用户名: 密码: 验证码:
高强高导Cu-Cr-Zr-Mg-Si合金时效特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜合金由于其优异的导热、导电性能和一定的强度,因而在国民工业中应用越来越广泛,而随着工业技术的发展,制备性能更优异的铜合金也成为了一个重要研究方向。对于高强度高电导性铜合金来说,时效强化型的Cu-Cr-Zr系合金具有其一些特有的优势而备受青睐,因而与之相关的制备方法、工艺也不断推陈出新。本文分别对三种不同成分Cu-Cr-Zr-Mg-Si合金时效特性进行了研究,分析了不同工艺参数和成分对合金组织与性能的影响,得出的主要结论如下:
     (1) Cu-Cr-Zr-Mg-Si合金在80%变形后480℃时效时可获得较好的综合性能,而在540℃时效30min后,合金发生过时效。升高温度和增大变形量加速合金的时效析出过程,随温度升高合金的导电性能有所提高;适当的加大变形量有助于提升合金的显微硬度,而对电导率影响不大。
     (2)在总变形量相同的情况下,通过二级变形时效工艺能提高Cu-Cr-Zr-Mg-Si合金的综合性能。显微硬度要比一级变形时效工艺提高6%-9%,电导率较之一级变形时效工艺也有所提高,可达88%IACS。
     (3)含量1.0%Cr的合金固溶后晶粒更细小,且时效后峰值硬度要高出0.6%Cr合金10-15HV,在不过时效时的整体硬度都要高于含量0.6%Cr的合金,而电导率要稍低于0,6%Cr合金。
     (4)Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si添加了少量稀土Y后合金的组织得到改善,且对合金的硬度提升很大。且添加稀土Y推迟了硬度峰值出现的时间,并且使合金中的析出相更细小,析出相分布更弥散,硬度峰值可达174HV,而电导率稍有下降,但时效一小时之后均达到82%IACS以上。
     (5) Cu-Cr-Zr-Mg-Si合金经变形时效处理后在扫描电镜下可以看到在晶内有着球形和棒状的析出相颗粒,经能谱分析确定为Cr颗粒和Cr的碳化物。
     (6)TEM观察发现,二级变形时效工艺合金中的析出相很小,粒径为2nm左右,且分布均匀,如此细小的析出相粒子对位错运动有强烈的阻碍作用,同时会造成位错的增殖。
     (7)观察合金变形时效处理后的拉伸断口形貌,可以看出其是典型的韧窝断口形貌特征,且将断口形貌放大后并没有观察到夹杂物或者第二相粒子,说明这些析出粒子很细小且合金内部组织较好。
Copper alloy has been widely applied in the national industry because of its excellent thermal conductivity, electrical conductivity and certain strength. With the development of industry technology, preparation of better performance of copper alloy has become an important research direction. For high strength and high conductivity copper alloy, the aging hardening type Cu-Cr-Zr alloys have its unique advantage and therefore the associated preparation technology has continued to emerge. This paper studied aging characteristics of Cu-Cr-Zr-Mg-Si alloy with three different compositions and analyzed the effect of process parameters and composition on microstructure and properties. The main conclusions were shown as follows:
     (1) Cu-Cr-Zr-Mg-Si alloy has a good comprehensive performance after 80% deformation and aging at 480℃. The alloy over-aged while aging at 540℃×30min. Increasing of temperature and deformation could accelerate the process of precipitation. Increasing of temperature could improve the electrical conductivity of the alloy and increase deformation could improve hardness, but deformation has not much effect on the final electrical conductivity.
     (2) Under the same deformation, two-step deforming and aging process can increase the Cu-Cr-Zr-Mg-Si alloy overall performance, the micro-hardness is 6%-9%higher than one-step deforming and aging process.The electrical conductivity also higher than one-step deforming and aging process, which can reach 88%IACS.
     (3) The alloy with 1.0%Cr has smaller grains after solid solution, and peak hardness after aging is 10-15HV higher than 0.6%Cr alloy. The overall hardness is higher and electrical conductivity is slightly lower when the alloy does not over aged.
     (4) Adding of trace amount of rare earth Y in Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si can improve alloy microstructure and hardness. Also will postpone peak time of hardness and make the precipitates more small and dispersed distributed. The hardness can reach 174HV and electrical conductivity has a slightly decrease, but after one hour aging it could reach above 82%IACS.
