用户名: 密码: 验证码:
高分辨率SAR图像建筑物提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对城区SAR图像解译应用的需求,本文研究了高分辨率SAR图像的建筑物提取技术。面临当前实际应用中对大场景高分辨率图像进行处理的迫切需求,提出建筑物提取的分层处理思路,即首先从大场景图像中检测出感兴趣的建筑区,然后在建筑区内部进行建筑物的检测,最后对检测到的建筑物进行几何信息提取。按照这一思路,在建筑物SAR图像特征分析与仿真的基础上,对建筑区检测、建筑物检测及几何信息提取技术进行了深入的研究。开展的工作主要包括以下几个方面:
     (1)建筑物SAR图像的特征分析与仿真。分析了建筑区的主要散射机制和建筑物的典型成像效应及其到SAR图像上的映射关系,归纳总结了建筑物在SAR图像中的典型特征,并仿真建筑物的SAR图像对此进行了验证。这些工作为后续研究的开展奠定了基础,特别地,建筑物图像仿真还为建筑物几何信息提取阶段的研究提供了测试数据集。
     (2)SAR图像中建筑区的检测。根据为建筑物检测阶段提供ROI区域的要求,以准确、高效地完成建筑区检测为目标,提出了一种基于变差函数纹理特征的SAR图像建筑区检测方法。该方法的特点与优势在于:首先,变差函数纹理特征能够刻画高分辨率SAR图像中建筑区所表现出来的很强的非相似性,易于区分图像中的建筑区与非建筑区;其次,通过分析建筑区与非建筑区变差函数曲线的规律,可以确定最适于建筑区-非建筑区两类分类的纹理间距;再次,变差函数纹理特征计算可高效完成,在理论分析其计算量的基础上,推导出了相应的快速算法,大大提高了建筑区检测方法的实用性,能够满足为后续建筑物检测提供ROI区域的应用需求。
     (3)SAR图像中建筑物的检测。以完整、准确地检测到建筑区中单个建筑物目标轮廓为目标,针对现有检测方法对复杂场景以及不同建筑物图像的适用性难以保证的问题,提出一种基于标记控制分水岭变换的SAR图像建筑物检测方法。将标记控制的分水岭变换分割框架引入建筑物检测之中,可以同时利用建筑物自身的强散射、高灰度特点及其所处的黑色道路(阴影)网状结构的背景特点,二者的结合有效克服了复杂场景中相邻建筑物目标易于错误连接、而单个建筑物由于自身灰度分布不均又易于断裂成多个部分的问题。新方法可得到建筑物目标的闭合轮廓,由于采用了适于SAR图像且定位性能良好的ROEWA边缘检测器,使分割得到的建筑物轮廓也具有定位准确的特点。此外,根据SAR图像中建筑物的典型形状特征,提出一种方向相关的形状分析法,可进一步有效地排除虚警。实验结果证明新方法具有检测率高、虚警率低、定位准确等优点,是一种有效的方法,所得结果能对后续建筑物几何信息的提取提供有力支持。
     (4)SAR图像中建筑物几何信息的提取。针对现有方法存在精度不高或实用性太低的问题,提出了一种基于模型与图像匹配度的建筑物几何信息提取框架。该框架一方面将建筑物模型映射到图像上,确定图像中包含有建筑物几何信息的典型特征区域如叠掩和阴影区域,另一方面利用建筑物检测阶段得到的建筑物目标轮廓等信息,通过二者的匹配度来寻求最佳的模型参数。新框架具有较强的通用性,建筑物参数化几何模型、典型特征区域及其提取方法都可以随实际应用而调整。以最常见的平顶长条形建筑物为例,讨论了该框架的一个具体应用:详细分析了在不同成像参数与模型参数条件下,将建筑物模型映射为图像中叠掩和阴影典型特征区域的方法;设计了叠掩边界匹配度和阴影边界匹配度来衡量模型与图像的匹配程度;给出了基于遗传算法的最优化求解方法,取匹配度函数最大化时的模型参数作为待求解建筑物的几何参数。仿真和实测数据实验结果表明,由于新方法引入了由建筑物几何模型到图像的精确映射关系,可确保求解的精度;而且将几何信息提取问题转化为匹配度函数最大化问题,可利用优化算法自动求解,无需人工操作,大大提高了实用性。
With the demand on urban SAR image interpretation, techniques of building extraction from high-resolution SAR images are investigated in this thesis. Aiming at dealing with high-resolution and large-scene images in practical applications, a hierarchical procedure for building extraction is proposed. First, the built-up areas are detected from the large-scene image; then, building detection is carried out in the detected built-up areas; finally, the geometrical information of the buildings is extracted. According to this procedure, this thesis thoroughly studies the techniques of built-up area detection, building detection and geometrical information extraction. The main work includes the following aspects.
