用户名: 密码: 验证码:
往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以商业牌号高强度变形镁合金ZK60和新型高强度稀土镁合金GW102K为研究对象,利用往复挤压大塑性变形工艺制备块体超细晶镁合金,旨在提高镁合金的室温力学性能和塑性成形能力。重点研究往复挤压镁合金的组织演变规律及细化机制、室温变形行为和断裂机制,揭示往复挤压镁合金的强韧化机制。以期提出改善镁合金力学性能和成形性能的有效方法及理论。获得如下结果:
     本文首先利用有限元数值模拟方法分析了往复挤压模具结构和工艺参数对材料流动的影响,优化了往复挤压模具及工艺,并利用物理实验验证了数值模拟结果的可靠性。往复挤压工艺数值模拟发现,模具结构和往复挤压工艺参数对材料应变的分布具有很大影响。模具过渡角越大、模具入口角越小、摩擦越小试样应变分布越均匀,但小量摩擦有利于应变的均匀分布。较小的挤压比可防止材料在变形过程中失稳;模具入口角为45°时应变分布最均匀,载荷最低;挤压速度对应变分布基本没有影响;根据变形温度的不同,塑变生热和摩擦生热能在4至8道次内弥补模具向环境散热引起的温降。对流场的模拟和实验研究发现,随着往复挤压道次的增加流线逐渐变得紊乱。材料的流动规律是:试样表层的材料背向流动,心部相向流动,进而在试样的上下两部分各形成一个流动漩涡。
     利用金相显微镜(OM)、扫描电镜(SEM)、电子背散射技术(EBSD)和透射电镜(TEM)从不同尺度分析了往复挤压变形温度和变形道次对ZK60和GW102K两种镁合金微观组织的影响规律。结果表明,往复挤压对ZK60和GW102K镁合金都具有强烈的细化能力,细化效率随道次增加而逐渐下降。往复挤压温度越低或挤压道次越多则组织越细、分布越均匀。随着往复挤压道次的增加或挤压温度的下降,大角度晶界数量增加,晶粒平均位向差增加。
     采用X射线衍射(XRD)和EBSD分析了往复挤压过程中镁合金织构的演变规律。发现晶粒在往复挤压过程中取向不断发生变化,挤压变形时{0002}基面向平行于挤压轴方向转动,镦粗变形时向垂直于挤压轴转动。往复挤压后挤压态镁合金的< 10 10>丝织构消失,进而转变为一种{0002}基面与挤压轴夹角20~30o的< 2201>丝织构。增加往复挤压道次或降低变形温度,织构强度趋于下降,但织构类型不变。往复挤压过程中镁合金组织的细化机制研究发现,其基本细化机制为动态再结晶细化,但在不同变形条件下具有不同的再结晶产生机制。在低温低变形量的粗晶镁合金中,通常以形核于孪晶界的非连续动态再结晶(DDRX)为主,以连续动态再结晶(CDRX)和旋转动态再结晶(RDRX)为辅;在中高温条件下以CDRX和RDRX为主,以DDRX为辅。第二相的细化机制主要是机械破碎。
     通过室温拉伸考查了往复挤压对镁合金室温力学性能的影响规律。结果显示,随着往复挤压道次的增加,ZK60合金的屈服强度和抗拉强度都逐渐下降,下降速率由快变慢;伸长率大幅上升,最高达到41%,比往复挤压前提高了2.6倍。另一方面,随着往复挤压道次的增加,GW102K合金的屈服强度和抗拉强度都显著增加,伸长率更是提高了3.2倍,达到22%。变形温度对两种合金力学性能的影响规律基本相同,即变形温度升高,屈服强度和抗拉强度降低,往复挤压还能显著降低挤压态镁合金的力学性能各向异性,消除挤压态镁合金的拉压不对称性。
     基于室温拉伸过程中的组织观察,分析了往复挤压ZK60和GW102K镁合金的室温变形机制和断裂机制。结果显示两种挤压态镁合金室温变形都很不均匀,裂纹主要形核于孪晶界和聚集的粗大第二相上。断裂形式在粗晶区为解理或准解理脆性断裂,在细晶区则为韧性断裂。往复挤压后ZK60合金室温变形均匀性显著提高,孪生数量逐渐下降,变形以滑移为主,断裂形式表现为微孔缩聚的穿晶韧性断裂。GW102K合金往复挤压后孪生仍为重要变形机制,裂纹仍主要萌生于第二相聚集区和孪晶界上,但断口上撕裂棱数量显著增多,均匀性也显著提高。
     以纯镁为参照,分析讨论了两种合金中不同性质和数量的第二相粒子对往复挤压过程中镁合金组织演变和力学性能的影响规律。研究发现,第二相的种类、数量和分布对往复挤压镁合金的组织和力学性能具有重要影响。ZK60合金中主要第二相MgZn2含量为2~4%(体积分数),尺寸小,分布均匀。而GW102K合金中主要第二相Mg24(Gd, Y)5含量5~9%,尺寸大,主要分布在晶界上,阻碍了变形过程中晶粒的转动。使得GW102K合金织构集中度低,强度高,塑性差,且未出现随往复挤压道次增加强度下降的现象。
     往复挤压镁合金强韧化机制的研究表明,往复挤压镁合金综合力学性的提高是细晶强化、织构强化、第二相强化、位错强化、晶界强化等多种机制协同作用的结果。晶粒细化后孪生减少,非基面滑移和晶界滑移激活,变形均匀性提高,是往复挤压镁合金主要的强韧化机制。织构主要通过改变基面取向因子来影响镁合金力学性能,是镁合金综合力学性能和各向同性提高的主要影响因素。第二相的数量、尺寸及分布可改变镁合金的变形机制从而影响其力学性能。因此,往复挤压镁合金的强韧化机制是以细晶强化、织构强化和第二相强化为主的复合强化机制。
Cyclic extrusion and compression (CEC) was used to produce ultra-fine grain size ZK60 and GW102K Mg alloys, in order to improve their mechanical properties and plastic deformation ability at room temperature (RT). The emphases were placed on the microstructure evolution, grain refinement mechanism, plastic deformation behavior, and the strengthening mechanism of CEC processed magnesium alloys.