     (5) The spherical and rodlike particles precipitates in Cu-Cr-Zr-Mg-Si alloy after deforming and aging treatment was observed by the scanning electron microscope. EDS identified as Cr carbide particles and Cr.
     (6) TEM showed that two-step deforming and aging process alloy has small precipitates, which are about 2nm and uniform distributed. Those small precipitates will strongly hinder the dislocation movement, and it will result in the multiplication of dislocations.
     (7) The fracture of as-aged alloys features with a typical toughness failure. The second phase particles were not observed in the fracture surface. It means that these precipitated particles are small.
引文
[1]刘碧兰.弥散强化高强高导电铜合金研究[D].中南工业大学,2000
    [2]王隆寿.宝钢铬锆铜结晶器铜板的研制.冶金设备[J],1999,(6):34-36
    [3]王东锋,康布熙,刘平,等.热轧Cu-Ni-Si合金冷扎后时效过程中的相变动力学[J].河南科技大学学报(自然科学版),2003,24(4):1-3
    [4]王东锋,康布熙,田保红,等.时效处理对Cu-Fe-P合金硬度和电导率的影响[J].洛阳工学院学报,2002,23(3):10-12
    [5]温宏权,毛协民,叶文博,等.铜电车线材料的研究进展.材料导报[J],1998,12(1):25~28
    [6]J.W. Davis, G.M. Kalinin.Material properties and design requirements for copper alloys used in ITER[J].Journal of Nuclear Materials 258-263 (1998) 323-328
    [7]付会敏,赵文辉,黄英彪,等.高强高导CrZrCu合金结晶器的研制[J].铸造技术,2002,23(4):230-232
    [8]张晓辉,李永年.高强度高导电Cu-Ag合金的研究进展[J].贵金属,2001,3(1):47
    [9]小林正男,等.高强度高导电性引线框架用铜合金[J].伸铜技术研究会志,1988,27:45
    [10]史美堂.金属材料及热处理[M].上海:上海科技出版社,1983:21~24
    [11]亢若谷.弥散强化铜合金的现状与发展[J].云南冶金,1995,(5):1-5
    [12]国秀花,宋克兴,郜建新,等.Al2O3弥散强化铜基复合材料的研究现状与进展[J].材料开发与应用,2006,21(4):41-45
    [13]徐磊,梁淑华,范志康.高强度高导电率Cu-Al2O3复合材料的制备[J].热加工工艺,2002(1):39~40
    [14]张晓楠,赵冬梅,董企铭,等.内氧化制备Cu/Al2O3弥散强化铜的组织性能研究[J].铸造技术,2006,9(27):939~942
    [15]曹先杰,李娜娜.内氧化工艺对弥散强化铜粉末强化质点特性和显微硬度的影响[J].矿冶工程,2002,3(22):101~103
    [16]宁爱林,申奇志,雷先明,等.弥散强化铜的研制现状与展望[J].邵阳高等专科学校学报,2001,14(3):165~167
    [17]申玉田.A1203弥散强化铜基复合材料的制备及性能研究[D].河北工业大学,1998
    [18]Li-Ming Peng, Xie-Min Mao, Kuang-Di Xu.Property and thermal stability of in situ composite Cu-Cr alloy contact cable[J]. Journal of Materials Processing Technology 166 (2005)193-198
    [19]Xiaofeng Wang, Jiuzhou Zhao, Jie He.Investigation on the microstructure and mechanical properties of the spray-formed Cu-Cr alloys[J]. Materials Science and Engineering A 460-461 (2007) 69-76
    [20]郎新瑜、邱同济、高纪,等.高导电型引线框架材料BK—10[J].有色金属与稀土应用,1991,1:1~9
    [21]L. Arnberg, U. Backmark, N. Backstrom.A new high strength, high conductivity Cu-0.5wt. %Zr alloy produced by rapid solidification technology[J].Materials Science and Engineering, 1986,83(1):115-121
    [22]罗丽.制备方法对Cu-2.0Cr-0.3Zr高浓度合金组织和性能的影响[D].中南大学,2006
    [23]冯端,等.金属物理学(第一卷)[M].北京:科学出版社,1987:154
    [24]R.O.W illiams,Trans,ASM,1960,52:530
    [25]U.Dahmen, M.J.Witconib, K.H.Westmacott, Scr Metall,1988,22:186
    [26]C.P.L uo,U,Dahmen,Acta Mater,1997,46:2063
