,1996,779-782.
    [75]沈忠言,吴紫汪,王家懿等.冻结固结粘土的三轴强度特性[C].第五届全国冰川冻土学大会论文集,甘肃文化出版社,1996,765-770.
    [76]盛煜,吴紫汪,苗丽娜.变应力蠕变过程种冻土长期强度探讨[C].第五届全国冰川冻土学大会论文集,甘肃文化出版社,1996,724-728.
    [77]盛煜,吴紫汪,朱元林等.应用蠕变理论对冻土在增应力过程中蠕变规律的几何分析[J].冰川冻土,1995,17(supp):47-53.
    [78]张长庆,张建明,彭万巍等.冻土正交各向异性特征探讨[C].第五届全国冰川冻土学大会论文集,甘肃文化出版社,1996,747-750.
    [79]赵淑萍,何平,朱元林等.冻结砂土在动荷载作用下的蠕变特征[J].冰川冻土,2002,24(3): 270-274.
    [80]沈忠言,张家懿.冻结粉土的动强度特性及其破坏准则[J].冰川冻土,1997,19(2):141-148.
    [81]朱元林,何平,张家懿等.围压对冻结粉土在振动荷载作用下蠕变性能的影响[J].冰川冻土,1995,17(增刊):20-25.
    [82]何平,朱元林.饱和冻结粉土的动弹模和动强度[J].冰川冻土,1993,15(1):170-174.
    [83]何平,张家懿等.振动频率对冻土破坏之影响[J].岩土工程学报,1995,17(3):78-81.
    [84]俞祁浩,朱元林,张建明.冻土冲击的尺寸效应.第五届全国冰川冻土学大会论文集(上),甘肃文化出版社,1996,756-760.
    [85]俞祁浩,朱元林,张建明等.冲击速度对冻土冲击韧度的影响[J].岩土工程学报,1997,19(4):21-24.
    [86]张小鹏,朱元林等.冻土断裂韧度Ktc的测试研究[J].冰川冻土,1995,17(4):328-333.
    [87]李洪升,王悦动,刘增利.冻土中微裂纹尺寸的识别与确认[J].岩土力学,2004,25(4):534-53 7.
    [88]刘晓洲,王德刚,李洪升.冻土中微裂纹尺寸的识别与确认[J].岩土力学,2007,28(8):1533-1538.
    [89]维亚洛夫 C.C.,杜余培译.土力学流变原理[M].北京:科学出版社,1989.
    [90]马巍,吴紫汪,常小晓等.冻结砂土强度特征的微观机理试验研究[C].第五届全国冰川冻土学大会论文集(上),甘肃文化出版社,1996,712-716.
    [91]吴紫汪,马巍,,蒲毅彬等.冻土蠕变过程中的CT分析[J].CT理论于应用研究,1995,4(3):31-34.
    [92]何平.冻土的力学性质及其本构关系[D].兰州:中国科学院兰州寒区旱区环境与资源研究所.2002.
    [93]孙星亮.冻结粉质粘土细观变形机理及其各向异性损伤模型研究[D].武汉:中国科学院武汉岩土力学研究所.2004.
    [94]ISGF.Classification and laboratory testing of artificially frozen ground.ASCEJ of Cold Regions Engineering,1987,1(1):22-47.
    [95]陈湘生,杨春来.冻结法加固地层的原理与应用[J].水利水电施工.1997,第三期,7l-72.
    [96]陈湘生.深冻结壁时空设计理论[J].岩土工程学报,1998,20(5):13-16.
    [97]陈湘生,陈朝辉,罗小刚.岩土工程技术最新进展—全向冻结施工技术[J].地下空间,1999,19(4):297-302.
    [98]童长江,管枫年.土的冻胀与建筑冻害防治[M].北京:水利电力出版社,1985.
    [99]吴青柏,刘永智,童长江等.高原多年冻土地区公路工程地质研究[J].公路,2000,(2),1-4.