     In order to optimize and provide an insight into the mechanics of the CEC processing, the flow field, stress field, temperature field and strain field of ZK60 alloy during CEC was simulated using finite element method (FEM). The effects of process parameters on the distribution of strain were investigated. Physical modeling (PM) experiment with same material was carried out to verify the results of the numerical simulations. Results show that the die geometry and process parameters have a significant effect on the strain distribution. A bigger corner radius and a lower extrusion angle are useful to improve the strain homogeneity. A little friction between die and billet is beneficial to strain homogeneity, but the high friction is detrimental. Result of FEM and PM shows that two vortex flow regions with opposite flow direction are formed inside the cylindrical billet during CEC deformation. Although the deformation is inhomogeneous in both end regions of billet, a uniform region of equivalent strain exists, and the extent of uniform deformation increased with the increase of billet length.
     The effects of CEC pass and CEC temperature on the grain size, grain boundaries structure and texture of ZK60 and GW102K Mg alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The results show that magnesium alloys can be refined effectively by CEC, and the grain refining efficiency decreases with the increase of CEC pass number. Low CEC temperature and high CEC pass should be used to produce ultra-fine grain size Mg alloys. With the increase of the pass number or decrease of the deformation temperature, the number fraction of low angle grain boundaries (LAGBs) tends to decrease while the average misorientation tends to increase for both of ZK60 and GW102K alloys.
     Texture evolution of ZK60 and GW102K alloy during CEC processing was studied using X-ray diffraction (XRD) and EBSD. Results shows that the texture of Mg alloys are affected by CEC pass number, CEC temperature and the second phase. The initial ED // < 10 10> fiber texture of extruded Mg alloys was disintegrated after CEC processing and developed a new < 2 201> fiber texture, in which the basal plane inclined 20~30o to extrusion direction. The texture intensity tends to decrease with the increase of accumulated strains or with the decrease of deformation temperature or with the increase of second phase. Thus, compared to pure Mg and ZK60 alloy, the intensity of texture of GW102K alloy is lowest.
     The grain refining mechanism of Mg alloys during CEC was studied. Results show that the primary refining mechanism is dynamic recrystallization (DRX). In the condition of low deformation temperature and low accumulated strains, the refining mechanism is dominated by discontinuous dynamic recrystallization (DDRX) and assisted by continuous dynamic recrystallization (CDRX) and rotation dynamic recrystallization (RDRX). In the case of high temperature and high CEC pass, the refining mechanism is combined both the CDRX and RDRX, while assisted by the DDRX. For the second phase, it is mechanical cracking refining mechanism.
     The effect of CEC processing on the mechanical properties of ZK60 and GW102K alloys were investigated by tensile testing at RT. Results show that the yield strength (YS) and ultimate tensile strength (UTS) of ZK60 alloy decreased with the increase of CEC pass, although the grain size were refined dramatically. On the other hand, the elongation of ZK60 alloy increased obviously after CEC processing. Different from ZK60 alloy, the YS and UTS of GW102K alloy increased with the increase of CEC pass. The grain size and YS of GW102K alloy is consistent with Hall-Petch relationship. Similar to ZK60, the elongation of GW102K alloy was dramatically increased after CEC. The temperature has similar effect to both of ZK60 and GW102K alloys, i.e., the YS and UTS decreased and elongation increased with the increased of the CEC temperature. Moreover, the intensity of strength-differential effect (SDE) of as-extruded ZK60 alloy was decreased noticeably.
     The plastic deformation behavior and fracture mode of CEC processed ZK60 and GW102K alloys at RT were investigated by OM, SEM and TEM. Results show that the plastic deformation of as-extruded Mg alloys tends to be rather heterogeneous. In the coarse grains the twinning is predominant deformation mechanism and in the fine grains it is dislocation. Twin boundaries are main crack nucleation sites. After CEC the non-basal dislocation activated and the fraction of twinning decreased, and the deformation became more homogeneous. Furthermore, the main fracture mode changed from quasi cleavage to ductile dimple.
     The effect of second phase on the microstructure and mechanical properties of ZK60 and GW102K alloys were studied. Results show that the volume of Mg24(Gd, Y)5, i.e. the main second phase in GW102K alloy, is about 5~9%. It is much more than that of MgZn2 in ZK60 (2~4%). The MgZn2 is fine and homogeneously distributed in matrix. Whereas, the Mg24(Gd, Y)5 mainly distributed near the grain boundaries. During CEC processing, the grain boundary sliding (GBS) in GW102K alloy was retarded. As a result, GW102K alloy has a higher strength and a lower elongation and a lower texture intensity than that of ZK60 alloy. Study
     The mechanical properties of CEC processed Mg alloy depends on its grain size, texture type, texture intensity, second phase volume and distribution, dislocation density, grain boundary structure, and so on. The strengthening mechanism can be described as a compound strengthening mechanism, which predominated by grain refinement strengthening, texture strengthening and second phase strengthening.