    [27]G.C.Weatherly,P.Humble,D.Borland,Acta Metall,1979,27:1815
    [28]C.P.Luo,U.Dahmen,K.H.Westmacott,Acta Metall,1993,42:1923
    [29]P.W.Knights,P,Wilkes,Met.Trans,1973,4
    [30]李强,陈敬超,孙加林.过饱和Cu-Cr合金时效过程中的亚稳结构[J].稀有金属与硬质合金,2006,34(4):1~5
    [31]苏娟华,董企铭,刘平,等.Cu-Cr-Zr-Mg合金时效组织与性能[J].材料科学与工艺,2004,12(3):272-274
    [32]Huang Fuxiang, Ma Jusheng, Ning Honglong et al.An Analysis of Phase in a Cu-Cr-Zr Alloy [J]. Seripta Materialia,2003,48:97-103
    [33]Zhanbo Sun, Juan Guo, Xiaoping Song et al.Effects of Zr addition on the liquid phase separation and the microstructures of Cu-Cr ribbons with 18-22 at.%Cr[J].Journal of Alloys and Compounds 455 (2008) 243-248
    [34]Li Huaqing, XIE Shuisheng, WU Pengyue et al.Study on improvement of conductivity of Cu-Cr-Zr alloys[J].RARE METALS,2007,26(2):124-130
    [35]S.G. Mu, F.A. Guo, Y.Q. Tang et al.Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy[J].Materials Science and Engineering A 475 (2008) 235-240
    [36]BATAWI E, MORRIS D G, MORRIS M A. Effect of small alloying additions on behavior of rapidly solidified Cu—Cr alloys [J]. Materials Science and Technology,1990,6:892-899
    [37]HOLZUWARTH U,HERMANN S.The precipitation behavior of ITER-grad Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J].Journal of Nuclear Materials, 2000,279:31-145
    [38]Cahn.R.W,雷延权等译,金属与合金工艺,材料科学与技术丛书(第15卷)北京:科学出版社,1999,7:402
    [39]张生龙,尹志民.高强高导铜合金设计思路及其应用[J].材料导报,17(11):26~29.
    [40]陈存中.关于开发导电高铜合金之管见[J].铜加工,1985(3):42
    [41]王深强,陈志强,彭德林,等.高强高导铜合金的研究概述[J].材料工程,1995(7):4
    [42]李明茂,杨斌,王智祥.高强高导CuCrZr合金熔炼技术研究[J].特种铸造及有色合金,2005,25(4):252~253
    [43]沈宁福,汤亚力,关绍康,等.凝固理论进展与快速凝固[J].金属学报,1996,32(7):673-683
    [44]赵美,王自东,林国标,等.高强高导Cu-Cr-Zr系合金的研究进展[J].铸造,2007,56(5): 455-458
    [45]TENWICK M J, DAVIES H A. Enhanced Strength in High Conductivity Copper Alloy[J].Mater Sci Technol,1998,98:543
    [46]CORREIA J B, DAVIES H A, SELLARS C M. Strengthening in rapidly solidified aged hardened Cu-Cr And Cu-Cr-Zr alloys[J].Acta Mater,1997,45 (1):177
    [47]DAVIES H A, SEllARS C M,etal. Proc. Euromat vol.1, Adv Proc Con[M]. UK:Cambridge, 1991
    [48]BATAWI E, et al. Thermo-mechanical processing of spray formed Cu-Cr-Zr alloys[J].Scr Metall Mater,1993,29 (6):765
    [49]S1NGH R P, LAWLEY A, et al. Microstructure and properties of spray cast Cu-Zr alloys[J].Mater Sci Eng,1991, A145:243
    [50]C. Aguilar, et al. Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying[J]. Journal of Alloys and Compounds,2008
    [51]A.D. Ivanov,et al.Effect of heat treatments on the properties of CuCrZr alloys[J]. Journal of Nuclear Materials 307-311 (2002) 673-676
