用户名: 密码: 验证码:
考虑卸载扰动状态的3D弹粘塑性本构模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扰动状态理论(DSC)认为实际状态应该是相对完整状态和完全调整状态以扰动函数作为权值相加的平均体现。本文针对软土卸荷流变问题,采用扰动状态理论,从室内卸荷试验入手,建立了从一维到三维的卸荷流变本构模型。本文主要工作和研究成果如下:
     1.通过有限元模拟,设计了基坑不同扰动区域应力路径室内流变试验。试验主要结论是:①一维卸荷试验中,土体卸荷后孔隙比与时间对数成线性关系,且斜率基本相同;卸荷比一定时,隆起模量随时间呈指数衰减;卸荷后的隆起模量远大于加荷时的压缩模量,其最小比值介于2-7之间。②不论是被动区土的卸荷蠕变还是主动区土的卸荷蠕变,都随着卸荷水平的增大而出现瞬时变形和蠕变的三个阶段(衰减蠕变,等速蠕变和加速蠕变)。试验发现,上海软土一般不出现从蠕变的第二阶段(等速蠕变阶段)直接进入蠕变第三阶段(加速蠕变阶段)的现象。③无论是基坑被动区的三向卸荷还是主动区的侧向卸荷,卸荷时均引起孔压的下降,但在卸荷结束时孔压均增大,上升到正值。开挖工程最危险时刻不是出现在施工竣工时,而是出现在经过一段时间蠕变后,其孔压达到最大时。
     2.利用土体卸荷室内试验规律和殷建华提出的等效时间概念,推导了分步卸荷和连续卸荷的一维弹粘塑性本构方程。卸荷下的弹粘塑性本构模型和Yin-Graham模型可以归一化为一维(加载,卸载)弹粘塑性本构模型。
     3.采用广义Kelvin元件模型代表软土流变的相对完整状态,并将其推广到三向应力状态;根据等效时间概念,采用修正剑桥模型作为屈服面方程和相关联的流变法则,建立了软土卸荷下三维弹粘塑性模型。并将其作为完全调整状态;修正了Desai提出的扰动函数,在扰动函数中考虑体应变和剪应变的影响,采用DSC理论,建立了软土卸荷下的三维扰动状态模型。
     4.将卸荷流变的扰动状态模型应用到近邻地铁隧道的深基坑工程中.利用FLAC~(3D)建立了三维数值模型,对基坑进行了全过程动态施工模拟。计算结果表明:①坑内不同区域开挖对围护结构倾斜灵敏度不一样。开挖墙间留土流变速率显著增加,需分段,限时,平衡对称开挖。②模型可以反映地铁隧道纵向不均匀沉降特征。
Disturbed state concept theory(DSC) maintains that actual response state of materials under loading comes forth as a weighted average value of two conference response states, namely relatively intact state and fully adjusted state, with a weight factor named disturbance factor. Aimed at rheologic problems under unloading of soft soils, a three-dimensional rheology constitutive model considering unloading and disturbance were established based on disturbed state concept theory and results of laboratory test. Main work and results in the paper are showed as follows:
     1. Rheologic laboratory tests on stress paths were designed and carried out based on the analysis of stress results of the excavation by FEM. The main results of laboratory tests were listed as follows :(1)The linear relation between void ratio and log-time was found and the slopes of void ratio-logt curves were almost the same in one-dimensional unloading laboratory test; the exponential decay function was adopted for heave modulus-t curve under constant unloading ratio; heave modulus is much higher than compression modulus and the least ratio between them is about 2~7.(2)With the increase of unloading,instantaneous strain and three periods in creep strain,namely damp creep, equal velocity creep and acceleration creep, occured both in active zone and in passive zone. However, equal velocity creep can be found not to change acceleration creep in the test.(3)Pore pressure decreased under unloading, then increased to positive value after unloading whether in active zone or in passive zone. so the most dangerous time is not at the completing the construction but after the construction when pore pressure reaches the biggest
     2.Based on laboratory test results under unloading and the concept of equivalent time according to Yin Jian-hua, one-dimensional elastic visco-plastic constitutive equations including substep unloading and constinuous unloading were established. The elastic visco-plastic constitutive model under unloading and Yin-Graham model can be normalized as one dimensional elastic visco-plastic constitutive model.
     3.The generaliazed Kelvin model was adopted for relative intact state and extended to three-dimensional stress state. By taking modified Cam-bridge model as yielding function and the associated flow rules, three-dimensional elastic visco-plastic model was established based on equivalent time and adopted for fully adjusted state. Volumetric strain and shear strain were considered in the disturbance function according to Desai. Three-dimensional rheologic constitutive model considering unloading and disturbance was established based on disturbed state concept theory.