     (1) The phenomena of buildings imaged from a SAR sensor is analyzed and simulated. The main scattering mechanisms encountered in built-up areas, the typical imaging effects of buildings and their mapping relationship to a SAR image are analyzed. Then the characteristics of buildings in SAR images are concluded and validated by simulated images. All the analysis and simulation is the base of the subsequent research. Especially, simulation of building SAR images provides the testing data for the study of geometrical information extraction.
     (2) According to the requirement of providing ROI for building detection, an effective and efficient method of detecting the built-up areas from SAR images using the variogram texture feature is proposed. First, the variogram texture feature can describe the strong dissimilarity of the built-up areas in SAR images, and thus discriminates the built-up and non-built-up areas. Second, according to the different variogram curve patterns of the built-up and non-built-up areas, the best texture lag for the binary classification can be easily determined. Third, the variogram texture feature can be computed efficiently. Based on the theoretical analysis of the redundant computation, a fast recursive algorithm for computing variogram is designed, which makes built-up areas detection more practical and can meet the application demands of providing ROI for building detection.
     (3) Since the existing methods of building detection from SAR images are not robust for images with complex scene or different appearances of buildings, a method of building detection using the marker-controlled watershed transformation is proposed, aiming at detecting buildings with their whole and accurate boundaries from the built-up area. By introducing the marker-controlled watershed transformation, this method can make use of not only the characteristics of the building, which are strong scattering and high gray values, but also the characteristics of the surrounding background, which are the black netlike structures formed by roads and shadows. The combination of the characteristics of buildings and background can overcome the problems of linking neighboring buildings in complex scene or dividing a building into several parts when its gray values fluctuate greatly. Besides, the new method can get the closed boundaries of the buildings. Since the ROEWA edge detector, an edge detector for SAR images with good localization performance, is used, the detected building boundaries are also accurately localized. Furthermore, according to the typical shapes of the building in SAR images, a shape analysis method called direction-correlation analysis is proposed to remove the false alarms. The experiments invalidate that the new method is effective with high detection rate, low false-alarm rate and good localization performance. The detection results can be used in the process of extracting the buildings’geometrical information.
     (4) Since the existing methods of extracting buildings’geometrical information have defects in accuracy or practicality, a new frame of geometrical information extraction is proposed via matching the geometrical model of a building and the real SAR image. On one hand, the frame maps the model into the image to determine the typical regions such as the layover and the shadow, which contain the geometrical information of a building. On the other hand, with the features such as the building boundary obtained from the building detection, the best model parameters can be found by matching the model and the detected features. The new frame is a general one, because the building model, the typical feature regions and the methods of detecting these regions can be adjusted in different applications. An implement of the frame is carried out using the common flat building as an example. First, the method of mapping a building model into the layover and the shadow regions with different imaging conditions are discussed. Second, the matching functions of the layover boundary and the shadow boundary are designed, and they form the whole matching function. Third, the algorithm of estimating the model parameters using the genetic algorithm is given. When the matching function reaches its maximum, the corresponding parameters are the best estimation for the building geometrical information. The experiments of both the simulated and the real images show the accuracy and practicality of the new frame: the use of the mapping relationship of the geometrical model to the image ensures the accuracy; the transform of extracting the geometrical information to maximizing the matching function and the automatic parameter estimation ensure its practicality.
引文
[1] ALOS PALSAR[Z].http://www.eorc.jaxa.jp/ALOS/about/palsar.htm.
    [2] COSMO-SkyMed[Z].https://cosmo-skymed-ao.asi.it/asi/asi.
    [3] TerraSAR-X[Z].http://ww.dlr.de/tsx/start_en.htm.
    [4] Radarsat-2[Z].http://www.radarsat2.info/.
    [5] Ender J H G, Brenner A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proc.- Radar Sonar Navig. 2003, 150(3): 165-172.
    [6] Maitre H.合成孔径雷达图像处理[M].北京:电子工业出版社, 2005.
    [7] Mayer H. Automatic object extraction from aerial imagery- a survey focusing on buildings[J]. Computer Vision and Image Understanding. 1999, 74(2): 138-149.
    [8] Venkateswar V, Chellappa R. A framework for interpretation of aerial images[A]. In proceedings of the International Conference on Pattern Recognition[C]. Atlantic City, New Jersey, USA. 1990: 204-206.