    [52]D.J. Edwards, B.N. Singh, S. Tahtinen. Effect of heat treatments on precipitate-microstructure and mechanical properties of a CuCrZr alloy [J]. Journal of Nuclear Materials 367-370 (2007) 904-909
    [53]G DURASHEVICH, V CVETKOVSKI, V JOVANOVICH.Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy [J]. Mater: Sci,2002,25(1):59-62
    [54]王艳蕊,刘平,刘勇等.微量稀土钇对Cu-Cr-Zr合金时效性能的影响[J].有色金属(冶炼部分),2006,1:46~49
    [55]李伟,刘平,刘勇等.微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J].金属热处理,2005,30(2):38-40
    [56]刘勇,刘平,田保红等.微量Ce和Y对Cu-Cr-Zr合金时效特性和电滑动磨损行为的影响[J].金属热处理,2007,32(3):22-24
    [57]廖乐杰,何福忠.稀土在铜及铜合金中的作用及其应用效果[J].特种铸造及有色合金,1997,2:52~53
    [58]胥锴,邱正来.稀土对铜及铜合金的影响[J].南方金属,2008,163:15-18
    [59]TaKao H.Performance of EFTEC-64TC alloy in high strength and high conductivity for lead frame [J]. Journal of the Japan Copper and Brass Research Association,1997,36:87
    [60]Sarin V K, Grant N J.The effect of thermomechanical treatments on powder metallurgical Cu-Zr and Cu-Zr-Cr alloys[J], Powder Metall Inter,1979,11(4):153-157
    [61]Szablewski J, Haimann R.Influence of thermo-mechanical treatment on electrical properties of a Cu-Cr alloy [J],Mater Sci Technol,1985,1(12):1053-1056
    [62]王锋,熊柏青,张永安,等.双级时效处理对喷射沉积Al-Zn-Mg-Cu合金微观组织和力学性能的影响[J].中国有色金属学报,2007,17(7):1058~1062
    [63]于洪伟,王旭.A1-Zn-Mg-Cu合金的时效工艺研究[J].轻合金加工技术,2008,36(6):45~50
    [64]向朝建,杨春秀,汤玉琼.IC引线框架用Cu-Fe-P合金耐热性能的研究金属热处理[J].2008,33(5):12~15
    [65]赵冬梅.高强高导Cu-Ni-Si时效相变规律及强化机制研究[D].西安:西安交通大学,2003:102
    [66]苏娟华,董企铭,刘平,等.引线框架Cu-Cr-Zr-Mg合金二级变形时效工艺[J].金属热处理,2006,31(8):76-79
    [67]Su J H, Liu P, Li H J, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J], Materials Letters, 2007,61:4953-4966
    [68]V. C. Srivastava, A. Schneider,V.Uhlenwinkel,S.N.Ojha,K.Bauckhage[J].Mater.Sci.Technol, 2004,147:174-18
    [69]戚正风.固态散与相变[M].北京:机械工业出版社,1998:80
    [70]方正春.铜铬高导电率合金的熔铸技术[J].特种铸造及有色合金,1996(5):39~40
    [71]冼爱平.大功率真空开关铜铬触头材料[J].中国有色金属学报,2001,11(5):731-740
    [72]马凤仓,倪锋,杨涤心.高铬含量铜铬合金的真空熔炼[J].材料开发与应用,2003,18(1):8-11
    [73]许彪,张萌.真空电弧炉制备Cr3C2/Cu复合材料的组织和性能[J].特种铸造及有色合金,2008,28(9):713-715
    [74]叶权华,刘平,刘勇,等.Cr含量对Cu-Cr-Zr-Y合金时效性能的影响[J].特种铸造及有色合金,2006,26(4):202-204
    [75]付大军.铬对铜-铬合金电车线性能的影响[J].有色金属,2003(2):7
    [76]尹建营,张萌,陈晓芳.稀土金属Y对Cu-Cr合金硬度和电导率的影响[J].金属热处理,2004,29(4):32-35
    [77]刘国明,张萌,付绍云.微量稀土La和Y在铜中的分布及对电导性的影响[J].南昌大学学报(理科版),2005,29(1):50-53
    [78]王文芳,吴玉程,宗跃等.添加稀土对机械合金化制备Cu-Ag合金性能的影响[J].稀有金属材料与工程,2007,36(3):71-73
    [79]刘技文.稀土对铜铬锆合金性能的影响[J].金属热处理,1994,19(1):24-26
    [80]符建伟,张萌,郭守晖.稀土Y对铜铬合金氧化行为的影响[J].热加工工艺,2008,37(6):77~79
    [81]宋旼,肖代红,贺跃辉,张福勤.稀土元素对Al-Cu-Mg-Ag合金显微组织影响的研究进展[J].中国有色金属学报,2009,19(8):1355-1365
    [82]肖代红,陈康华,宋旼.铈对Al-Cu-Mg-Ag合金时效析出与显微组织的影响[J].中国有色金属学报,2007,17(5):669~675
    [83]毛向阳,方峰,谈荣生,蒋建清.稀土对铜及铜合金组织和性能影响的研究进展[J].稀土,2008,29(3):75~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700