用户名: 密码: 验证码:
浑水渗流作用下尾矿坝稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对近年来对渗流作用下尾矿坝稳定性分析大多忽略尾矿颗粒运动对渗流过程影响这一事实,分析了尾矿颗粒在尾矿坝多孔介质固体骨架中的受力状况;采用浑水渗流室内试验及尾矿坝稳定性分析数值模拟相结合的研究方法,深入研究了尾矿颗粒在坝体中的沉积造成尾矿坝浸润线升高从而影响尾矿坝整体稳定性的机理。论文的主要内容如下:
     (1)当流速小于沉积速度时,水流提供的动力小于重力和范德华力提供的阻力,尾矿颗粒沉积;沉积的尾矿颗粒改变了坝体的物性参数,使尾矿坝整体浸润线升高,致使坝体含水率增大,重度增大,抗剪强度降低,进而影响坝体稳定;
     (2)分别开展净水渗流和浑水渗流室内试验,由于尾矿颗粒的沉积,尾矿坝多孔介质骨架的孔隙度和渗透系数随着入渗过程的进行发生改变,其中渗透系数和孔隙度与时间均呈非线性递减关系,而净水渗流变化不大;
     (3)根据室内试验结果建立尾矿坝物性参数(孔隙度和渗透系数)的动态模型,并在研究尾矿颗粒沉积机理的基础上,建立浑水渗流作用下尾矿坝流固耦合数学模型,并对其进行求解;
     (4)结合算例,采用理论分析与数值分析相结合的方法,应用FLAC3D有限差分软件,模拟不同出渗点条件下的尾矿坝变形及稳定情况,得出浸润线高低是渗流作用下尾矿坝稳定的重要影响因素:浸润线越低,尾矿坝安全系数越高,坝体趋于稳定。
According to the fact that tailings particles deposit effecting on infiltration process are mostly ignored in the stability analysis of tailings dam under seepage action in recent years, combining with example, using theoretical analysis by combination of numerical analysis, using FLAC3D finite difference software , simulating the deformation and stability of tailings dam at the different exuding position, obtaining that high and low of saturation line is an important influencing factor of tailings dam stability under the action of seepage: the lower the saturation line, the higher the safety factor of tailings dam, dam tends to be stable. The main content of the paper as follows:
     (1) When the velocity is less than the deposition rate, the dynamic provided by flow is less than the resistance provided by gravity and van der waals force, tailings particles deposit; the deposited tailings particles changes the physical parameters of porous media, increasing the whole saturation line of tailings dam, resulting in the increase of dam body moisture content and severe, shear strength reduced, thereby affecting dam stability;
     (2) Carrying out water seepage and muddy water seepage laboratory test respectively, as the deposition of tailings particles, the porous medium skeleton porosity and permeability coefficient of tailings dam are changed, in which permeability and porosity decrease with time by non-linear, but little change in the water seepage;
     (3) Based on laboratory test results to establish the dynamic model of tailings dam material parameters (porosity and permeability coefficient), and study of the mechanistic of tailings particles deposit, establishing the fluid-solid coupled mathematical model of tailings dam under the action of muddy water seepage, and to solve them;
     (4) The paper analyses the force condition of tailings particles in the porous media solid skeleton of tailings dam; uses laboratory test of muddy water seepage and numerical simulation of stability analysis of tailings dam to study; and furtherly studys the mechanistic of muddy water particles deposit bringing about saturation line increase which effects on whole stability of tailings dam.
引文
[1]全国尾矿库专项整治行动工作2007年工作总结和2008年重点工作安排的意见(安监总管-〔2008〕100号)[R],中央法规,2008.4.21.
    [2]安监总局:襄汾溃坝事故是迄今为止全世界最大的尾矿库事故[R],新华网,2008.10.14.
    [3]国家安全生产监督管理局:关于辽宁省鞍山市海城西洋鼎洋矿业有限公司选矿厂尾矿库“11.25”溃坝事故的通报(安监总管-(2007)245号)[R],中央法规,2007.12.02.
    [4] Strachan C. Tailings dam performance from USCOLD incident-survey data[J]. Mining Engineering, 2001, 53(3).
    [5]周永洽.浑水的流变性质[J].化学学报.1965.
    [6]张宁生.固相颗粒与油珠侵入地层孔隙的数学模型及模拟研究[J].天然气工业,1995(15):34-37.
    [7] Kumar T.and Todd A C.A New Approach for Mathematical Modeling of Formation Damage Due to Invasion of Solid Suspensions.SPE 18203.
    [8] Xinghui Liu and Faruk Civan. Characterization and Prediction of Formation Damage in Two-Phase Flow Systems.SPE 25429.
    [9] Ahsene Bouhrouxn.Xinghui Liu and Fanlk Civan.Predictive Model and Verification for Sand Particulates Migration in Gravel Packs. SPE 28534.
    [10] Skolasińska K. Clogging microstructures in the vadose zone—laboratory and field studies[J]. Hydrogeology Journal, 2006, 14(6): 1005-1017.
    [11] Herman Bouwer,Jamie Ludke,Robert C.Rice.Sealing pond bottoms with muddy water[J].Ecological Engineering,2001,18:233~238.
    [12]王文焰,汪志荣,王全九等.黄土中Green-Ampt入渗模型的改进与验证[J].水利学报,2003,(5):30~34.
    [13]姚雷.浑水入渗滞留试验研究[D],清华大学硕士学位论文,2004, 5:30-48.
    [14]党发宁.浑水渗流理论及其工程应用[J],中国科学E辑,2006:36(9):1029~1036.
    [15]李作章等.尾矿库安全技术[M].北京:航空工业出版社,1996.
