用户名: 密码: 验证码:
双馈感应风力发电机控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规能源短缺和环境污染问题加剧,使得可再生能源特别是风能的开发利用得到世界各国的高度重视。加之电力电子器件制造和技术的飞速发展,大型兆瓦级变速恒频风力发电机组成为了风电机组的技术发展方向。双馈感应发电机(Doubly-Fed Induction Generator, DFIG)具有转子励磁变频器容量小、成本低,机电系统柔性连接,风能捕获能力强等特点,成为目前世界风电制造商开发的主流机型,其交流励磁控制技术也成为重要的研究方向。
     本文对风力发电用双馈感应发电机控制系统的各项关键技术进行了详细说明,建立了基于定子磁链定向的双馈感应发电机矢量控制模型,实现了电机变速驱动和有功/无功功率解耦控制。然后采用模型参考自适应(Model Reference Adaptive System, MRAS)速度辨识技术,实现了双馈感应发电机无速度传感器控制。
     为验证理论分析的正确性,以50kW的双馈感应发电机为例设计一套控制系统。通过在电动机运行工况下的转速控制实验和在发电机运行工况下的功率控制实验,验证了估测的转子位置和转速在不同转速和功率工况下的稳定性和准确度。仿真和实验结果可以看出,将基于MRAS的转速辨识模型应用到双馈感应发电机的矢量控制系统是可行的,系统具有良好的稳态精度和动态性能,对实现双馈感应发电机无速度传感器控制有参考意义。本文主要研究内容和创新性的成果如下:
     1)双馈感应发电机的矢量控制策略是整个控制系统的核心。基于双馈感应发电机的数学模型,推导出在电动机运行工况下的转矩/转速控制,以及在发电机运行工况下的有功/无功解耦控制。并且,得出了双馈感应发电机的T型等效电路,并且分析了在各种工况下的双馈感应电机的12种运行模式。
     2)对于电网友好型无冲击并网控制技术进行了研究。建立了双馈感应发电机空载工况下的数学模型,在此基础上对双馈感应发电机的准同期并网控制策略进行了研究,并且描述了自同期并网控制技术。
     3)变速恒频风力发电技术中,能量双向流动变流器是风力发电系统最核心的控制部件。提出了直流母线电压稳定的重要性,建立了网侧变流器(Grid Side Inverter, GSI)的数学模型,在此基础上推导出网侧变流器的直流母线电压闭环的矢量控制策略,并且对网侧变流器滤波器类型选择和参数设计进行了分析,得到最优的LC滤波器参数值。
     4)近年来,双馈感应发电机的无速度传感器矢量控制技术一直是研究热点。无速度传感器技术有诸多优点:降低系统成本,无需安装和维护转子位置传感器,提高系统可靠性,更加适应于在恶劣环境下工作。本文对基于定子磁链的双馈感应发电机速度辨识技术进行了研究,虽然该方法具有良好的动静态性能,但是,该方法有一个缺点,就是必须由转子励磁。当转子电流ir'为零时,ψs=Lsis,不含估测转子角度θr项,无法正确辨识转子位置。因此,针对这个问题,本文提出一种新的基于转子电流的双馈感应发电机速度辨识技术,将测量得到的转子电流作为参考模型,定子电压和电流估测得到的转子电流作为可调模型,通过比例积分(Proportional-intergral, PI)控制器获取转子位置和转速信息。通过空载变速实验和有功/无功解耦控制实验,证明所提出的无速度传感器控制系统在转子电流为零时依然可以正常工作,具有较强的鲁棒性和令人满意的动静态性能。
     5)在MATLAB/SIMULINK仿真平台下,利用SimPowerSystem工具箱提供的丰富的电力系统、电力电子常用元器件,根据真实的硬件平台,以50kW的双馈感应发电机为例搭建仿真系统的主回路仿真建模。参照TI公司提供的代码例程对控制回路进行仿真建模,有一部分控制算法是使用M函数编写,而不是直接采用SimPowerSystem工具箱提供的仿真模块,这样更能真实地还原实验环境。然后,通过电动机运行工况下的转速控制和发电机运行工况下的功率控制实验,验证了模型参考自适应速度辨识方法和网侧变流器直流母线电压闭环控制策略的可行性。
     6)为验证理论分析的正确性,以50kW的双馈感应发电机为例,搭建了一套双馈感应发电机实验控制系统。介绍了实验系统硬件平台的配置,对实验过程中的上电和下电顺序进行了说明。在实验结果分析中,首先给出直流母线电容充电过程的电压和电流波形,然后对于控制过程的实验结果进行了分析。实验结果证明该实验控制系统具有较强的鲁棒性和令人满意的动静态性能。
With the shortage of conventional energy and the increase of environmental pollution, the development and utilization of renewable energy, especially wind power, have been given more attention by many countries in the world. Since the rapid development of power electronic device and technology, large mega watts (MW) variable-speed and constant-frequency (VSCF) wind power generation system have been become the main developing direction of wind power generation technology. doubly-fed induction generator (DFIG), which has many advantages like the small capacity of rotor side inverter (RSI), low cost, flexible connection between mechanical system and electrical system, powerful wind energy capture capability, has currently become mainstream product model of wind power generator manufacturers, and its AC excitation control technology has played a very important role in wind power generation research field.
     This paper presents a sensorless algorithm for the vector control of doubly-fed induction generator using model reference adaptive system (MRAS) observer. The stator flux oriented vector control is employed to achieve variable-speed drive and decoupled active/reactive power control.