引文
[1]林金保,王渠东,陈勇军.镁合金塑性成形技术研究进展.轻金属,2006, 10: 76-80
    [2] Achim Wendt, Konrad Weiss, Arye Ben-Dov, et al. Magnesium castings in aeronautics applications–special requirements, Magnesium Technology 2005, Edited by N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, TMS (The Minerals, Metals & Materials Society), 2005: 269-273
    [3]黄少东,唐全波,赵祖德等.用镁合金促进兵器装备轻量化.金属成形工艺, 2002, 20(5): 8-10
    [4] ASM International, Magnesium and Magnesium Alloy. OH, Metal Park, 1999: 1
    [5] F.H. Froes, D. Eliezer, E. Aghion. The science technology and applications of magnesium. JOM, 1998, 9: 30-33
    [6]曾小勤,王渠东,吕宜振等.镁合金应用进展.铸造, 1998, 11: 39-43
    [7]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002
    [8]王渠东,丁文江.镁合金及其成形技术的最新发展, 21世纪材料成形加工技术与科学.柳百成编,北京:机械工业出版社, 2004, 3: 56-73
    [9]黄光胜,汪凌云,范永革.AZ31B镁合金挤压工艺研究.金属成型工艺, 2002, 5:11-14
    [10]钟皓,陈琪,闫蕴琪,张慧,翁文凭. AZ31镁合金的热挤压组织与力学性能分析.轻金属, 2006, 10: 76-80
    [11]陈振华,夏伟军,严红革等.镁合金材料的塑性变形理论及其技术.化工进展,2004,23(2): 127-131
    [12] I.J. Polmear. Magnesium alloys and applications.Mater Sci &Tech,1994,10:1-14.
    [13] J.B. Colleen, A.G. Mark. Current wrought magnesium alloys: Strengths and Weaknesses. JOM, 2005, 57(5): 46-49
    [14]余琨,黎文献,王日初等.变形镁合金的研究、开发及应用.中国有色金属学报, 2003,2: 277-288
    [15] T. Mukai. Application of superplasticity in commercial magnesium alloy for fabrication of structural components. Mater. Sci. Tech., 2000, 16(11-12): 1314-1319
    [16] Cahn Rw著,丁道云等译.非铁合金的结构与性能.北京:科学出版社, 1999: 105
    [17] Magnesium Technology. Proc. 49th Conf. International Magnesium Association, 1992
    [18]周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展.材料导报, 2003, 17(11): 16-19
    [19] L.L. Rokhlin. Magnesium alloys containing rare earth metals. London:Taylor and Francis, 2003
    [20] L.L. Rokhlin. Advanced Magnesium Alloys with Rare-earth Metal Additions, Advanced Light Alloys and Composites (R. Ciach ed.), 1998: 443-448
    [21] WE alloys in aerospace and high performance cars. Foundry Trade J., 2000, 2:13
    [22] S. Kamado, S. Iwasawa, K. Ohuchi, et al. Aging Hardening Characteristics and High Temperature Strength of Mg-Gd and Mg-Tb alloys. Journal of Japan Institute of Light Metals, 1992, 42(12): 727-733
    [23] L.L. Rokhlin, N.I. Nikitina. Magnesium-Gadolinium and Magnesium–Gadolinium -Yttrium alloys. Z. Metallkd, 1994, 85: 819-823
    [24] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota. Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996; Institute of Materials, 1997: 327-342
    [25] I.A. Anyanwu, S.Kamado, Y. Kojima. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Materials Transactions, 2001, 42(7): 1206-1211
    [26]何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学,2007
    [27] Margam Chandrasekaran, Yong Ming Shyan John. Effect of materials and temperature on the forward extrusion of magnesium alloys. Materials Science and Engineering A, 2004,381: 308-319
    [28]丁文江等著.镁合金科学与技术.北京:科学出版社,2007
    [29] H. Watanabe, T. Mukai, K. Ishikawa. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Journal of Materials Science, 2004, 39: 1477-1480
    [30] M.T. Perez-Prado, J.A. Valle, J.M. Contreras, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scripta Materialia, 2004, 50: 661-665
    [31] N. Ogawa, M. Shiomi, K. Osakada. Forming limit of magnesium alloy at elevated temperature for precision forging. Machine Tools and Manufacture, 2002, 42: 607-614
    [32] S. Schumann. The paths and strategies for increased magnesium applications in vehicles. Material Science Forum 2005, 488-489: 1-8
    [33] Cao Jianyong, Zhang Zonghe, Xiang Dongxia, etc. Magnesium Motorcycle Application. Material Science Forum 2005, 488-489: 915-918
    [34] Naiyi Li. Magnesium advances and application in north America automotive industry. Material Science Forum 2005, 488-489: 931-935
    [35] Yoshihito Kawamura, Kentaro Hayashi, Akihisa Inoue, Tsuyoshi Masumoto. Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa. Mater Trans 2001, 42: 1172-1176
    [36] F.H. Froes, D. Eliezer, E. Aghion. Proceedings of the second Israeli international conference on magnesium science & technology. Dead Sea, Israel, 2000: 43
    [37] Robert E. Brown. Magnesium wrought and fabricated products yesterday, today and tomorrow. Magn Techn, 2002: 155
    [38]张士宏,许沂,王忠堂等.镁合金成形加工技术.世界科技研究与发展, 2001, 23(6): 18-21
    [39]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [40]吕炎.镁合金上机闸等温精锻工艺的研究.哈尔滨工业大学学报,2000,32 (4):127-129
    [41] Yu Qi, Huang Shaodong, Tang Quanbo, et al. Research and application of magnesium alloys in special components. Material Science Forum 2005, 488-489: 919-922
    [42]谢春晓,陈丙璇,刘凯. AZ31变形镁合金的研究与开发.金属世界, 2006, 2: 22-26
    [43]陈振华.变形镁合金.北京:化学工业出版社, 2005
    [44] Y.V.R.K. Prasad, K.P. Rao. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability. Materials Science and Engineering A, 2008, 487: 316–327
    [45] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981, 12: 409-418
    [46] D. Hull, D.J. Bacon. Introduction to dislocations, 3rd ed., Oxford, New York : Pergamon Press: 1984
    [47] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature. Metallurgical and Materials Transactions A, 2005, 36A: 1689-1696
    [48]小池淳一,宫村剛夫.多结晶マヮネツゥム合金板にぉけゐ塑性变形的微視的機構.輕金屬, 2004, 54(11), 460
    [49] C.S. Roberts, Magnesium and Its alloys. John Wiley & Sons, Inc. 1960, New York.