    [9] Krishnamachari S, Chellappa R. An energy minimization approach to building detection in aerial images[A]. IEEE International Conference on Acoustics, Speech and Signal Processing[C]. 1994: 13-16.
    [10] Lin C, Huertas A, Nevatia R. Detection of buildings using perceptual grouping and shadows[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1994: 62-69.
    [11] Jaynes C O, Stolle F, Collins R T. Task driven perceptual organization for extraction of rooftop polygons[A]. in Proceedings of the Second IEEE Workshop on Applications of Computer Vision[C]. 1994: 152-159.
    [12] Irvin R B, Mckeown D M J. Methods for exploiting the relationship between buildings and their shadows in aerial imagery[J]. IEEE Transactions on Systems, Man and Cybernetics. 1989, 19(6): 1564-1575.
    [13] Kim Z, Huertas A, Nevatia R. Automatic Description of Complex Buildings with Multiple Images[A]. The Fifth IEEE Workshop on Applications of Computer Vision[C]. 2000: 155-162.
    [14] Roux M, Mckeown D M. Feature matching for building extraction from multiple views[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1994: 46-53.
    [15] Mcglone J C, Shufelt J A. Projective and object space geometry for monocular building extraction[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1994: 54-61.
    [16] Girard S, Guérin P, Ma?tre H, et al. Building detection from high resolution colorimages[A]. Image and Signal Processing for Remote Sensing IV[C]. Barcelona, Spain. 1998: 278-289.
    [17] Katartzis A, Sahli H, Nyssen E, et al. Detection of Buildings from a Single Airborne Image using a Markov Random Field Model[A]. IEEE International Geoscience and Remote Sensing Symposium[C]. 2001: 2832-2834.
    [18] Gerke M, Heipke C, Straub B M. Building extraction from aerial imagery using a generic scene model and invariant geometric moments [A]. IEEE/ISPRS Joint Workshop, Remote Sensing and Data Fusion over Urban Areas[C]. 2001: 85-89.
    [19] Ortner M, Descombes X, Zerubia J. Building extraction from digital elevation models[A]. IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. 2003: 337-340.
    [20] Zhang Q, Wang J, Shi P. Detection of buildings from Landsat-7 ETM+ and SPOT panchromatic data in Beijing, China[A]. IEEE International Geoscience and Remote Sensing Symposium[C]. 2002: 2977-2979.
    [21] Liu Z J, Liu W P. Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform[A]. IEEE International Geoscience and Remote Sensing Symposium[C]. 2005: 2250-2253.
    [22] Mueller M, Segl K, Kaufmann H. Discrimination between roofing materials and streets within urban areas based on hyperspectral, shape, and context information[A]. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas[C]. 2003: 196-200.
    [23] Verma V, Kumar R, Hsu S. 3D building detection and modeling from aerial LIDAR data[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 2006: 2213-2220.
    [24] Jaynes C O, Hanson A, Riseman E, et al. Building reconstruction from optical and range images[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 1997: 380-386.
    [25] Tupin F. Merging of SAR and optical features for 3D reconstruction in a radargrammetric framework[A]. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium[C]. 2004: 89-92.
    [26] Tupin F, Roux M. Detection of building outlines based on the fusion of SAR and optical Features[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2003, 58(1): 71-82.
    [27] Nevatia R, Huertas A. Knowledge-based building detection and description[A]. DARPA Image Understanding Workshop (IUW'98) [C]. 1998:469-478.
    [28] Jaynes C O, Hanson A, Riseman E, et al. Building reconstruction from optical and range images[A]. IEEE Computer Society Conference on Computer Visionand Pattern Recognition[C]. 1997: 380-386.
    [29] Cardoso L A L S. Computed-aided recognition of man-made structures in aerial photographs[D]. Monterey, CA, USA: Naval Postgraduate School, 1999.
    [30] Garcin L, Descombes X, Le Men H, et al. Building Detection by Markov Object Processes[A]. IEEE 2001 International Conference on Image Processing[C]. 2001: 565-568.
    [31] Levitt S, Aghdasi F. Fuzzy representation and grouping in building detection[A]. IEEE International Conference on Image Processing[C]. 2000: 324-327.
    [32] Maloof M A, Langley P, Binford T O, et al. Generalizing over aspect and location for rooftop Detection[A]. The Fourth IEEE Workshop on Applications of Computer Vision[C]. 1998: 194-199.
    [33] Guo Y, Sawhney H S, Kumar R, et al. Learning-based building outline detection from multiple aerial images[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 2001: 545-552.