    [100]Chamberlain,E.J.,and Blouin,S.E.,1977.Freeze-thaw enhancement of the drainage and consolidation of fine-grained dredged material in confined disposal areas.Cold Regions Research and Engineering Laboratory,Hanover,New Hampshire,U.S.A.,Octerber 1977,Report D-77-16.
    [101]Viklander,P.,1995.Influence of cycles of freezing and thawing on the permeability in soils,a literature investigation.Lulea University of Technology,Lulea,Sweden,Technical Report 1995:12T,[in Sweden].
    [102]Viklander,P.,Knutsson,S.,1997.Permeability changes in a frne-grained till due to cycles of freezing and thawing.In:Knutsson,S.(Eds.),Proc.International Symposium on Ground Freezing and Frost Action in Soils,15-17 April 1997,Lulea,Sweden.A.A.Balkema,Rotterdam,pp.193-202.
    [103]Linell,K.A.,Kaplar,C.,1959.The factor of soil and material type in frost action.Highway Research Board Bulletin No.225,pp.88-126.
    [104]Solymar,Z.V.,Nunn,J.O.H.,1983.Frost sensitivity of core materials:case histories.Can.Geo.J.,20:373-384.
    [105]Yong,R.N.,Boonsinsuk,P.,and Yin,C.W.P.,1985.Alteration of soil behavior after cyclic freezing and thawing.Proceedings,4th International Symposium on Ground Freezing,Sapporo,Japan,August 1985,pp.187-195.
    [106]Yanful,E.K.,Haug,M.D.,and Wong,L.C.,1990.The impact of synthetic leachate on the hydraulic conductivity of a smectitic till underlying a landfill near Saskatoon,Saskatchewan.Canadian Geotechnical Journal,27:507-519.
    [107]Wong,L.C.,Haug,M.D.,1991.Cyclical closed-system freeze-thaw permeability testing of soil liner and cover material.Can.Geotech.J.28,784-793.
    [108]Othman,M.A.,Benson,C.H.,1993.Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay.Can.Geotech.J.30,236-246.
    [109]Othman,M.A.,Benson,C.H.,1993.Effect of freeze-thaw on the hydraulic conductivity of three compacted clays from Wisconsin.Transportation Research Record,1369:118-125.
    [110]Benson,C.H.,Othman,M.A.,1993.Hydraulic conductivity of compacted clay frozen and thawed in situ.ASCE Journal of Geotechnical Engineering,119:276-294.
    [111]罗小刚,陈湘生,吴成义.冻融对土工参数影响的试验研究[J].建井技术,2000,2l(2):24-26.
    [112]汪仁和,张世银,秦国秀.冻融土工程特性的试验研究[J].淮南工业学院学报,2001,21(4):35-37.
    [113]杨平,张婷.人工冻融土物理力学性能研究[J].冰川冻土,2002,24(5):665-667.
    [114]杨成松,何平,程国栋等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报,2003,22(增2):2695-2699.
    [115]Alkire Bemand D.,Mrrsion James M.Change in soil structure due to freeze-thaw and repeated loading[J].Tmnsportation research record.1983.91(8):15-21.
    [116]Leroueil S.,Rardif J.,Roy M.etal.Effects of forst on the mechanical behaviour of Champlain Sea clays[J].Canadian Geotchnical Journal.1991,28(5):690-697.
    [117]Graham J.Effects of freezen-haw and softening on a natural clay at low stresses[J].Canadian Geotchnical Journal.1985,22(1):69-78.
    [118]Chuilin YM.Yazynin OM.Frozen soil macro and mierostructure formation[A].In 5~(th) International Conference on Pemafrost[C].Trondheim Tapir Publishers,1988,320-323.
    [119]Broms B.B.Yao Y.C.Shear strength of a soil after freezing and thrawing[J].ASCE Journal of the soil mechanics and foundations division,1964,90(4):1-26.
    [120]Gandahl.R..The damaging effects of frost action in roads,overview of types of damage and preventive measures.Swedish Road and Traffic Research Institute,VTI Report no.230,Linkoping,Sweden.1980:418-423.