    [50] M.H. Yoo, B.T.M. Loh. Structural and elastic properties of zonal twin dislocations in anisotropic crystals. J.A. Simmons, R. Wit, R. Bullough. Proceedings of the conference on fundamental aspect of dislocation theory. Washington: Nat Bur Stand, 1970: 479-493
    [51] K. Mathis, F. Chmelik, Z. Trojanova, et al. Investigation of some magnesium alloys by use of the acoustic emission technique. Mater Sci Eng A, 2004, 387-389: 331-335
    [52] J.W. Christian, S. Mahajan. Deformation twinning. Progress in Materials Science, 1995, 39: 1-15
    [53] M.D. Nave, M.R. Barnett. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Materialia, 2004, 51: 881-885
    [54] S. Hwang, C. Nishimura, P.G. McCormick. Deformation mechanism of nanocrystalline magnesium in compression. Scripta Mater., 2001, 44: 1507-1511
    [55] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K. Mater. Trans., 2003, 44: 445–451
    [56] R.C. Gifkins, T.G. Langdon. On the Question of Low-Temperature Sliding at Grain Boundaries. Journal of the Institute of Metals, 1964-1965, 93: 347-352
    [57] Emley. Principles of Magnesium Technology. Oxford: Pergamon, 1966: 122
    [58] S.K. Das, C.F. Chang. Magnesium Alloys and their Applictions. Oberursel, FRG DGM Information sgesellschaf, 1992
    [59] G. Nussbaum. Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy. Scripta Metall., 1989, 23: 1079-1084
    [60] B.Q. Han, D.C. Dunand. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng. A, 2000, 277: 297-304
    [61] M. Mabuchi, K. Kubota, K. Higashi. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Mater Trans JIM, 1995, 36: 1249-1254
    [62] Hroyuki Watanabe, Hirosuke Tsutsui, Toshi Mukai. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Mater Trans JIM, 2001, 42 (7): 1200-1205
    [63] A. Luo, M.O. Pekguleryuz. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1994, 29: 5259-5271
    [64] Andrzej Rosochowski. Processing metals by severe plastic deformation. Solid State Phenomena, 2005, 101-102: 13-22
    [65] R.Z. Valiev. Nanomaterial advantage. Nature, 2002, 419: 887-888
    [66] R.Z. Valiev, R.K. IsIamgaliev. Bulk nanostructureal materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45:103-189
    [67] R.Z. Valiev. Recent Progress in Developing Bulk Nanostructured SPD Materials with Unique Properties. Solid State Phenomena, 2005, 101-102: 3-12
    [68]许晓嫦,刘志义,党朋,谭曼玲.强塑性变形(SPD)制备超细晶材料的研究现状与发展趋势,材料导报, 2005, 19(1): 1-5
    [69] V.S. Zhernakov, V.V. Latysh. The developing of nanostructured SPD Ti for structural use. Scripta mater., 2001, 44, 1772-1774
    [70] P. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon. An investigation of the properties of an Al-Mg-Li-Zr alloy after equal-channel angular pressing. Mater, Sci. Forum, 1996, 217-222: 1013-1018
    [71] Z. Horita, M. Furukawa, M. Nemoto. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000, 48: 3633-3640
    [72] Akihiro Yamashita, Zenji Horita, T G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering A, 2001, 300: 142-147
    [73] H.K. Lin, J.C. Huang, T.G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A, 2005, 402: 250-257
    [74] Y. Nishida, H. Arima, J. C. Kim, et al. Rotary-die equal-channel angular pressing of an Al-7mass%Mg alloy, Scripta Mater., 2001, 45: 261-266
    [75] G.J. Raab, R.Z. Valiev, T.C, Lowe, et al. Continuous processing of ultrafine grained Al by ECAP-Conform. Mater. Sci. Eng. A, 2004, 382: 30-34
    [76] K. Nakashima, Z. Horita, M. Nemoto, et al. Development of a multi-pass facility for equal-channel angular pressing to high total strains. Mater. Sci. Eng. A, 2000, 281 (1–2): 82-87
    [77] R.Z.Valiev, I.V. Alexandrov. Development of severe plastic deformation techniques for the fabrication bulk nanostructured materials. Ann. Chim. Sci. Mat., 2002, 27(3): 3-14
    [78] R. Wadsack, R. Pippan, B. Schedler. Structural refinement of chromium by severe plastic deformation. Fusion Engineering and Design, 2003, 66-68: 265-269
    [79] R.K. IsIamgliev, N.F. Yunusova, I.N. Sabirov, et al. Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation. Materials Science and Engineering A 2001, 319-321: 877-881
    [80] A.A. Popov, I. Yu. Pyshmintsev, S.L. Demakov, et al. Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation. Scripta Mater., 1997, 37 (7): 1089-1094
    [81] M.T. Pérez-Prado, J.A del Valle, O.A Ruano. Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scripta Materialia, 2004, 51: 1093-1097
    [82] D.G. Morris. Mechanical behaviour of nanostructured materials. Uetikon-Zurich, Switzerland: TransTech, 1998
    [83] R.Z. Valiev, T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci, 2006, 51: 881-981
    [84] Y.T. Zhu, T.G. Langdon. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM, 2004, 56(10): 58-63
    [85] R.Z. Valiev, I.V. Alexandrov, T.C. Lowe, Y.T. Zhu. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 2002, 17: 5-8