    [34] Chellappa R. Advanced automatic target recognition[R]. College Park: Center for automation research,University of Maryland, 1998.
    [35] Kuttikkad S, Chellappa R, Novak L M. Building wide area 2-D site models from single- and multipass single-polarization SAR data[A]. In Proc. SPIE: Algorithms for Synthetic Aperture Radar Imagery III[C]. Orlando,FL. 1996: 34-44.
    [36] Bolter R. Buildings from SAR: detection and reconstruction of buildings from multiple view high resolution interferometric SAR data[D]. University of Graz,Austria, 2001.
    [37] Bolter R, Leberl F. Detection and reconstruction of buildings from multiple view interferometric SAR data[A]. Proceedings of IEEE 2000 International Geoscience and Remote Sensing[C]. 2000: 749-751.
    [38] Bolter R, Leberl F. Detection and reconstruction of human scale features from high resolution interferometric SAR data[A]. In Proceedings of 15th International Conference on Pattern Recognition[C]. 2000: 219-294.
    [39] Bolter R, Leverl F. Shape-from-shadow building reconstruction from multiple view SAR images[A]. 24th Workshop of the Austrian Association for Pattern Recognition[C]. Villach, Carinthia, Austria. 2000: 199-206.
    [40] Leberl F W, Bolter R. Building reconstruction from synthetic aperture radar images and interferometry[A]. Automatic Extraction of Man-Made Objects from Aerial and Space Images(III) [C]. 2001: 281-290.
    [41] Michaelsen E, Soergel U, Stilla U. Grouping salient scatterers in InSAR data for recognition of industrial buildings[A]. 16th Int. Conf. on Pattern Recogn., ICPR[C], 2002. 2002: 613-616.
    [42] Michaelsen E, Soergel U, Thoennessen U. Perceptual grouping for automatic detection of man-made structures in high-resolution SAR data[J]. Pattern Recognition Letters. 2006, 27(4): 218-225.
    [43] Soergel U, Michaelsen E, Thiele A. Radargrammetric Extraction of Building Features from High Resolution Multi-aspect SAR Data[A]. 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium[C]. Denyer, CO, USA. 2006: 3635-3638.
    [44] Soergel U, Thoennessen U, Brenner A, et al. High-resolution SAR data: new opportunities and challenges for the analysis of urban areas[J]. IEE Proc.- Radar Sonar Navig. 2006, 153(3): 294-300.
    [45] Stilla U, Michaelsen E, Soergel U, et al. Perceptual grouping of regular structures for automatic detection of man-made objects[A]. 2003 IEEE International Conference on Geoscience and Remote Sensing Symposium[C]. 2003, vol.6: 3525-2527.
    [46] Simonetto E, Oriot H, Garello R. Extraction of industrial buildings from stereoscopic airborne radar images[A]. In: Proceedings of SPIE Conference No.4543 "SAR Image Analysis, Modeling, and Techniques IV"[C]. 2002: 121-129.
    [47] Simonetto E, Oriot H, Garello R. Rectangular building extraction from stereoscopic airborne radar images[J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(10): 2386-2395.
    [48] Tison C, Tupin F, Maitre H. Retrieval of building shapes from shadows in high resolution SAR interferometric images[A]. Proceedings. 2004 IEEE International Geoscience and Remote Sensing Symposium[C]. 2004: 1788-1791.
    [49] Tupin F. Extraction of 3D information using overlay detection on SAR images[A]. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas[C]. 2003: 72-76.
    [50] Hill R D, Moate C P, Blacknell D. Urban scene analysis from SAR image sequences[A]. Proc of SPIE "Algorithms for Synthetic Aperture Radar Imagery XIII"[C]. 2006: SPIE Vol.6237: 623702-1 - 623702-12.
    [51] Bennett A J, Blacknell D. The extraction of building dimensions from high resolution SAR imagery[A]. Proceedings of the International Radar Conference[C]. 2003: 182-187.
    [52] Bennett A J, Blacknell D. Infrastructure analysis from high resolution SAR and InSAR imagery[A]. 2nd GRSS/ISPRS Joint Workshop of Remote Sensing and Data Fusion over Urban Areas[C]. 2003: 230-235.
    [53] Quartulli M, Datch M. Stochastic geometrical modeling for built-up area understanding from a single SAR intensity image with meter resolution[J]. IEEETransaction on Geoscience and Remote Sensing. 2004, 42(9): 1996-2003.
    [54] Xu F, Jin Y Q. Automatic reconstruction of building objects from multiaspect meter-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing. 2007, 45(7): 2336-2353.