     4.Three-dimensional disturbed state model was applied to deep excavation near metro tunnels. Dynamic construction process of the pit was simulated with FLAC~(3D). The results indicated that:(1)Excavating different zone in pit has a different impact on deformation of retaining wall. Rheology velocity obviously increased when excavating the zone near diaphragm wall. Therefore ,the pit should be excavated symmetrically with block excavation and restriction on the time cost of excavation. (2)The model can simulate the time-dependent longitudinal non-uniform settlement of metro tunnel
引文
[1]Abdel-Hady M.,Herrin M.Characteristics of soil-asphalt as a rate process[J].Journal of the Highway Division,ASCE,1966,92(HW1):49-69.
    [2]AbdelHamid M.S.,Krizek R.J.At-rest lateral earth pressure of a consolidating clay[J].J.Geoteeh.Engrg.Div.,ASCE,1976,102(7):721-738.
    [3]Adachi T.,Oka F.Constitutive equations for normally consolidated clay based on elasto-viseo plasticity[J].Soils and Foundations,1982,22(4):57-70.
    [4]Akai K.,Adachi T.,& Ando N.Existence of a unique stress-strain-time relation of clays[J].Soils and Foundations,1975,15(1):1-16.
    [5]Barden L.Consolidation of day with non-linear viscosity[J].Geotechnique,1978,15(4):345-362.
    [6]Beeker D.E.,Jeffefies M.G.,Shinde S.B.and Crooks J.H.A.Porewater pressure in clays below caisson islands[C].Proc.Aretic'85:Civil Engineering In The Arctic Offshore,San Francisco,CA:75-83.
    [7]Berre T.,Iversen K.Oedometer tests with different specimen heights on a clay exihibiting large secondary compression[J].Geotechnique,1972,22(1):53-70.
    [8]Bishop A.W.,Wesley L.D.A hydraulic triaxial apparatus for controlled stress path testing [J].Geoteehnique,1975,25(4):657-670.
    [9]Bishop A.W.,Bjerrum L.The revelance of the triaxial test to the solution of stability problems[C].Proe.Am.Soe.Civil Engrs Res.Conf.on Shear strength of cohesive soils.1960,437.
    [10]Bjerrum L.Seventh Rankine Lecture:Engineering geology of Norwegian normally consolidated marine days as related to settlement of buildings[J].Geotechnique,1967,17(2):81-118.
    [11]Bjerrum L.Embankments on soft ground[C].Proceedings of the specialty conference on performance of earth and earth-supported structures.Purdue University,ASCE,1972,2:1-54.
    [12]Borja R.L.Finite element analysis of the time-dependent behavior of soft clays[D].Ph D thesis,1984,Stanford University.
    [13]Borja R.I.,Kavazanjian E.A constitutive model for the stress-strain-time behavior of "wet clays"[J].Geotechnique,1985,35(3):283-298.
    [14]Boulon M.,Nova R.Modeling of soil structure interface behavior:a comparison between elasto -plastic and rate-type laws[J].Computers and Geotechnics,1990,9:22-46.
    [15]Buisman K.Result of long duration settlement tests[C].Pro.1st Int.Conf.Soil Mech.Found.Engry.,1936.
    [16]Cai Y.X.,Gould P.L,Desai C.S.Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application[J].Engineering Structures,2000,22:191-199.
    [17]Casagrande A.The determination of the preeonsolidation load and its practical significance[C].Proceedings of 1~(st)ICSMFE[C].[s.l.]:[s.n.],1936,3:60-84.
    [18]Chang Y.Q.,Ching H.L.Finite element analysis of deep excavation in layered sandy and Clayed soil deposits[J].Canada Geotech J.,1994,31:204-214.
    [19]Chang Y.O.,Et Al.Chareteristic Of Ground Surface Settlement During Excavation[J].Can.Geotech.J.,1993,30:212-219.
    [20]Chfidtie L.F.,Tonks D.M.Development in the time lines theory of consolidation[C].Pro.11~(th)ICSMFE,San Francisco,1955,2,423-426.
    [21]Christensen R.W.,Wu T.H.Analysis of clay deformation as a rate process[J].Soil Mech.Found.Div.,ASCE,1964,90(6),125-157.
    [22]Clough G.W.,Duncan J.M.Finite element analysis of retaining wall behavior[J].Journal of Soil Mechanics and Foundation Engineering.Division,ASCE,1971,97(12):1657-1673.
    [23]Clough G.W.,Denby G.W.Stabilizing beam design for temporary walls in clays[J].Journal of Geotech.Division,ASCE,1977,103(GT2).
    [24]Desai C.S.,Wang Z.Disturbed state model for porous saturated materials[J].International Journal of Geomechnics,2003,3(2):260-265.
    [25]Desai C.S.,Toth J.Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J].International Journal of Solids and Structures,1996,33(11):1619-1650.