    [16] Ghose MK, Sen PK. Investigation of soil engineering properties for safe design and construction of the iron ore tailing dam[J]. Indian Journal of Engineering and Materials Sciences, 2001, 8 (6): 318-326.
    [17] Garga VK, de la Torre M. Emergency remediation of instability at Caudalosa tailings dam, Peru: a case history[J]. Canadian Geotechnical Journal, 2002, 39 (5): 1193-1200.
    [18] Sammarco O. A Tragic Disaster Caused by the Failure of Tailings Dams Leads to the Formation of the Stava 1985 Foundation[J]. Mine Water and the Environment, 2004, 23(2): 91-95.
    [19] Rykaart M, Fredlund M, Stianson J. Modelling tailings dam flux boundary conditions with 3D seepage software[J]. Ground Engineering, 2002, 35(7): 28-30.
    [20]尹光志,魏作安,万玲.龙都尾矿库地下渗流场的数值模拟分析[J].岩土力学,2003,24(supp): 25-28.
    [21]尹光志.细粒尾矿及其堆坝稳定性分析[M].重庆大学出版社,2004.
    [22]柳厚祥,李宁,廖雪等.考虑应力与渗流耦合的尾矿坝非稳定渗流分析[J].岩石力学与工程学报, 2004, 23(17): 2870-2875.
    [23]蔚平,李广杰,项宏海等.尾矿坝非饱和带滞水曲线模型的建立及应用段[J].吉林大学学报(地球科学版), 2004, 34: 95-98.
    [24]柴军瑞,李守义,李康宏等.米箭沟尾矿坝加高方案渗流场数值分析[J].岩土力学,2005,26(6): 973-977.
    [25]楼建东等.某尾矿坝数值模拟与稳定性分析[J].湖南科技大学学报(自然科学版),2005,20(2):58-61.
    [26]路美丽,崔莉.影响尾矿坝渗流场的因素分析[J].中国安全科学学报, 2004, 14(6): 17-20.
    [27]路美丽,崔莉.复杂地形尾矿坝的三维渗流分析[J].岩土力学, 2006, 27(7): 1176-1180.
    [28]曹林卫等.变形场和渗流场耦合作用下的尾矿坝静力稳定性分析[J].重庆建筑大学学报,2007,29(5):112-118.
    [29]王文星.尾矿坝稳定性分析及安全对策的研究[D],中南大学硕士学位论文,2008:18-43.
    [30] Neuman S.P.,Saturated-unsatutated Seepage by Finite Element.Hydraul.Div.Amer.Soc,Civil Eng.99(HY12),1973,2233-2290.
    [31] Fredlund D.G.and Hasan J.U.,One-dimensional consolidation theory of unsaturated soils.Can.Geot.J.1979,16(3):521-531.
    [32]高骥,雷光耀,张锁春.堤坝饱和-非饱和渗流的数值分析[J].岩土工程学报,1988,(6):28-37.
    [33]柴军瑞,仵彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水力发电,1997(3).
    [34]宋惠珍.地下流体场与应力场耦合方程的有限单元法[J].石油勘探与开发,1998(4).
    [35]柴军瑞.地下水非达西渗流分析[J].勘察科学技术,2002(1):25-27.
    [36]杨志锡,叶为民,杨林德.各向异性饱和土体的渗流耦合分析与数值模拟[J],岩石力学与工程学报,2002(10).
    [37]彭华,陈胜宏.饱和-非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究进展,2002,17(2):253-259.
    [38]张伟.渗流场及其与应力场的耦合分析和工程应用[D],武汉大学博士学位论文,2004:76-97.
    [39]何翔.岩体渗流-应力耦合的随机有限元方法[D],中国科学院博士学位论文,2006:35-126.
    [40]王媛,刘杰.裂隙岩体渗流场与应力场动态全耦合参数反演[J],岩石力学与工程学报,2008(08):1652-1658.
    [41]徐克尊.高等原子分子物理学(第二版)[M].科学出版社.
    [42]陈崇希.地下水动力学[M].中国地质大学出版社.
    [43]倪晋人,王光谦,张红武.固液两相流基本理论及其应用[M].北京:科学出版社,1991.
    [44]陈青等.尾矿坝设计手册[M].冶金工业出版社,2007.
    [45]曲志炯等.新型石渣坝——粗粒土筑坝的理论与实践[M].四川大学出版社,1993.
    [46] SL.237-1999.土工试验规程及条文说明.中华人民共和国水利部.1999.
    [47]顾慰慈.渗流计算及应用[M].中国建材工业出版社.2000.
    [48]孔祥言等.高等渗流力学[M].合肥:中国科学出版社.1999.
    [49]李广信等.高等土力学[M].北京:清华大学出版社.2004.
    [50]李根.尾矿坝稳定性研究[D].辽宁工程技术大学硕士论文.2007.
    [51]徐曾和.渗流的流固耦合问题及应用[D].东北大学博士学位论文.1997.
    [52]薛强,刘磊,梁冰.垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J].岩石力学与工程学报.2007(26).
    [53]赵颖.填埋场渗滤液污染物释放传输的耦合动力学模型及应用研究[D].辽宁工程技术大学博士论文.2008.
    [54]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003.7
    [55]陆金甫,关治.偏微分方程数学解法(第2版)[M].北京:清华大学出版社,2004.119-120.
    [56]马龙工作室.Auto CAD2006中文版入门与提高[M].人民邮电出版社,2006.
    [57]苏荣华,梁冰.结构仿真分析——ANSYS应用[M].沈阳,东北大学出版社,2005.
    [58]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [59]廖秋林,曾钱帮,刘彤等.基于ANSYS平台复杂地质体FLAC模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010–1013.
    [60]朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828–832.
    [61]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700