    [121]Fredlund,D.G,Bergan,A.T.,Sauer,E.K.Deformation characterization of subgrade soils for highways in northern environments [J].Can.Geotech.J.1975,12,213-223.
    [122]Bergan,A.T.,Fredlund,D.G,1972.Characterization of freeze-thaw effects on subgrade soils[C].Proc.Symp.On frost Action in Soil,Organization for economic Cooperation and Development,Oslo,Norway.
    [123]Chamberlain,E.J.,Cole,D.M.,Johnson,T.C.,1977.Resilient modulus and Poisson's ratio for frozen and thawed silt and clay subgrade materials[R].A.S.C.E.Special Conf.Appl.of Soil Dyn.in Cold Reg.,San Francisco,Preprint No.3011.
    [124]Johnson,T.C.,Cole,D.M.,Chamberlain,E.J.,1978a.Influence of freezing and thawing on the resilient properties of a silt beneath an asphalt concrete pavement[R].USA Cold Regions Research and Engineering Laboratory,CRREL Report 78-23.
    [125]Johnson,T.C.,Cole,D.M.,Chamberlain,E.J.,1979.Effects of freeze-thaw cycles on resilient properties of fine-grained soils[J].Eng.Geol.,13:247-276.
    [126]Cole.D.M.,Bently.D.,Durell.G,Johnson,T.C.,1986.Resilient modulus of freeze-thaw affected granular soils for pavement design and evaluation[R].USA Cold Regions Research and Engineering Laboratory,CRREL Report 4-86.
    [127]Berg,L.,Bigl,S.R.,Stark,J.A.,Durell,GD.,1996.Resilient modulus testing of materials from Mn/ROAD,Phase 1[R].USA Cold Regions Research and Engineering Laboratory,CRREL Report 96-19.
    [128]Simonsen,E.,Janoo,V.C.,1999.Resilient properties of unbound road materials during seasonal frost conditions.ASCE J.Cold Regions Eng.,submitted.
    [129]马巍,徐学祖.冻融循环对石灰粉土剪切强度特性的影响[J].岩土工程学报,1999,21(2):158-160.
    [130]徐学祖,王家澄,马巍等.冻融循环对石灰土路基稳定性的影响[C].第五届全国冰川冻土学大会论文集(上),兰州:甘肃文化出版社,1996,627-631.
    [131]陈湘生,濮家骝,殷昆亭,罗小刚.地基冻融循环离心模型试验研究[J].清华大学学报(自然科学版),2002,42(4):53l-534.
    [132]和礼红,汪稔,石祥峰.冻土结构性研究方法初探[J].岩土力学,2003,24(增2):148-152.
    [133]朱志武,宁建国,马魏.冻土屈服面与屈服准则的研究[J].固体力学学报,2006,27(3):307-310.
    [134]陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架[J].岩土工程学报,2002,24(2):213-217.
    [135]陈飞熊,李宁,徐彬.非饱和正冻土的三场耦合理论框架[J].力学学报,2005,37(2):204-214.
    [136]李洪升,王悦东,李亚明.冻土材料非线性断裂模型的试验研究[J].岩石力学与工程,2006,25(7):139l-1395.
    [137]Beskow G.Soil freezing and frost heaving with special application to roads and railroads[J].Swedish Geol.Survey Yearbook,1935,26(3):375-380.
    [138]Everett D.H.The thermodynamics of frost damage to porous solids[J].Trans.Faraday Soc.,1961,57:1541-1551.
    [139]Penner E.Fundamental aspects of frost action[R].Int.Symp on Frost action in soils.Sweden.1977.
    [140]Jones P.H.Hurt K.G.,An osmotic method for determining rock and aggregate suction characteristics with applications to frost heave studies[J].Quarteristics J.Eng.Geol.1978,11:245-252.
    [141]Miller R.D.Lens initiation in secondary frost heaving[R].Int.Symp on Frost action in soils.Sweden.1977.
    [142]Konrad J.M.Duquennoi C.A model for water transport and ice lensing in freezing soils[J].Wat.Resour.Res.1993,29:3109-3123.