    [26]Desai C.S.,Ma Y.Modeling of joints and interfaces using the disturbed state concept[J].Int J.Numer.Analyt.Meth.Geomech.,1992,16:623-653.
    [27]Desai C.S.,Somasundaram S.,Frantziskonis G.A hierarchical approach for constitutive modeling of geologic materials[J].Int J.Nimer Analyt Methods Geomech,1986,10:225-257.
    [28]Desai C.S.,Ma Youzhi.Modeling of joints and interfaces using the disturbed-state concept [J].International Journal for Numerical and Analytical Methods in Geomechanics,1992,16:623-653.
    [29]Desai C.S.,Zaman M.M.Thin layer element for Interface sand Joints[J].intemational Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):19-43.
    [30]Desai C.S.,Zhang W.Computational aspects of disturbed state constitutive models[J].Comput Methods Appl Mech Engrg,1998,151:361-376.
    [31]Desai C.S.A consistent finite element technique for work softening behavior[C].Proc Int.Conf.On Computer Methods in Nonlinear Mechanics,University of Texas,Austin.,TX,1974.
    [32]Desai C.S.Constitutive modeling using the disturbed state concept as microstructure self-adjustment concept[M].Continuum Models of Materials with Microstructure,Muhlhaus HB(ed.),Chapter 8.Wiley:U K,1995.
    [33]Desai C.S.Mechanics of materials and interfaces:the disturbed state concept[M].CRC.Press LLC.Baca Raton,2001.
    [34]Desai C.S.The disturbed state as transition through self-adjustment concept for modeling mechanical response of materials and interfaces[R].Report of Dept of Civil Engineering and Engineering Mechanics,University of Arizona,Tucson,Ariz,1992.
    [35]Desai C.S.,Basaran C.,Zhang W..Numerical algorithms and mesh dependance in the disturbed state concept[J].International Journal of Numerical Methods in Engineering,1997,40(16):3059-3083.
    [36]Desai C.S.,Jagannath S.V.Mechanical and ultrasonic anisotropic response of soils[J].Journal of Engineering Mechanics,ASCE,1995,121(6):744-751.
    [37]Desai C.S.,Samtani N.C.Constitutive modeling and analysis of creeping slopes[J].Journal of Geotechnical Engineering,ASCE,1995,121(1):43-56.
    [38]Desai,C.S.,Zhang D.Visco-plastic model for geologic materials with generalized flow rule[J].International Journal for Numerical and Analytical Methods in Geomechnics,1987,11(6):603-620.
    [39]Ducan J.M.,Chang C.V.Y.Nonlinear analysis of stress and strain in soils[J].Soil Mech.Found.Div.,ASCE,1970,72(5):26-35.
    [40]Duncan J.N.,Chang C.Y.Nonlinear analysis of stress and strain in solids[J].Journal of Soil Mechanics and Foundation Division Engineering,ASCE,1970,56(SM5):1625-1653.
    [41]Egerov K.E.The observed settlements of buildings as compared with preliminary calculation[C].Proceedings of 4th ICSMFE[C].[s.l.]:[s.n.],1957,1:291.
    [42]Feda,K.Interpretation of creep of soils by rate process theory[J].Soils and Foundations,1989,39(4):667-677.
    [43]Frantziskonis G.,Desai C.S.Constitutive modal with strain softening[J].Int.J.Solids Structures,1987,23:751-767.
    [44]Garlanger J.E.The consolidation of soils exhibiting creep under constant effective stress[J].Geotech.,1972,22(1):71-78.
    [45]Graham J.,Crooks J.H.A.,Bell A.L.Time effects on the stress-strain behavior of natural soft clays[J].Geotechnique,1983,33(3):327-340.
    [46]Gueze E.C.W.A.,Tan T.K.The mechanical behavior of clays[C].Oxford:Proe.2nd International Congress on Rheology.1953,67-71.
    [47]Hvorslev M.J.Subsurface exploration and sampling of soils for civil engineering purposes[R].New York:American Society of Civil Engineers,1949.
    [48]Juarez B.E.Postsurcharge secondary compression equation for clays[J],Canadian Gentechnical Journal,1988,25:594-599.
    [49]Kachanov L.M.Introduction to continuum damage mechanics[M].Martinus Nijhoft Publishers,Dordrecht,The Netherlands,1986.
    [50]Kaliakin V.N.,Dafalias Y.F.Theoretieal aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils[J].Soils and Foundations,1990,30(3):11-24.
    [51]Komamura F.,Huang R.J.A new rheologieal model for soil behavior[J].Soil Mech.Found.Div.,ASCE,1974,83(3):1-14.
    [52]Kondner R.L.Hyperbolic stress-strain-time function for soils[J].Soil Mech.Found.Div.,ASCE,1963,89(1),115-143.