    [55]徐丰,金亚秋.城区高分辨率SAR图像的信息获取与重建[J].遥感技术与应用. 2007, 22(2): 287-290.
    [56]朱俊杰,丁赤飚,尤红建等人.基于高分辨率SAR图像的建筑物高度提取[J].现代雷达. 2006, 28(12): 76-79.
    [57]朱俊杰,范湘涛,邵芸.高分辨率SAR与光学图像融合用于建筑物屋顶提取[J].中国科学院研究生院学报. 2006, 23(2): 178-185.
    [58]朱俊杰,郭华东,范湘涛等人.高分辨率SAR与光学图像融合的建筑物三维重建研究[J].高技术通讯. 2005, 15(12): 68-74.
    [59]朱俊杰,郭华东,范湘涛等人.单波段单极化高分辨率SAR图像纹理分类研究[J].国土资源遥感. 2005(2): 36-39.
    [60]付文宪,李少洪,洪文.基于高分辨率SAR图像的打击效果评估[J].电子学报. 2003, 31(9): 1290-1294.
    [61] Cooper D. New models and fast algorithms for natural and urban clutter with applications[R]. Brown University, 1997.
    [62] Balz T, Haala N. SAR-based 3D-reconstruction of Complex Urban Environments[A]. In:IAPRS Workshop on 3-Dreconstruction from Airborne Laser Scanner and InSAR Data[C]. 2003.
    [63] Gamba P, Houshmand B, Saccani M. Detection and extraction of buildings from interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(1): 611-618.
    [64] Borghys D. Interpretation and registration of high-resolution polarimetric SAR images[D]. Paris: Ecole Nationale Supérieure des. Télécommunications, 2001.
    [65]肖洲,赵争,黄国满.高分辨率机载SAR影像判读实验[J].测绘科学. 2006, 31(2): 42-43.
    [66]舒宁.微波遥感原理[M].武汉:武汉大学出版社, 2000.
    [67] Xia Z G, Henderson F M. Understanding the relationship between radar response patterns and the bio- and geophysical parameters of urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing. 1997, 35(1): 93-101.
    [68] Soergel U, Schulz K, Thoennessen U, et al. Determination of optimal SAR illumination aspects in build-up areas[A]. Proceedings. 2003 IEEE International Geoscience and Remote Sensing Symposium[C]. 2003: 3662-3664.
    [69] Franceschetti G, Iodice A, Riccio D. A canonical problem in electromagneticbackscattering from buildings[J]. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(8): 1787-1801.
    [70] Stilla U. High resolution radar imaging of urban areas[Z]. 149-158. http://www.ifp.uni-stuttgart.de/publications/phowo07/180Stilla.pdf.
    [71] Meyer R H, Oddo L A, Mcdonold S P. A software tool for predict SAR signature for building modeling[A]. Proceedings of 29th Applied Imagery Pattern Recognition Workshop[C]. 2000: 245-251.
    [72] Meyer R H, Roy R J. Algorithms for interpreting SAR imagery of complex building scenes[A]. Proceedings of SPIE "In Algorithms for Synthetic Aperture Radar Imagery VII"[C]. 2000: 642-651.
    [73] Gouinaud C, Pons I. Use of geometrical SAR simulaton for visibility prediction: application to mission planning and urban study[A]. IEEE IGARSS'96[C]. 1996: 257-259.
    [74] Soergel U, Thoennessen U, Stilla U. Visibility analysis of man-made objects in SAR images[A]. 2nd GRSS/ISPRS Joint Workshop on "Data Fusion and Remote Sensing over Urban Areas"[C]. 2003: 120-124.
    [75] Bolter R, Gelautz M, Leberl F. Simulation based SAR-stereo analysis in layover areas[A]. Proceedings of 1998 IEEE International Geoscience and Remote Sensing Symposium[C]. 1998:345-347.
    [76] Franceschetti G, Migliaccio M, Riccio D, et al. SARAS: a synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Transactions on Geoscience and Remote Sensing. 1992, 30(1): 110-123.
    [77] Franceschetti G, Migliaccio M, Riccio D. The SAR simulation: an overview[A]. Proceedings. IEEE International Geoscience and Remote Sensing Symposium[C]. 1995, vol.3:2283-2285.
    [78] Franceschetti G, Iodice A, Riccio D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(9): 1986-1995.
    [79] Bolter R. Reconstruction of man-made objects from high resolution SAR images[A]. In Proceedings of IEEE Aerospace Conference[C]. Big Sky, Montana. 2000: 6.