    [143]Gilpin R.R.A model for the prediction of ice lensing and frost heave in soils[J].War.Resour.Res.1980,16:918-930.
    [144]Penner E.Aspects of ice lens growth in soils[J].Cold Region Science and Technology.1986,13(1):91-100.
    [145]Satoshi Akagawa.Experimental study of frozen fringe characteristics[J].Cold Region Science and Technology.1988,15:209-223.
    [146]Takeda K.Okamura A.Microstructure of freezing front in freezing soils[A].Ground Freezing 97[C].Netherlands:Lulea University of Technology.1997.
    [147]Watanabe K.Mizoguchi M.Ishizaki T.et al.Experimental study on microstructure near freezing front during soil freezing[A].Ground Freezing 97[C].Netherlands:Lulea University of Technology.1997.
    [148]李萍,徐教祖,蒲毅彬等.利用图像数字化技术分析冻结缘特征[J].冰川冻土,1999,21(2):175-180.
    [149]O'Neill K.Miller R D.Numerical solutions for a rigid-ice model of secondary frost heave[R].CRREL Report,1982,13-82.
    [150]Holden J.T.Piper D.Jones R H.A mathematical model of frost heave in granular materials[A].4~(th)Int.Conf.on permafrost[C].Washington,D,C:National Academy Press.1983,498-530.
    [151]Piper D.Holden J.T.Jones R.H.A mathematical model of frost heave in granular materials[A].5~(th)Int.Conf.on permafrost[C].Norway:Tapir Pub.1988,370-376.
    [152]Ishizaki T.Nishio N.Experimental study of frost heaving of a saturated soil[A].5~(th)Int.Symp.on Ground freezing[C].UK:Balkema.Rotterdam.1988,65-72.
    [153]Nixon J.F.Field frost heave predictions using the segregation potential concept[J].Can.Geotech.J.,1982,19:520-529.
    [154]Knutsson S.L.Domashuk.Chandler N.Analysis of large scale laboratory and in situ frost heave tests[A].4th Int.Symp.on Ground Freezing[C].Sapporo.Japan:Balkema.Rotterdam.1985,65-70.
    [155]Duquennoi C.Fremond M.Levy M.Modeling of thermal soil behavior[C].VTT.Symposium.1989.895-915.
    [156]Fremond M.Mikkola M.Thermo mechanical of freezing soil[C].In:Yuxiang.Wangchangshengs Proceedings of the 6th International symposium on Ground Freezing.Vol.1.Rotterdam:A.A.Bolkema.1991.
    [157]Grechishchev S.E,Pavlov A.V,Ponomaev V.V.Phase equilibrium and kinetics of saline soil water freezing[A].Lewkowicz A.G.Allard M.The 7~(th)International Permafrost Conference[C].Canada:Laval University,1998,351-358.
    [158]Corte,A.E..The frost behavior of soils,I[J].Vertical sorting,Highway Research Board,Washington,DC,USA,Bulletin No.317,1961,9-34.
    [159]Corte,A.E..Vertical migration of particles in front of a moving freezing plane[J].J.Geophys.Res.1962,67(3):1085-1090.
    [160]Ingles,D.R.Particle sorting and stone migration by freezing and thawing[J].Science 143,1965,1616-1617.
    [161]Kaplar,C.W.Stone migration by freezing of soils[J].Science 149,1965,1520-1521.
    [162]王家澄,徐学祖等.单向冻结时土颗粒位移的热筛效应及对流迁移[J].冰川冻土,1996,18(3):252-256.
    [163]Watanabe K.Water and heat flow in a directionally frozen silty soil.In:H.Saito,M.Sakai,N.Toride and J.Simunek(eds.),Proc.of The Third HYDRUS Workshop,June 28,2008,Tokyo University of Agriculture and Technology,Tokyo,2008,pp.15-22.
    [164]Guo Li,Miao tiande Zhang Hui.Thermodynamic models of heat-moisture migration in saturated freezing soil[J].Chinese Journal ofgeotechnical engineering,1998,20(5):87-91.