    [53]Kutter B.L.,Sathialingam N.Elastic visco-plastic modeling of the rate-dependent behavior of days[J].Geotechnique,1992,42(3):427-441.
    [54]Ladd C.C.,Foot R.,Ishihaha K.,Poulos H.J.Stress-deformation and strength characteristics [C].Proc.9~(th)ICSMFE,Tokyo,1977,421-494.
    [55]Lade P.V.,Dunean J.M.Stress-Path Dependent Behavior of Cohesionless Soil[C].Proc.ASCE,1976,102(GT1):42-48.
    [56]Lambe T.W.Marr W.A.Stress Path Method[J].Journal of the Geotechnical Engineering Division.ASCE,1979(GT6):73-81.
    [57]Lambe T.W.Stress path method[J].Journal of Soil Mechanics and Foundation Division,ASCE,1967,93(SM6):268-277.
    [58]Liu M.D.,Cater J.P.,Desal C.S.Modeling compression behavior of structured geomaterials[J].International Journal of Geomechanics,2003,3(2):191-204.
    [59]Liu M.D.,Cater J.P.,Desai C.S.,et al.Analysis of the compression of structured soils using the fully adjusted state concept[J].International Journal for Numerical and Analysis Method in Geomeehnies,2000,24:723-735.
    [60]Mesri G.,Godlewski P.M.Time and stress-compressibility interrelationship[J].Journal of the Geoteehnical Engineering Division,ASCE,1977,103(5):417-430.
    [61]Mesri G.,Febres-Cordero E.,Shields D.R.Shear stress-strain-time behavior of clays[J].Geotachnique,1981,31(4):537-552.
    [62]Michael S.K.A novel approach to predict current stress-strain response of cement based materials in infrastructure[D].The University of Arizona,2001.
    [63]Morsy M.M.,Chan D.H.,Morgenstern N.R.An effective stress model for creep of clay[J].Can.Geotech,1995,32:819-834.
    [64]Murayama S.,Shibata T.On the theological characteristics of clays[C].partⅠ,Bulletin No.26,Disaster Prevention Research Institute,Kyoto,Japan,1958.
    [65]Murayama S.,Shibata T.Rheological properties of clays[C].Proc.5th Int.Conf.Soil Mech.1961,1,269-273.
    [66]Nagaraj T.S.,Murthy B.R.S.Analysis of compressibility of sensitive soils[J].J.Geotech.Engng.Div.ASCE,1990,116(GT1):105-118.
    [67]Nash D.F.T.,Sills G.C.,Davison L R.One-dimensional consolidation testing for soft clay from Bothkennar[J].Geotechnique,1992,42(2):241-256.
    [68]Niemunis A.,Krieg S.Viscous behavior of soil under oedometric conditions[J].Can.Geotech.1993,33:159-168.
    [69]Oda M.,Kazama H.Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[J].Geotechnique,1998,48(4):465-481.
    [70]Oda M,Nemat-Nasser S,Konishi J.Stress-induced anisotropy in granular masses[J].Soils and Foundations,1985,25(3):85-97.
    [71]Oda,Y.,Mitachi,T.Stress relaxation characteristics of saturated clays[J].Soils and Foundations,1988,28(4):69-80.
    [72]Peck R.B.Deep excavation sand tunneling in soft ground[C].Proceeding 7~(th)International Conference on Soil Mechanics and Foundation Engineering.1969,3:1469-1472.
    [73]Perzyna P.Fundamental problems in viscoplasticity[J].Advances in Applied Mechanics 1966,9:243-277.
    [74]Perzyna P.The constitutive equation for rate-sensitive plastic materials[J].Quarterly of Applied Mathematics.1963,20:321-332.
    [75]Schiffman R.L.The use of visco-elastic stress-strain laws in soil testing[M].ATSM Special Technical Publication,1959,254:131-155.
    [76]Schiffman R.L.,Chen A.T.F.,Jordan J.C.An.analysis of consolidation theories[J].Journal of Soil Mechanics And Foundations Div,1969,ASCE,95(1):285-312.
    [77]Schmertmann J.H.The undisturbed consolidation behavior of clay[J].Transport,ASCE,1955,120:1201-1227.
    [78]Shamoto Y.,Zhang J-M.,Goto S.Mechanism of large post-liquefaction deformation in saturated sand[J].Soils and Foundations,1997,37(2):71-80.
    [79]Shao C.,Desai C.S.Implementation of DSC model and application for analysis of field pile tests under cyclic loading[J].Int.J.Numer.Anal.Mech.Geomech.,2000,24:601-624.
    [80]Singh and Mitchell.General stress-strain-time function for soils[J].Soil Mech.Found.Div,ASCE,1968.94(1):21-46.