    [86] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 2001, 45: 89-94
    [87] W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing. Scripta Mater. 47 (2002): 39-44
    [88] P. Mehrotra, T.M. Lillo, S.R. Agnew. Ductility enhancement of a heat-treatable magnesium alloy. Scripta Mater., 2006, 55: 855-858
    [89] A. Rosochowski, L. Olejnik. Finite element simulation of severe plastic deformation processes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2007, 221 (4): 187-196
    [90] P.B. Prangneil, C. Harris, S.M. Roberts. Finite element modelling of equal channel angular extrusion. Scr. Mater., 1997, 37: 983-989
    [91] D.P. DeLo, S.L. Semiatin. Finite-element modeling of nonisothermal equal-channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (5): 1391-1402
    [92] R. Srinivasan. Computer simulation of the equichannel angular extrusion (ECAE) process. Scripta Materialia, 2001, 44 (1): 91-96
    [93] T, Suo, Y. Li, Y. Guo, Y. Liu. The simulation of deformation distribution during ECAP using 3D finite element method. Materials Science and Engineering A, 2006, 432 (1-2): 269-274
    [94] R.K. Oruganti, P.R. Subramanian, J.S. Marte, et al. Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion. Materials Science and Engineering A, 2005, 406 (1-2): 102-109
    [95] R.B. Figueiredo, I.P. Pinheiro, M.T.P. Aguilar, et al. The finite element analysis of equal channel angular pressing (ECAP) considering the strain path dependence of the work hardening of metals. Journal of Materials Processing Technology, 2006, 180 (1-3): 30-36
    [96] S. Li, I.J. Beyerlein, C.T. Necker, et al. Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Materialia, 2004, 52 (16): 4859-4875
    [97] S.C. Baik, Y. Estrin, H.S. Kim, et al. Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing. Materials Science and Engineering A, 2003, 351 (1-2): 86-97
    [98] R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, et al. The innovation potential of bulk nanostructured materials. Advanced Engineering Materials, 2007, 9(7): 527– 533
    [99] T. Erlien, J.C. Werenskiold, A. Lilleby, et al. Poster presented at the Intl. Conference NanoSPD3, Fukuoka, Japan, September 22-26, 2005
    [100] W.K. Kim, Y.W. Sa. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater., 2006, 54: 1391-1395
    [101] H.J. Roven, Manping Liu. Nanostructured metals by SPD–technology and commercialization. The Second Chinese-Norwegian Symposium on Light Metals, Shanghai, China, November 5-9, 2007
    [102] J. Richert, M. Richert, J. A. Zasadzinski, Korbel, Patent, No.123026, 1979
    [103] Shihwei Lee, Jienwei Yeh,Yongshun Liao. Premium 7075 Aluminium Alloys Produced by Reciprocating extrusion. Advanced Engineering Materials, 2004, 6: 936-943
    [104] M. Richert, Q. Liu, N. Hansen. Microstructural Evolution over a Large Strain Range in Aluminium Deformed by Cyclic Extrusion Compression. Materials Science Engineering A, 1999, 260, 275-283
    [105] J. Richert, M. Richert, kraków. A New Method for Unlimited Deformation of Metals and Alloys. Aluminum, 1986, 8: 604-607
    [106] M. Richert, H.P. Stuwe, M.J. Zehetbauer. Working Hardening and Microstructure of AlMg5 After Severe Plastic Deformation by Cyclic Extrusion and Compression. Materials Science and Engineering A, 2003, 355: 180-185
    [107] Shiying Yuan, J.W. Yeh, Chunhuei Tsau. Improved Microstructure and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Ectrusion Method. Materials Transactions, 1999, 40: 233-241
    [108]陆文林,王勇,冯泽舟等.采用沙漏挤压工艺制备超超细晶材料.热加工工艺, 2001, (2): 10-12
    [109] H.J. Zughaer, J. Nutting. Deformation of Sintered Copper and 50Cu-50Fe Mixture to Large Strains by Cyclic Extrusion and Compression. Materials Science and Technology, 1992, (8): 1104-1107
    [110] J.W. Yeh, Shiying Yuan, Chaohuang Peng. Microstructure and Tensile Properties of an Al-12Wt Pct Si Alloy Produced by Reciprocating Extrusion. Metallurgical and Materials Transactions, 1999, 30 A: 2503-2512
    [111] Hsushen Chu, Kuoshung Liu, Jienwei Yeh. An in Situ Composite of Al (graphite, Al4C3) Produced by Reciprocating Extrusion. Materials Science and Engineering A, 2000, 277: 25-32
    [1] S.M. He, X.Q. Zeng, L.M. Peng, et al. Microstructure and trengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427: 316–323
    [2] Hroyuki Watanabe, Hirosuke Tsutsui, Toshi Mukai. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Mater Trans JIM, 2001, 42 (7): 1200-1205
    [3] J.B. Lin, Q.D. Wang, L.M. Peng, T. Peng. Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-Extruded ZK60 Magnesium Alloy. Mater. Trans., 2008, 49: 1021-1024
    [4] J. Richert, M. Richert, kraków. A New Method for Unlimited Deformation of Metals and Alloys. Aluminum, 1986, 8: 604-607
    [5] M. Mabuchi, K. Kubota, K. Higashi. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Mater Trans JIM, 1995, 36: 1249-1254