    [165]李述训,程国栋.兰州黄土在冻融过程中水热输运实验研究[J].中国科学院兰州冰川冻土研究所冻土工程国家重点实验室年报,1992,207-216.
    [166]李述训,程国栋编著.冻融土中的水热输运问题[M].兰州:兰州大学出版,1995.
    [167]石春林,虞静明.饱和土壤冻融过程中水热迁移数值模拟[J].中国农业气象,1998,19(4):21-26.
    [168]Miao Tiande.Guoli.Niu Yonghong et al.Modeling on coupled heat and moisture transfer in freezing soil using mixture theory[J].Science in China(Series D),1999,42(Suppl).9-16.
    [169]凌贤长,徐学燕,徐春华等.冻结哈尔滨粉质黏土超声波速测定试验研究[J].岩土工程学报,2002,24(4):753-756.
    [170]杨平,李强.冻土力学性能与波速参数相关性试验研究[J].岩土工程学报,1997,19(4):96-100.
    [171]李强,王奎华,谢康和.冻土声学测试中的异常现象分析[J].煤炭学报,2003,28(5):814-818.
    [172]查甫生,刘松玉,杜延军.电阻率法在地基处理工程中的应用探讨[J].工程地质学报,2006,14(5):637-642.
    [173]于小军.电阻率结构模型理论的土力学应用研究[D].南京:东南大学博士学位论文,2004.
    [174]刘松玉,查甫生,于小军.土的电阻率室内测试技术研究[J].工程地质学报,2006,14(2):216-222.
    [175]房纯纲,贾永梅,周晓文,吴昌瑜.汉江遥堤电导率与土性参数相关关系试验研究[J].水利学报,2003,(6):119-123.
    [176]白武明,马麦宁,柳江琳.地壳岩石波速和电导率实验研究[J].岩石力学与工程学报,2000,19(增):899-904.
    [177]吴献,吴勃,田军,唐春安.石墨混凝土应变与电导率关系的理论分析[J].东北大学学报(自然科学版)2005,26(5):492-495.
    [178]Gengye Chen,Yunmei Lin.Stress-strain-electrical resistance effects and associated state equations for uniaxial rock compression[J].International Journal of Rock Mechanics & Ming Sciences.2004, 41:223-236.
    [179]郝锦绮,冯锐,周建国等.岩石破裂过程中电阻率变化机理的探讨[J].地球物理学报,2002,45(3):426-435.
    [180]孙永福,孙惠凤,董立峰.海底土的电阻率特征及其评价[J].海岸工程,2005,24(24):48-53.
    [181]King R.A.Prediction of corrosiveness of seabed sediments[J].Matericals Performance,1980,19(1):39-42.
    [182]李言涛,侯保荣.钢在不同海底沉积物中的腐蚀研究[J].海洋与湖泊,1997,28(2):179-184.
    [183]侯保荣.海洋腐蚀理论及其应用[M].北京:科学出版社,1999,77-80.
    [184]Delaney,A.J.,Arcone,S.A.Dielectric measurements of frozen silt using time domain reflectometry[J].Cold Regions Science and Technology,1984,9:39-46.
    [185]Hoekstra,P.,Doyle,W.T.Dielectric relaxation of surface absorbed water[J].Colloid Interface Sci.,1971,36:513-521.
    [186]Hoekstra,P.,Sellmann,P.V.,Delaney,A.Ground and airborne resistivity surveys of permafrost near Fairbanks,Alaska[J].Geophysics,1975,40:641-656.
    [187]Sellmann,P.V.,Delaney,A.J.,Arcone,S.A.Coastal subsea permafrost and bedrock observations using dc resistivity[R].Cold Regions Research and Engineering Laboratory Rep.,1989,89-103.
    [188]Olhoeft,G.R.Electrical properties of natural clay permafrost[J].Can.J.Earth Sci.,1977,14:16-24.
    [189]Olhoeft,G.R.Electrical properties of permafrost[C].In:Proceedings-Third International Conference on permafrost.National Research Council of Canada,Ottawa,1978,127-131.