    [81]Siriwardane H.J.,Desai C.S.Two numerical schemes for nonlinear consolidation[J].International Journal for Numerical Methods in Engineering,1981,17:405-426.
    [82]Skempton A.W.The bearing capacity of clays[J].Sldg Res.Cong,London,Div,1951,1,180-189.
    [83]Skempton A.W.The pore pressure coefficient A and B[J].Geotechnique,1954,14(4):143-147.
    [84]Taylor D.W.Research on consolidation of clays[R].Report serial No.82,Department of Civil Engineering,Massachusetts Institute of Technology,Cambridge.1942.
    [85]Taylor D.W.Fundamental of soil mechanics[M].New York,Wiley,1948.
    [86]Tayor D.W.,Merchant W.A theory of day consolidation accounting for secondary compressions[J].Journal of Mathematics and Physics,1940,19(23):167.
    [87]Varadarajan A.,Sharma K.G.Testing and modeling of two rockfill materials[J].Journal of Geotechnical and Geoenvironmental Engineering.2003,129(3):206-218.
    [88]Varadarajan A.,Sharma K.G.,Desai C.S.,et al.Constitute modeling of a schistose rock in the Himalaya[J].International Journal of Geomechanics.2001,1(1):83-107.
    [89]Varadarajan A.,Sharma K.G.,Soni K.M.Constitutive modeling of a reinforced soil using hierarchical model[J].International Journal for Numerical and Analysis Method in Geomechanics,1999,23:217-241.
    [90]Yang C.H.,Daemen J.J.K.,Yin J.H.Experimental investigation of creep behavior of salt rock[J].Int.Journal of Rock Mechanics and Mining Sciences,1999,27(5):226-234.
    [91]Yi X.,Rowe K.,Lee M.Observed and calculated pore pressure and deformations induced by an earth balance shield[J].Can.Geotech.,1993,30(3):476-490.
    [92]Yin J.H.,Graham J.Equivalent times and elastic visco-plastic modeling of time-dependent stress-strain behavior of clays[J].Canadian Geotech.1994,31:42-52.
    [93]Yin J.H.,Graham J.Elastic visco-plastic modeling of one-dimensional consolidation[J].Geotechnique,1996,46(3):515-527.
    [94]Yin J.H.,Graham J.Viscous elastic plastic modeling of one-dimensional time dependent behavior of clays[J].Canadian Geotech.,1989,26:199-209.
    [95]Yin J.H.,Graham J.,Clark J.I.,et al.Modeling unanticipated pore water pressures in soft clays[J].Canadian Geotech.,1994,31:773-778.
    [96]Yin J.H.,Zhu J.G.,Graham J.A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays:theory and verification[J].Can.Geotech.J.,Ottawa.2002,39(1):157-173.
    [97]Yin J.H.,Graham J.Elastic viscoplastic modeling of time-dependent stress-strain behaviour of soils[j].Can.Geotech.J.,Ottawa,1999,36,735-745.
    [98]Zienkiewicz O.C.,Cormeau L.C.Visco-plasticity,plasticity and creep in elastic solids:a unified numerical solution approach[J].International journal for Numerical and Analytical Methods in Geomechnics.1974,8(2):821-845.
    [99]陈德全,陈愈炯.土的各向异性和卸载体缩[J].岩土工程学报,1994,16(4):9-15.
    [100]陈慧远.摩擦接触单元及其分析方法[J].水利学报,1985,(4):44-50.
    [101]陈基炜,詹龙喜.上海市地铁一号线隧道变形测量及规律分析[J].上海地质,2000,2:51-56.
    [102]陈锦剑,吴刚,王建华,等.利用扰动状态概念模型研究饱和软粘土的力学特性[J].上海交通大学学报,2004,38(6):952-955.
    [103]陈炯.软粘土结构性和基础桩施工工法对基坑力学性状的影响[J].地基处理,2000,11(2):3-10.
    [104]陈军.上海地区饱和软粘土流变特性的试验与理论研究[D].同济大学硕士学位论文,1993.
    [105]陈晓平,黄国怡,梁志松.珠江三角洲软土特性研究[J].岩石力学与工程学报,2003,22(1):137-141.
    [106]陈永福,曹名葆.上海地区软黏土的卸荷-再加荷变形特性[J].岩土工程学报,1990,12(2):9-17.
    [107]陈宗基.固结及时间效应的单维问题[J].土木工程学报,1958,5(1):1-10.
    [108]程玉梅.粘性土卸荷特性[J].低温建筑技术,2001(4):19-21.
    [109]褚卫江,徐卫亚,杨圣奇,周维垣.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010.
    [110]窦宜,盛树馨,施艳平.饱和粘性土在不同应力路径条件下的变形特性[C].土的抗剪强度与本构关系学术讨论会论文集汇编,第一册,1985.