    [6]刘满平. Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究. [博士论文],上海,上海交通大学,2003
    [7] J.F. Nie, B.C. Muddle. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta mater., 2000, 48: 1691-1703
    [8]电子背散射分析方法通则,GB/T19501-2004
    [9]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [10] Y.N. Wang, J.C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics, 2003, 81: 11-26
    [1] R.Z. Valiev. Nanomaterial advantage. Nature, 2002, 419: 887-888
    [2] D.P. DeLo, S.L. Semiatin. Finite-element modeling of nonisothermal equal-channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (5): 1391-1402
    [3] R. Srinivasan. Computer simulation of the equichannel angular extrusion (ECAE) process. Scripta Materialia, 2001, 44 (1): 91-96
    [4] T, Suo, Y. Li, Y. Guo, Y. Liu. The simulation of deformation distribution during ECAP using 3D finite element method. Materials Science and Engineering A, 2006, 432 (1-2): 269-274
    [5] R.B. Figueiredo, I.P. Pinheiro, M.T.P. Aguilar, et al. The finite element analysis of equal channel angular pressing (ECAP) considering the strain path dependence of the work hardening of metals. Journal of Materials Processing Technology, 2006, 180 (1-3): 30-36
    [6] J.Y. Suh, H.S. Kim, J.W. Park, J.Y. Chang. Finite element analysis of material flow in equal channel angular pressing. Scripta mater., 2001, 44: 677-681
    [7] H.S. Kim. Finite element analysis of deform ation behaviour of metals during equal channel multiangular pressing. Materials Science and Engineering A, 2002, 328: 317-323
    [8] S.B. Xu, G.Q. Zhao, X.W. Ma, G.C. Ren. Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials. Journal of Materials Processing Technology, 2007, 184: 209-2l6
    [9] A. Rosochowski, R. Rodiet, P. Lipinski. Finite element simulation of cyclic extrusion- compression. In Metal forming 2000 (Eds M. Pietrzyk, J. Kusiak, and J. Majta), in Proceedings of the 8th International Conference on Metal Forming, Krakow, Poland, 3-7 September 2000, pp. 253-259
    [10] MARC Reference manual Volume A.
    [11] A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001, 49(7): 1199-1207
    [12]张先宏.镁合金变形特性与温挤过程数值模拟和实验研究. [博士论文],上海,上海交通大学, 2003
    [13] H.T. Zhou, D.Y. Li, X.Q. Zeng. Flow Stress Model Development and Hot Extrusion for Liquidus Casting ZK60 Magnesium Alloy , The 18th International Conference Numerical Methods in Industrial Forming Processes,U.S.A : Columbus, ohio, 2004: 1134
    [14] B. Aour, F. Zairi, M. Nait-Abdelaziz, et al. A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. International Journal of Mechanical Sciences, 2008, 50: 589–602
    [15] F. Djavanroodi, M. Sabeghi, K. Abrinia. Analysis of the Parameters Affecting Warping In Radial Forging Process. Am. J. Applied Sci., 2008, 5 (8): 1013-1018
    [16] N. Medeiros, J.F.C. Lins, L.P. Moreira, et al. The role of the friction during the equal channel angular pressing of an IF-steel billet. Materials Science and Engineering A, 2008, 489: 363-372
    [17] R.K. Oruganti, P.R. Subramanian, J.S. Marte, et al. Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion. Materials Science and Engineering A, 2005, 406: 102–109
    [18] Lin Jinbao, Wang Qudong, Peng Liming, Hans J. Roven. Study on deformation behavior and strain homogeneity during cyclic extrusion and compression. Journal of Materials Science, 2008. DOI: 10.1007/s10853-008-2994-2
    [19] A. Rosochowski, L. Olejnik. Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J. Mater. Process. Technol., 2002, 125–126: 309–316
    [1] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981, 12: 409-418
    [2] R.Z. Valiev. Nanomaterial advantage. Nature, 2002, 419: 887-888
    [3] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev. Plasitic deformation of alloys with submicron- grained structure. Mater. Sci. Eng. A, 1991, 137: 35-40
    [4] Andrzej Rosochowski. Processing metals by severe plastic deformation. Solid State Phenomena, 2005, 101-102: 13-22
    [5] V.S. Zhernakov, V.V. Latysh. The developing of nanostructured SPD Ti for structural use. Scripta mater., 2001, 44, 1772-1774
    [6] H.K. Lin, J.C. Huang, T.G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A, 2005, 402: 250-257
    [7] M. Richert, H.P. Stuwe, M.J. Zehetbauer. Working Hardening and Microstructure of AlMg5 After Severe Plastic Deformation by Cyclic Extrusion and Compression. Materials Science and Engineering A, 2003, 355: 180-185
    [8] R.Z. Valiev, T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci, 2006, 51: 881-981
    [9]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [10]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究. [博士论文],上海,上海交通大学,2006
    [11] L. Jin, D.L. Lin, D.L. Mao, et al. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion. J. Alloys Compd., 2006, 426: 148-154
    [12] P. Klimanek, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Meterials Sci. Eng. A, 2002, 324: 145-150.