    [190]Frolov,A.D.Elastic and electrical properties of frozen ground[C].In:J.Sanger and H.Hyde(Editors),Second Permafrost Conferrence(USSR contribution).National Academy of Sciences,Washington,DC,1973,307-312.
    [191]Frolov,A.D.,Gusev,B.V.Dielectric method of determining the unfrozen water content in frozen sandy-clay soils[C].In:J.Sanger and H.Hyde(Editors),Second Permafrost Conferrence(USSR contribution).National Academy of Sciences,Washington,DC,1973,356-358.
    [192]Araki,T.,Maeno,N.Measurments ofdielectic properties of frozen soils[J].Low Temp.Sci.Ser.A,1989,48:27-40(in Japanese).
    [193]Workman,E.J.,Reynolds,S.E.Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity[J].Phys.Rev.1950,78,254-259.
    [194]Gill,E.W.B.,Alfrey,G.F.Production of electrical charges on water drops[J].Nature 169,1952,103-104.
    [195]Kelsh,D.J.,Taylor,S.Measurement and interpretation of electrical freezing potential of soils[R].U. S.Army CRREL Report No.CRREL-88-10,1988,15p.
    [196]Outcalt,S.I.,Hinkel,K.M.Night-frost modulation of nearnearsurface soil-water ion concentration and thermal fields[J].Phys.Geog.1989,10(4),336-348.
    [197]Outcalt,S.I.,Hinkel,K.M.The soil electric potential signature of summer draught[J].Theor.Appl.Climatol.,1990,41,63-68.
    [198]Outcalt,S.I.,Gray,D.H.,Benninghoff,W.S.Soil temperature and electric potential during diurnal and seasonal freeze-thaw[J].Cold Reg.Sci.Technol.,1989,16,37-43.
    [199]Fortier,R.,Allard,M.,Seguin,M.K.Monitoring thawing front movement by self-potential measurement.Permafrost,Sixth International Conference(July 1993),Proceedings Vol.l.South China University of Technology Press,1993,pp.182-187.
    [200]Palacky G.J.Resistivity characteristics of geologic ta targets[C].In:Nabighian MN Electromagnetic methods in applied geophysics.Soc Explor Geophys,Tulsa,1987.
    [201]Gajdos,V.,Kral,V.Influence of hydrocarbon pollution to soil conductivity[C].Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems(SAGEEP'95).Orlando,Florida,1995,785-789.
    [202]Keller,G.V.Engineering applications of electrical geophysical methods[C].Proceedings of Conference on Subsurface Explorations for Underground Excavation and Heavy Construction,Henniker,New Hampshire,1974,August 11-16.
    [203]Telford,W.M.,Geldart,L.P.,Sheriff,R.E.,et al.Applied Geophysics[M].Cambridge Univ.Press,New York,1976.
    [204]Allan J.D.,Paige R.P.,Steven A.A.Electrical resistivity of frozen and petroleum contaminated fime grained soil[J].Cold Regions Science and Technology,2001,32,107-119.
    [205]贺益贤.新藏公路沿线冻土电探的应用实例[J].冰川冻土,1991,13(3):255-260.
    [206]王文龙,王海.青藏铁路多年冻土勘察的物探方法选择及其应用效果[J].冰川冻土,2003,25(增刊1):29.-34.
    [207]常晓敏,窦银科,马福昌等.冰层厚度自动化观测系统的试验研究[J].太原理工大学学报,2005,36(5):35-37.
    [208]刘靖.电容层析成像技术在冻土物质分布及其冻土变化测试中的应用研究[D][博士论文].北京:中国科学院研究生院.
    [209]曹晓斌,吴广宁,付龙海等.温度对土壤电阻率影响的研究[J].电工技术学报,2007,9:1-6.
    [210]Keller G.,Frischknecht,F.Electrical methods in geophysical prospecting[M].New York:Pergamon Press,1966.
    [211]Parkhomenko,E.Electrical properties of rocks[M].New York:Plenum Press,1967.