    [111]符圣聪.正常固结饱和粘土孔隙水压力的分析[D].中科院力学所硕士学位论文,1965.
    [112]高大钊,张少钦,姜安龙,李家平.取样扰动对土的工程性质指标影响的试验研究[J].工程勘察,2006(3):6-10.
    [113]韩文喜等.饱和土的强夯模拟试验[J].地质灾害与环境保护,1999,10(3):11-13.
    [114]杭州市建筑业管理局等.深基坑支护工程实例[M].北京:中国建筑工业出版社,1996.
    [115]郝玉龙,陈云敏,王军.深厚软土未打穿竖井超载预压地基孔隙水压力消散规律分析[J].中国公路学报,2002,15(2):36-39.
    [116]郝玉龙,古力.超载预压地基卸载后吸水固结及回弹变形的研究[J].岩石力学与工程学报,2005,24(5):883-888.
    [117]何开胜.结构性粘土的微观变形机理和粘弹塑损伤模型研究[D].南京:南京水利科学研究院,2001.
    [118]何世秀,韩高升,庄心善.基坑开挖卸荷土体变形的试验研究[J].岩土力学, 2003,24(1):17-20.
    [119]侯学渊,刘国彬,黄院雄.城市基坑工程发展的几点看法[J].施工技术,2000,29(1):5-7.
    [120]侯学渊,杨敏.软土地基变形控制设计理论和工程实践[M].上海:同济大学出版社,1996.
    [121]胡坚,王军.盾构法隧道的纵向沉降[J].上海地质,2000(3):13-18.
    [122]胡中雄.土力学与环境土力学[M].上海:同济大学出版社,1997.
    [123]黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析[J].地下空间,2002,22(3):244-252.
    [124]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [125]黄英,何发祥,赵惠敏.不同应力路径对红土三轴剪切试验成果的影响[J].云南工业大学学报,1999,15(1):6-11.
    [126]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移的预测方法[J].同济大学学报,2001,29(5):531-535.
    [127]蒋明镜,沈珠江,邢素英,等.结构性粘土研究综述[J].水利水电科技进展,1999,19(1):26-30.
    [128]雷华阳.天津地区海积软土的孔压模型建立及参数确定[J].吉林大学学报,2003,33(1):76-79。
    [129]李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报,2000,22(2):158-161.
    [130]李广信.应力路线对土的应力应变关系的影响[D].北京:清华大学硕士论文,1980.
    [131]李佳川.软土地区地下连续墙深基坑开挖的三维分析及试验研究[D].同济大学博士学位论文,1992.
    [132]李涛,钱寿易.土样扰动影响的评价及其先期固结压力的确定[J].岩土工程学报,1987,9(5):21-29.
    [133]李玉岐,魏婕,谢康和.负孔压消散对坑底的回弹影响研究[J].长江科学院院报,2005,22(4):52-55
    [134]李玉岐,谢康和.开挖卸载负孔压的消散对围护结构的影响[J].江南大学学报(自然科学版),2004,3(6):599-603.
    [135]李云安.深基坑工程变形控制优化设计及其有限元数值模拟系统研究[D].武汉:中国地质大学博士学位论文,2000.
    [136]林勤华.孔隙水压力的试验研究[D].浙江大学学士学位论文,1982.
    [137]林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-269.
    [138]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [139]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报,1996,18(6):18-23.
    [140]刘国彬,黄院雄,侯学渊.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报,2001,20(2):202-207.
    [141]刘国彬,黄院雄,侯学渊.基坑回弹的实用计算方法[J].土木工程学报,2000,33(4):61-67.
    [142]刘国彬,刘金元,徐全庆.基坑开挖引起的土体力学特性变化的试验研究[J].岩石力学与工程学报,2000,19(1):112-116.
    [143]刘国彬.软土卸荷变形特性的试验研究[D].上海:同济大学博士学位论文,1993.
    [144]刘华清,赵春风,高大钊.取样扰动对土天然强度指标的影响和处理方法[J].岩土工程技术,2002,3:158-162.
    [145]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [146]刘世明.软粘土的次固结特性研究[D].浙江大学博士学位论文,1988.
    [147]刘熙媛,闫澎旺,窦远明.基坑开挖卸荷对土体抗剪强度指标的影响[J].河北工业大学学报,2004,33(4):54-57.
    [148]刘晓敏,王连俊.非饱和土施工开挖后强度参数的变化[J].岩土工程技术,2001(4):190-192.
    [149]刘振英.土样结构扰动的定量评价[J].工程勘察,1986(1):22-26.
    [150]刘祖德,孔官瑞.平面应变条件下膨胀土卸荷变形试验研究[J].岩土工程学报,1993,15(2):68-73.