    [13] H. Miura, X. Yang, T. Sakai, H. Nogawa, S. Miura, Y.Watanabe, J.J. Jonas. High temperature deformation and extended plasticity in Mg single crystals. Philos. Mag. 2005, 85: 3553–3565.
    [14] W.J. Kim, S.I. Hong, Y.S. Kim, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51: 3293-3307
    [15]胡庚祥,蔡珣.材料科学基础.上海:上海交通大学出版社, 2000
    [16] J.B. Lin, Q.D. Wang, L.M. Peng, et al. Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-Extruded ZK60 Magnesium Alloy. Mater. Trans. 49, 2008: 1021-1024
    [17] T. Mukai, M. Yamanoi, H. Watanabe, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mate., 2001, 45: 89-94
    [18] W.J. Kim, S.I. Hong, Y.S. Kim. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater, 2003, 51: 3293-3307
    [19]何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学,2007
    [20] M.M. Avedesian, H. Baker. Magnesium and Magnesium Alloys. ASM International, OH: Metal Park, 1999
    [21] S.W. Lee, H.Y. Wang, Y.L. Chen, J.W. Yeh, C.F. Yang. An Mg-Al-Zn Alloy with very high specific strength and superior high-strain-rate superplasticity processed by reciprocating extrusion. Advanced Engineering Materials, 2004, 6: 948-952
    [22] Shihwei Lee, Jienwei Yeh, Yongshun Liao. Premium 7075 Aluminium Alloys Produced by Reciprocating extrusion. Advanced Engineering Materials, 2004, 6: 936-943
    [23] M. Richert, Q. Liu, N. Hansen. Microstructural Evolution Over A Large Strain Range in Aluminium Deformed by Cyclic Extrusion Compression. Materials Science Engineering A, 1999, 260: 275-283
    [24] M. Richert, H.J. Mcqueen, J. Richert. Microband Formation In Cyclic Extrusion Compression Of Aluminum. Canadian Metallurgical Quarterly, 1998, 37: 449-457
    [25] S.E. Ion, F.J. Homphreys, S.H. Whice. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Mater, 1982, 30: 1909-1919
    [26] J.C. Tan, M.J. Tan. Dynamic continous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering A, 2003, 339: 124-132
    [27] S. Gourdet, F. Montheillet. A model of continuous dynamic recrystallization. Acta Materialia, 2003, 51: 2685-2699
    [28]陈振华.变形镁合金.北京:化学工业出版社,2005
    [29] J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Materials Science and Engineering A, 2003,355: 68-78
    [30]徐春杰,郭学锋,张忠明等.往复挤压及正挤压AZ91D镁合金丝材的组织及性能.稀有金属材料与工程, 2007, 36(3): 500-504
    [31]张忠明,马莹,徐春杰等.往复挤压Mg2Si增强镁铝基复合材料的组织与性能.铸造技术, 2007, 28(6): 808-811
    [32] A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of pastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001,49,1199~1210
    [33] H. Takuda, H. Fujimoto, N. Hatta, Modelling on flow stress of Mg-Al-Zn alloys at evevated temperatures, Journal of Materials Processing Technology, 1998,80-81,513-516
    [1] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981, 12: 409-418
    [2] G. Nussbaum. Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy. Scripta Metall., 1989, 23: 1079-1084
    [3] B.Q. Han, D.C. Dunand. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng. A, 2000, 277: 297-304
    [4] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 2001, 45: 89-94
    [5] W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing. Scripta Mater. 47 (2002): 39-44
    [6] P. Mehrotra, T.M. Lillo, S.R. Agnew. Ductility enhancement of a heat-treatable magnesium alloy. Scripta Mater., 2006, 55: 855-858
    [7] L. Jin, D.L. Lin, D.L.Mao, et al. Mechanical properties and Microstructure of AZ31 Mg alloy processed by two-step Equal Channel Angular Extrusion. Materials Letters, 2005, 59: 2267-2270
    [8]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [9] W.J. Kim, C.W. An, Y.S. Kim, et al. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing. Scripta Mater., 2002, 47: 39-44
    [10] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater., 2001, 45 (1): 89-94
    [11] P. Mehrotra, T.M. Lillo, S.R. Agnew. Ductility enhancement of a heat-treatable magnesium alloy. Scripta Mater., 2006, 55: 855-858
    [12] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature. Metall. Mater. Trans. A, 2005, 36: 1689–1696
    [13] J.B. Lin, L.M. Peng, Q.D. Wang, H.J. Roven. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China E, 2008,
    [14] L. Wu, A. Jain, D.W. Brown, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Materialia, 2008, 56 (4): 688–695
    [15] P. Klimanek, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Meterials Sci. Eng. A, 2002, 324: 145-150
    [16] J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su, X. Zhao. Effect of grain size on mechanical property of Mg–3Al–1Zn alloy. Scripta Mater., 2008, 59: 63-66
    [17]王渠东,林金保,彭立明,陈永军.往复挤压变形对ZK60镁合金力学性能的影响.金属学报, 2008, 1: 55-58
    [18] J.B. Lin, Q.D. Wang, L.M. Peng, T. Tao. Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-Extruded ZK60 Magnesium Alloy. Mater. Trans. 2008, 49: 1021–1024
    [19]周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展.材料导报, 2003, 17(11): 16-18
    [20] W.A. Spitzig, O. Richmond. Effect of Pressure on the Flow Stress of Metals. Acta Metall, 1984, 32: 457-463