    [212]Jackson,P.D.An electrical resistivity method for evaluating the in situ prorosity of clean marine sand[J].Marine Geology,1975,1(2):91-116.
    [213]Kutter,B.L.Electrical properties in relation to structure tof cohesionless soils.Thesis presented to the Univ.of California at Davis,Calif.,in partial fulfillment of the requirements of the degree of maste of Science,1978.
    [214]Arulanandan,K.,Kutter,B.A directional structure index related to sand liquefaction[C].Proc.Specialty Conf.on earthquake engineering and Oil Dynamics,ASCE,Pasadena,California,1978,213-230.
    [215]Arulmoli,K.Structure characterization for in situ testing[C].Thesis presented to the Univ.of California,at Davis,Calif.,in partial fulfillment of the requirements for the degree of Master of Science,1980,310-314.
    [216]Arulmoli,K.Electrical characterization of sands for in situ prediction of liquefaction potential[C].Thesis presented to the Univ.of California,at Davis,Calif.,in partial fulfillment of the requirements for the degree of Doctor of Philosophy,1982,150-157.
    [217]Thevananyagam,S.Electrical response of two-phase soil:Theory and application[J]Journal of Geotechnical Engineering,1993,119(8):1250-1275.
    [218]Pabitra N.Sen.Et al.Formation factor of carbonate rocks with microporosity model calculations[J].Journal of Petroleum Science and Engineering,1997,17:345-352.
    [219]John A.Howie.Combinations of in situ tests for control of ground modification in silts and sands[J].ASCE,1997,NO.97:181-197.
    [220]Tumidajskl,Schmnacher A.S.,et al.On the relationship between porosity and electrical resistivity in cementitions systems[J].Cement and concrete research,1996,26(4):539-544.
    [221]David Huntley.Relations between permeability and electrical resistivity in granular aquifers[J].Ground Water,1987,24(4):466-474.
    [222]Worthington,P.F.The uses and abuses of the Archie equations:1.The formation factor porosity relationship[J].Engineering Geology,1999,54:43-53.
    [223]Fukue M.,Minati T.,Horibe H.,et al.The microstructure of clay given by resistivity measurements[J].Engineering Geology,1999,54:43-53.
    [224]Thomas Kwader.Estimating aquifer permeability formation resistivity factors[J].Ground Water,1986,23(6):763-765.
    [225]Ristodemou et al.DC resistivity and induced polarization invstigations at a waste disposal site and its environments[J].Journal of Applied Geophysics,2000,44:275-302.
    [226]阿弗里尔[法].试验应力分析手册[M].陈隶华等译,刘烈全校.北京:机械工业出版社,1985.
    [227]Stefabi Zappori,Alessandro Vespignani,Stanley H.E.Plasticity and avalanche behaviour in microfracturing phenomena[J].Letters to nature,1997,388:658-660.
    [228]Sornerre,D.V.Dynamics and memory effects in rupture of thermal fuse networks[J].Phys.Rev.Lett.,1992,68:612-615.
    [229]De Arcangelis,L &Herrmann,H.J.Scaling and muitiscaling laws in random fuse nerworks[J].Phys.Rev.B,1989,39:2678-2684.
    [230]Sornette,D.Sweeping of instability:an alternative to self-organized criticality to get powerlaws with parameter tuning[J].J.Phys.I.France,1994,4:209-221.
    [231]吴献,李秀梅,王述红等.混凝土电导率与应变关系的试验研究[J].东北大学学报(自然科学版),2005,26(1):292-295.
    [232]吴献,秦桂娟,刘之洋.石墨混凝土电导率-应变与割线模量-应变关系[J].沈阳建筑大学学报(自然科学版),2006,22(2):248-25 1.
    [233]吴献,李秀梅,吴勃等.石墨混凝土受力全过程中的电-力比拟研究[J].铁道建筑,2004,11:73-75.
    [234]施明恒.多孔介质传热传质研究的进展与展望[J].中国科学基金,1995,第l期:29-32.