    [151]潘林有,程玉梅,胡中雄.卸荷状态下粘性土强度特性试验研究[J].岩土力学,2001,22(4):490-493.
    [152]潘林有,胡中雄.深基坑卸荷回弹问题的研究[J].岩土工程学报,2002,24(1):101-104.
    [153]秦爱芳,刘绍峰,胡中雄.基坑软土强度变化特征及坑底施工安全控制[J].地下空间,2003,23(1):40-43.
    [154]秦爱芳.软土卸荷时土体强度变化试验研究[J].建筑结构,2002,32(7):29-31.
    [155]日本铁道综合技术研究所.近接既有隧道施工对策指南[M].1996.
    [156]上海时空软土工程研究咨询中心.基坑工程时空效应理论与实践[R].上海:上海时空软土工程研究咨询中心,1997.
    [157]上海市建设委员会科学技术委员会.地铁一号线工程[M].上海:上海科学技术出版社,1998.
    [158]沈滨,张莉.对大面积深基坑开挖回弹的分析与预估[C].高层建筑地下结构及基坑支护.宇航出版社.1994.
    [159]沈水龙,蔡丰锡,顾伟.有明黏土中搅拌桩施工时的孔隙水压力[J].岩土力学,2006,27(4):648-652.
    [160]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [161]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [162]盛树馨,窦宜.正常固结黏土应力应变关系测定中的几个主要影响因素[C].软土地基学术讨论会论文集[C].北京:水利出版社,1980.
    [163]师旭超,汪稔,韩阳.卸荷作用下淤泥变形规律的试验研究[J].岩土力学,2004,25(8):1259-1262.
    [164]施建勇.砂井施工对软粘土扰动的研究[J].河海大学学报,1997,25(2):30-33.
    [165]史玉成.上海地区软土流变特性分析与工程应用研究[D].同济大学博士学位论文,1990.
    [166]孙钧,周健,龚晓南,张弥.受施工扰动影响土体环境稳定理论与变形控制[J].同济大学学报(自然科学版),2004,32(10):1262-1270.
    [167]孙钧.岩土材料流变及其工程应用[M].中国建筑工业出版社,1999.
    [168]孙岳菘,蹼家骝,李广信.不同应力路径对砂土应力应变关系的影响[J].岩土工程学报,1987,9(6):78-88.
    [169]唐益群,张曦,王建秀,宋永辉.粉性土中土压平衡盾构施工的扰动影响[J].同济大学学报,2005,32(8):1031-1035.
    [170]汪中卫,刘国彬.基于卸荷及变形的主动土压力计算[J].地下空间,2003,23(1):22-27.
    [171]汪中卫.考虑时间与小应变的地铁深基坑变形与土压力的研究[D].同济大学博士学位 论文,2004.
    [172]王德玲,葛修润.岩石的扰动状态本构模型研究[J].长江大学学报,2005,2(1):1059-1062.
    [173]王国欣,肖树芳,黄宏伟,等.基于扰动状态理论的结构性粘土本构模型研究[J].固体力学学报,2004,25(2):191-197.
    [174]王建国,濮家骝,李广信.不同本构模型预测饱和土孔压生成的研究[J].岩土工程学报,1989,11(5):51-63.
    [175]王建华,程国勇,张立.取样扰动引起土层剪切波速变化的试验研究[J].岩石力学与工程学报,2004,23(15):2604-2608.
    [176]王军,高玉峰,高红珍.结构性软土地基施工扰动定量分析[J].岩土力学,2005,26(5):789-794.
    [177]王立忠,丁利,吴承章.施工扰动对软土强度的影响[J].工业建筑,2005,31(9):48-51.
    [178]王铁儒,陈龙珠,李明逵.正常固结饱和软粘土孔隙水压力性状的研究[J].岩土工程学报,1987,9(4):23-32.
    [179]魏纲,徐日庆,屠玮.顶管施工引起的土体扰动理论分析及试验研究[J].岩石力学与工程学报,2004,23(3):476-482.
    [180]魏汝龙,孙斌,王年香.软黏土的孔隙压力性状[C].第5届土力学及基础工程学术会议论文选集[C].北京:中国建筑工业出版社,1990.
    [181]魏汝龙.开挖卸载与被动土压力计算[J].岩土工程学报,1997,19(6):88-92.
    [182]魏汝龙.正常压密黏土在开挖卸荷后的不排水抗剪强度[J].水利水运科学研究,1984,(4):39-43.
    [183]吴刚,张磊.单轴压缩下岩石破坏后区的扰动状态理论分析[J].岩石力学与工程学报,2004,23(10):1628-1634.
    [184]吴刚.工程材料的扰动状态本构模型(I)-扰动状态概念及其理论基础[J].岩石力学与工程学报,2002,21(6):759-765.