    [80]孙尽尧,孙洪. SAR图像几何特征的仿真[J].系统仿真学报. 2004, 16(10): 2313-2316.
    [81] Bolter R, Gelautz M, Leberl F. SAR Speckle simulation[J]. International Archives of Photogrammetry and Remote Sensing. 1996, 21:20-25.
    [82]匡纲要,高贵,蒋咏梅等人.合成孔径雷达目标检测理论[M].长沙:国防科技大学出版社, 2007.
    [83] Nezry E, Lopes A, Ducrot D, et al. Supervised classification of K-distributed SAR images of natural targets and probability of error estimation[J]. IEEE Transactions on Geoscience and Remote Sensing. 1996, 34(5): 1233-1242.
    [84] Fjortoft R, Sery F, Ducrot D, et al. Segmentation, filtering and classification of SAR images[Z].http://www.enseeiht.fr/Recherche/Info/Vision/Publi/97_selper_R F++. ps.gz.
    [85] Pellizzeri T M, Lombardo P, Oliver C J. A new maximum likelihood classification technique for multitemporal SAR and multiband optical images[A]. Proceedings of IGARSS[C]. Toronto, ON, Canada. 2002: 24-28.
    [86] Pellizzeri T M, Gamba P, Lombarbo P, et al. Multitemporal/multiband SAR classification of urban areas using spatial analysis: statistical versus neural kernel-based approach[J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(10): 2338-2353.
    [87] Pellizzeri T M, Lombardo P, Gamba P, et al. Multisource urban classification: joint processing of optical and SAR data for land cover mapping[A]. Proceedings of IGARSS[C], 2003: 1044-1046.
    [88]苏芳.合成孔径雷达图像分类算法研究[D].北京:北京航空航天大学, 2002.
    [89]付琨,孙真真,吴一戎.基于Beta_Prime统计模型和QGD分类器的SAR图像地物分类方法[J].电子学报. 2003, 31(12A): 2163-2166.
    [90]王之禹,朱敏慧,白有天.基于最优状态的多波段全极化SAR数据ML分类方法[J].电子与信息学报. 2001, 23(5): 507-511.
    [91] Dell’acqua F, Gamba P, Houshmand B. Recognition of urban structures in multiband data by means of ART networks[A]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium[C]. 1998: 400-402.
    [92]曹广真,金亚秋.用于Landsat ETM+和ERS-2 SAR图像融合对城区地物特征分类的BP-ANN/GA混合算法[J].电子与信息学报. 2006, 28(7): 1153-1159.
    [93]朱非亚. MLP在雷达参数反演和SAR图像分类中的应用[D].北京:中国科学院遥感应用研究所, 2004.
    [94] Dell'acqua F, Gamba P. Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking[J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(10): 2287-2297.
    [95] Gamba P, Savazzi P. Classification of urban environments in SAR images: a fuzzy clustering perspective[A]. Proceedings of IGARSS'98[C]. Seattle, WA. 1998: 351-353.
    [96] Foody G M, Mathur A. A relative evaluation of muticlass image classification bysupport vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42: 1335-1343.
    [97] Brown M, Lewis H G, Gunn S R. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38: 2346-2360.
    [98]赵萍,冯学智,林广发. SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报. 2003, 7(4): 309-315.
    [99] Dell'acqua F, Gamma P. Texture-based characterization of urban environments on satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(1): 153-159.
    [100] Dell'acqua F, Gamba P. Discriminating urban environments using multi-scale texture and multiple SAR image[A]. 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data[C]. 2003: 308-314.
    [101]朱彩英,蓝朝桢,靳国旺.纹理图象亮度阈值法提取SAR图象居民地[J].中国图象图形学报. 2003, 8(6): 616-619.
    [102]吴樊,王超,张红.基于纹理特征的高分辨率SAR影像居民区提取[J].遥感技术与应用. 2005, 20(1): 148-152.
    [103] Decker R J. Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherland[J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(9): 1950-1958.
    [104] Dekker R J. Texture Analysis of urban areas in ERS SAR imagery for map updating.[A]. 2001 IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas[C]. 2001: 226-230.
    [105] Tison C, Nicolas J M, Tupin F. Accuarcy of Fisher distributions and log-moment estimation to describe amplitude distributions of high resolution SAR images over urban areas[A]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium[C]. 2003: 1999-2001.
    [106] Tison C, Nicolas J M, Tupin F. Classification of X-band high resolution SAR images over urban areas: Markovian segmentation using Mellin transform[A]. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas[C]. 2003: 110-114.