    [21] S. Mueller, K. Mueller, M. Rosumek M, W. Reimers. Microstructure development of differently extruded Mg alloys, Part I. Aluminium, International Journal for Industry, Research and Appl., 2006, 82 (4): 327-331
    [22] M.M. Avedesian, H. Baker. Magnesium and magnesium alloys, ASM specialty handbook. Materials Park, OH: ASM International, 1999: 17
    [23]郭强,严红革,陈振华,张辉.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响.金属学报, 2006, 42(7): 739-744
    [24] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Bulk Nanostructure Materials from severe plastic deformation. Prog Mater Sci, 2000, 45: 103-189
    [25]陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究.材料导报, 2006, 20(8): 107-113
    [26] M.T. Perex-Prado, J.A. Valle, O.A. Ruano. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling. Scripta Mater, 2004, 50: 667-671
    [27]麻彦龙,左汝林,汤爱涛等.时效ZK60镁合金中的合金相探索.重庆大学学报, 2004, 27(12): 91-94
    [28]何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学,2007
    [1] Y.V.R.K. Prasad, K.P. Rao. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability. Materials Science and Engineering A, 2008, 487: 316–327
    [2]陈振华.变形镁合金.北京:化学工业出版社, 2005
    [3] A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater, 2001, 49: 1199-1207
    [4] C.S. Roberts, Magnesium and Its alloys. John Wiley & Sons, Inc. 1960, New York.
    [5] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature. Metallurgical and Materials Transactions A, 2005, 36A: 1689-1696
    [6]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究. [博士论文],上海,上海交通大学,2006
    [7]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [8] J.B. Lin, L.M. Peng, Q.D. Wang, H.J. Roven. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China E, 2008 (In press)
    [9] M.A. Meyers, O. Vohringer, V.A. Lubarda. The onset of twinning in metals: A constitutive description. Acta Mater., 2001, 49: 4025-4039.
    [10] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater., 2004, 52: 5093-5103.
    [11] M.R. Barnett. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59: 696-698.
    [12] R.E. Reed-Hill, W.D. Robertson. Aditional modes of deformation twinning in magnesium. Acta Metall. 1957, 5: 717–727.
    [13] Y. Chino, K. Kimura, M. Hakamada, M. Mabuchi. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy. Meterials Sci. Eng. A, 2008, 485: 311–317.
    [14] R. Lapovok, P.F. Thomson, R. Cottam. The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60. J. Mater. Sci., 2005, 40: 1699-1708.
    [15] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K. Mater. Trans., 2003, 44(4): 445-451
    [16] Y.Q. Cheng, Z.H. Chen, W.J. Xia. Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by equal channel angular rolling. J. Mater. Sci., 2007, 42: 3552-3556
    [17] P. Klimanek, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Meterials Sci. Eng. A, 2002, 324: 145-150.
    [18] E.W. Kelley, W.F. Hosford. The deformation characteristics of textured magnesium. Transactions of the metallurgical society of AIME, 1968, 242: 654-661
    [19] B.C. Wonsiewwicz, W.A. Backofen. Plasticity of magnesium crystals. Trans. AIME, 1967, 239: 1422-1431
    [1] Emley. Principles of Magnesium Technology. Oxford: Pergamon, 1966: 122
    [2] S.K. Das, C.F. Chang. Magnesium Alloys and their Applictions. Oberursel, FRG DGM Information sgesellschaf, 1992
    [3] J.B. Lin, Q.D. Wang, L.M. Peng, Y.J. Chen, W.J. Ding. Effect of cooling rate on the microstructure and mechanical properties of ZK60 alloy. Materials Science Forum, 2007: 319-322
    [4]陈勇军.往复挤压镁合金的组织结构与力学性能研究. [博士论文],上海,上海交通大学,2007
    [5] W.J. Kim, S I Hong, Y.S. Kim, etc. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51: 3293–3307
    [6]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究. [博士论文],上海,上海交通大学,2006
    [7] Yu Yoshida, Lawrence Cisar, Shigeharu Kamado, Yo Kojima. Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy. Materials Transactions, 2003, 44: 468-475
    [8] Yu Yoshida, Keita Arai, Shota Itoh, Shigeharu Kamado, Yo Kojima. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Science and Technology of Advanced Materials, 2005, 6: 185–194
    [9] W.J. Kim, Y.K. Sa. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Materialia, 2006, 54: 1391-1395
    [10]陈振华.变形镁合金.北京:化学工业出版社, 2005
    [11] K. Mathis, J. Gubicza, N.H. Nam. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. J Alloys Comp., 2005, 394: 194-199
    [12] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature. Metallurgical and Materials Transactions A, 2005, 36A: 1689-1696
    [13] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater, 2003, 51: 2055-2065
    [14] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K. Mater. Trans., 2003, 44: 445–451
    [15] R. L. Bell, T. G. Langdon. An Investigation of Grain-Boundary Sliding During Creep. J. Mater. Sci., 1967, 2: 313–323
    [16] Mukai Toshiji, Yamanoi Masashi, Watanabe Hiroyuki, and Higashi Kenji, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Materialia 45 (2001) 89-94.
    [17]何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究. [博士论文],上海,上海交通大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700