    [185]吴宏伟,施群.深基坑开挖中的应力路径[J].土木工程学报,1999,32(6):53-58.
    [186]夏明耀.多撑式地下连续墙入土深度的模拟试验研究[J].水电自动化与大坝监测,1984(2):64-68.
    [187]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [188]谢康和,柳崇敏,应宏伟,等.成层土中基坑开挖降水引起的地表沉降分析[J].浙江大学学报,2002,36(3):239-242.
    [189]谢宁.软土非线形流变的理论、试验和应用研究[D].同济大学博士学位论文,1993.
    [190]熊军民,李作勤.粘土的蠕变-松弛耦合试验研究[J].岩土力学,1993,14(4):17-24.
    [191]徐方京,侯学渊.基坑回弹性状分析与预估[C],首届全国岩土工程博士学术讨论会论文集,1990.
    [192]徐建平,潘树林.典型施工作用下的土体性质变异研究[J].华中科技大学(城市科学版),2002,19(1):39-44.
    [193]徐永福,孙钧.隧道盾构掘进施工对周围土体的影响[J].地下工程与隧道,1999(2):9-13.
    [194]徐永福.土体受施工扰动影响程度的定量化识别[J].大坝观测与土工测试,2000,24(2):8-10.
    [195]易宏伟,孙钧.盾构推进对软粘土的扰动机理分析[J].同济大学学报,2000,28(3):277-281.
    [196]殷建华,Jack I.Clark.土体与时间相关的一维应力-应变性状、弹粘塑性和固结分析 [J].岩土力学,1994,15(3):66-80.
    [197]殷建华.等效时间和岩土材料的弹粘塑性模型[J].岩石力学与工程学报,1999,18(2):124-128.
    [198]殷宗泽,张海波,朱俊高.等.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [199]袁静,龚晓南.基坑开挖过程中软土性状若干问题的分析[J].浙江大学学报,2001,35(5):465-470.
    [200]袁聚云,赵锡宏,杨熙章等.K_0固结条件对上海软土强度和变形影响的试验研究[J].勘察科学技术,1995(6):244.
    [201]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报,1988,10(3):13-22.
    [202]曾国熙.正常固结黏土不捧水剪切的归一化性状[C].软土地基学术讨论会论文集.北京:水利出版社,1980.13-26.
    [203]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62.
    [204]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983,(4):65-71.
    [205]张冬梅.软粘土的时效特性分析及隧道长期沉降的预测[M].同济大学博士论文,2003.
    [206]张国霞,张乃瑞等.病房楼工程基坑回弹和地基沉降的观测分析[J].土木工程学报,1980.1(3):11-16.
    [207]张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17.
    [208]张孟喜.受施工扰动土体的工程性质研究[D].上海:同济大学博士学位论文,1999.
    [209]张乃瑞,张凤林.北京部分高层建筑基坑回弹与整体变形分析[C].高层建筑地下结构及基坑支护.宇航出版社.1994.
    [210]张乃瑞,张凤林.高层建筑地下结构及基坑支护[M].北京:宇航出版社,1994.
    [211]张庆贺等.盾构推进引起土体扰动理论分析及试验研究[J].岩石力学与工程学报,1999,18(6):44-46.
    [212]张荣堂。陈守义.减P路径下饱和软粘土应力应变性状的试验研究[J].岩土力学,2002,23(5):612-616.
    [213]张文慧,王保田,张福海.应力路径对基坑工程变形的影响[J].岩土力学,2004,25(6):964-966.
    [214]张学言.岩土塑性力学[M].北京,人民交通出版社,1993.
    [215]张业民等.软粘土流动性的尖顶突变模型分析[J].岩土工程学报,1995,17(4):67-70.
    [216]张玉洁,王常明,王芳,等.黏性土基于扰动状态概念的应力应变关系及压缩变形分析[J].世界地质,2005,24(2):200-202.
    [217]张志强,何川.地铁盾构隧道近接桩基的施工力学行为研究[J].铁道学报,2003,25(1):92-95.
    [218]中华人民共和国国家标准.GB50021-94.岩土工程勘察规范[S].北京:中国建筑工业出版社,1995.
    [219]周成,沈珠江,陈生水,等.结构性土的次塑性扰动状态模型[J].岩土工程学报,2004,26(4):435-439.
    [220]周健,王浩.软土的卸载孔压特性的试验与理论计算分析[J].岩土工程学报,2002,24(5):556-559.
    [221]周健,王浩.软粘土卸载特性计算模型研究[J].力学季刊,2004,25(1):89-95.
    [222]周健等.环境与岩土工程[M].北京:中国建筑工业出版社,2001.
    [223]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006,27(3):404-408.
    [224]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006,28(5):626-630.。
    [225]朱向荣.软土预压流变特性研究[D].浙江大学博士学位论文,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700