    [107] Tison C, Nicolas J M, Tupin F, et al. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geosicence and Remote Sensing. 2004, 42(10): 2046-2057.
    [108] Duskunovic I, Heene G, Philips W. Urban area detection in SAR imagery using a new speckle reduction technique and Markov random field texture classification[A]. Proceedings of IEEE International Geoscience and RemoteSensing[C]. 2000: 636-638.
    [109] Hagg W, Segl K, Sties M. Classification of urban areas in multi-data ERS-1 images using structural features and a neural network[A]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium 'Quantitative Remote Sensing for Science and Applications'[C]. 1995: 901-903.
    [110] Gouinaud C, Tupin F, Maitre H. Potential and use of radar images for characterization and detection of urban areas[A]. Proceedings Of IGARSS'96[C]. Lincoln, NE. 1996: 474-476.
    [111] He C, Xia G S, Sun H. An adaptive and iterative method of urban area extraction from SAR images[J]. IEEE Geoscience and Remote Sensing Letters. 2006, 3(4): 504-507.
    [112]龚婕,杨士元. SAR图像的检测和分类方法[J].北京邮电大学学报. 2005, 28(4): 99-102.
    [113]安国成,刘振华,于文震.基于分形特征高分辨率SAR图像分类[J].现代雷达. 2006, 28(6): 26-29.
    [114] Woodcock C E, Strahler A H. The use of variograms in remote sensing: I. scene models and simulated images[J]. Remote Sensing of Environment. 1988, 25: 323-348.
    [115] Woodcock C E, Strahler A H. The use of variograms in remote sensing: II. real digital images[J]. Remote Sensing of Environment. 1988, 25: 349-379.
    [116] Curran P J. The semivariogram in remote sensing: an introduction[J]. Remote Sensing of Environment. 1988, 24: 493-507.
    [117] Miranda F P, Macdonald J A, Carr J R. Application of the semivarigram textural classifier (STC) for vegetation discrimination using SIR-B data of Borneo[J]. International Journal of Remote Sensing. 1992, 13(12): 2349-2354.
    [118] Miranda F P, Fonseca L E N, Carr J R, et al. Analysis of JERS-1 (Fuyo-1) SAR data for vegetation discrimination in northwestern Brazil using the semivariogram textural classifier[J]. International Journal of Remote Sensing. 1996, 17(17): 3523-3529.
    [119] Miranda F P, Fonseca L E N, Carr J R. Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest[J]. International Journal of Remote Sensing. 1998, 19(3): 549-556.
    [120] Xie Z X. A rotation- and flip-invariant algorithm for representing spatial continuity information of geographic images in content-based image retrieval[J]. Computers & Geosciences. 2004, 30: 1093-1104.
    [121] Wallace C S A, Watts J M, Yool S R. Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques[J].Computers & Geosciences. 2000, 26: 397-410.
    [122] Chen Q, Gong P. Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(5): 1106-1115.
    [123] Oliver M, Webster R, Gerrard J. Geostatistics in physical geography. Part I: theory[J]. Transactions of the Institute of British Geographer. 1989, 41(3): 259-269.
    [124] Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User’s Guide[M]. New York: Oxford University Press, 1992.
    [125]吴刚,杨敬安,王洪燕.一种基于变差函数的纹理图像分割方法[J].电子学报. 2001, 29(1): 44-47.
    [126]金淑英,李德仁,龚健雅.纹理周期性和相似性度量研究[J].测绘科学. 2006, 31(4): 34-36.
    [127] Herzfeld U C, Higginson C A. Automated geostatistical seafloor classification-principles, parameters, feature vectors, and discrimination criteria [J]. Computers & Geoscience. 1996, 22(1): 35-52.
    [128]孙即祥.现代模式识别[M].长沙:国防科技大学出版社, 2002.
    [129] Shufelt A. Performance evaluation and analysis of monocular building extraction from aerial imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(4): 311-326.
    [130]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报. 2006, 34(1): 155-158.
    [131] Clausi D A, Ed Jernigan M. A fast method to determine co-occurrence texture features[J]. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36(1): 298-300.
    [132] Tupin F, Maitre H, Mangin J F, et al. Detection of linear features in SAR images: application to road network extraction[J]. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36(2): 434-453.
    [133]高贵. SAR图像目标ROI自动获取技术研究[D].长沙:国防科技大学研究生院, 2007.
    [134]张琦.基于统计模型的SAR图像车辆目标检测方法研究[D].国防科技大学, 2006.