    [235]Bear J.多孔介质流体动力学[M].李景生,等译.北京:中国建筑工业出版社,1983.
    [236]张永祥,陈鸿汉著.多孔介质溶质运移动力学[M].北京:地震出版社,2000.
    [237]Komine H.Estimation of chemical grout void filling by electrical resistivity[A].In:Grouting soil improvement and Geosynthetics Proceedings[C].GT Division,ASCE,1992,1:372-383.
    [238]Abu-Hassanein,Z.,Benson,C.,Blotz,L.Electical resistivity of compacted clays[J].Journal of Geotechnical Engineering,ASCE,1996,122(5):397-406.
    [239]Yoon,G..L.,Park,J.B.Sensitivity of leachate and frne contents on electrical resistivity variations of sandy soils[J].Journal of Hazardous Materials,2001,B84:147-161.
    [240]Yoon,G..L.,Park,J.B.Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer[J].Environmental Geology,2002,43:18-28.
    [241]Solenne Grellier,Henri Robain et al.Influence of temperature on the electrical conductivity of leachate fiom municipal solid waste[J].Journal ofHazaedous Matericals,2002,B137:18-28.
    [242]McNeill,J.Use of electromagnetic metholds for groundwater studies[J].Geotech.And Encir.Geophysics,1990,1:191-218.
    [243]Ji Wei Yu,Neretnieks Ivars.Modelling of transport and reaction processes in a porous medium in an electrical field[J].Chemical Engineering Science,1996,51(19):4355-4368.
    [244]Mattson Earl D,Bowman R.S.,Lindgren Eric R.ElectroKinetic ion transport through unsaturated soil:1.Theory,model development and testing[J].Contaminant Hydrology,2001,54:99-120.
    [245]Komine H.Evaluation of chemical grouted soil by electrical resistivity[J].Ground Improvement,1997(l):101-113.
    [246]Salih,Saner.Formation resistivity response to loading and unloading confining pressure[J].Jounal of Petro Science & Engineering,1996,(16):169-179.
    [247]刘国华等.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
    [248]Zeyad,S.,Abu-Hassanein.Electrical resistivity of compacted clays[J].Journal of Geotechnical Engineering,1996,122(5):397-406.
    [249]Mccarter,W.J.The electrical resistivity characteristics of compacted clays[J].Technical Notes,1984,263-267.
    [250]Kalinski,R.J.Electrical resistivity measurements for evaluation compacted soil liners[J].Journal of Geotechnical Engineering,1994,120(2):451-457.
    [251]Mitchell,J.K.,Arulanandan,K.Electrical dispersion in relation to soil structure [J].J.Soil Mech.and Found.Div.,ASCE,1968,94(2):447-471.
    [252]中华人民共和国建设部.GB 50007—2002建筑地基基础设计规范[S].北京:中国计划出版社,2002.
    [253]中华人民共和国水利部.GB/T 50123—1999土工试验方法标准[S].北京:中国计划出版社,1999.
    [254]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1984.
    [255]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [256]和礼红.粉质粘土冻融循环的力学效应及其结构性研究[D].中国科学院研究生院博士论文,2004.
    [257]刘增利,李洪升,朱元林等.冻土单轴压缩动态试验研究[J].中国科学院寒区旱区环境与工程研究所冻土工程国家重点室年报,2000.
    [258]刘增利,李洪升,朱元林等.冻土材料细观损伤的CT识别模型[J].中国科学院寒区旱区环境与工程研究所冻土工程国家重点室年报,2000.
    [259]梁波,张贵生,刘德仁.冻融循环条件下土的融沉性质试验研究[J].岩土工程学报.2006,28(10):1213-1217.
    [260]Parameswaran,V.R.,Burn,C.B.,Profit,A.et al.A note on electrical freezing and shorting potentials[J].Cold regions science and technology.2005,41(2):83-89.
    [261]Lawrence,W.G.Soil freeze-thaw-induced changes to a simulated rill:potential impacts on soil erosion[J].Geomorphology.2000,32(1,2):147-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700