    [135] Lu R, Shen Y, Wang Q, et al. Ultrasound image segmentation based on the early vision model and watershed transform[A]. IMTC 2005—Instrumentation and Measurement Technology Conference[C]. Ottawa, Canada. 2005: 2016-2018.
    [136] Lemarechal C, Fjortoft R, Marthon P, et al. SAR image segmentation bymorphological methods[A]. the EUROPTO Conference on SAR Image Analysis, Modeling and Techniques[C]. Barcelona, Spain. 1998: 111-121.
    [137]梅天灿,李德仁,秦前清.分水岭变换在遥感影像线状特征提取中的应用[J].武汉大学学报信息科学版. 2004, 29(4): 338-341.
    [138] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence. 1991, 13(6): 583-598.
    [139] Soille P. Morphological image analysis: principles and applications(Second Edition)[M]. Springer-Verlag, NY, 2003.
    [140]孙即祥.图像分析[M].北京:科学出版社, 2005.
    [141] Lopès A, Fj?rtoft R, Ducrot D, et al. Edge detection and segmentation of SAR images in homogeneous region[M]. Singapore: World Scientific, 1999.
    [142] Marthon P, Paci B, Cubero-Castan E. Finding the structure of a satellite image[A]. in Proc. EurOpto Image and Signal Processing for Remote Sensing[C]. Rome, Italy. 1994: 669-679.
    [143] Najman L, Schmitt M. Geodesic saliency of watershed contours and hierarchical segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996, 18(12): 1163-1173.
    [144] R M. Target/shadow segmentation and aspect estimation in synthetic aperture radar imagery[A]. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V[C]. 1998: 188-196.
    [145] Lombardo P, Sciotti M, Kaplan L M. SAR prescreening using both target and shadow information[A]. Proc. IEEE Radar Conference[C]. 2001: 147-152.
    [146] Touzi R, Lopès A, Bousquet P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing. 1988, 26(6): 764-773.
    [147] Bovik A C. On detecting edges in speckle imagery[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1988, 36(10): 1618-1627.
    [148] Oliver C J, Blacknell D, White R G. Optimum edge detection in SAR[J]. IEE Proceedings on Radar, Sonar and Navigation. 1996, 143(1): 31-40.
    [149] Bors A G, Hancock E. Terrain analysis using Radar shape-from-shading[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(9): 1-17.
    [150] Chabert M, Tourneret J Y, Mesnager G. Edge detection in Speckled SAR images using the continuous wavelet transform[A]. Proceedings of International Geoscience and Remote Sensing Symposium[C]. Lincoln, Nebraska, USA. 1996: 1842-1844.
    [151] Dai M, Peng C, Chan A K, et al. Bayesian wavelet shrinkage with edge detectionfor SAR image despeckling[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(8): 1642-1648.
    [152]刘佳敏,周荫清.一种基于小波变换的雷达图像边缘提取方法[J].电子学报. 2003, 31(12): 1780-1783.
    [153]杨淑媛,王敏,焦李成.基于混合遗传算法的SAR图像边缘检测[J].红外技术. 2005, 27(1): 53-56.
    [154] Zaman M R, Moloney C R. A comparison of adaptive filters for edge-preserving smoothing of speckle noise[A]. Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing[C]. Minneapolis, Minnesota, USA. 1993: 77-80.
    [155] Gannugapati S S, Moloney C R. A ratio edge detector for speckled images based on maximum strength edge pruning[A]. Proceedings of IEEE International Conference on Image Processing[C]. Washington DC, USA. 1995: 165-168.
    [156] Geling G, Jonescu D. An edge detection operator for SAR images[A]. Canadian Conference on Electrical and Computer Engineering[C]. Vancouver, British Columbia, Canada. 1993: 707-709.
    [157] Fj?rtoft R, Marthon P, Lopès A. An optimum multiedge detector for SAR image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36(3): 793-802.
    [158]贾承丽. SAR图像道路和机场提取方法研究[D].长沙:国防科技大学, 2006.
    [159] Dellepiane S, De Laurentiis R, Giordano F. Coastline extraction from SAR images and a method for the evaluation of the coastline precision[J]. Pattern Recognition Letters. 2004, 25: 1461-1470.
    [160] Kelley B T, Madisetti V K. The fast discrete Radon transform—I: theory[J]. IEEE Transactions on Image Processing. 1993, 2(3): 382-400.
    [161]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999.
    [162]刘敏,严隽薇.基于自适应退火遗传算法的车间日作业计划调度方法[J].计算机学报. 2007, 30(7): 1164-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700