     A 50 kW DFIG prototype system is built to verify the theoretical analysis. Through variable speed tracking control in motoring mode and decoupled active/ reactive power control in generating mode for simulation and laboratory experimental study, the estimation of rotational speed and rotor position at different speed and power condition can track the actual value. The simulation and laboratory experimental results have shown the effectiveness of the proposed sensorless control scheme. The main research contents and innovative ideas are described as below:
     1) DFIG vector control strategy is the core of the whole control system. By means of the DFIG mathematic model, The stator flux oriented vector control is employed to achieve the speed tracking control in motoring mode and decoupled active/ reactive power control in generating mode. Moreover, the DFIG T-type equivalent circuit is presented, and that 12 kinds of operating mode in terms of all operating conditions are analyzed.
     2) Grid-friendly no-impact cutting-in control technology for DIFG is discussed in the dissertation. DFIG no-load mathematic model is build to achieve quasi-synchronizing no-load cutting-in control. In addition, self-synchronizing cutting-in control strategy is analyzed as well.
     3) In VSCF wind power generation technology, bi-direction energy converter is the most important component of the whole wind power generation system. In the dissertation, the importance of the stabilization for DC bus voltage is proposed. Using the mathematic model of grid side inverter (GSI), DC bus voltage close-loop vector control strategy for GSI is investigated. Consider the influence of GSI filter inductance, by means of adjusting reactive current idg, equivalently enhancing GSI capacitive reactive power compensation, the active power transmission capability for GSI is improved.
     4) In recent years, sensorless vector control of DFIG is the research focus. This is because sensorless control strategy has many advantages, like low systems cost, no need installation and maintenance for rotor position sensor, high system reliability and more suitable for working under harsh environment. The stator flux linkage based model reference adaptive system observer for DFIG sensorless vector control has been presented in the dissertation, and has a good static and dynamic performance. Whereas, this method has a fatal flaw that the excitation must be provided by rotor. In the stator flux based MRAS observer, the adjustable model is the current model of stator flux, obtained byλs= Lsis+Lmirejθr. When rotor current is zero, meansλs= Lsis, the estimated stator flux doesn't contain the estimated rotor angleθr, thus the rotor position cannot be accurately recognized at this time. In order to solve this problem, the rotor current based MRAS observer for DFIG sensorless vector control has been proposed. In the proposed MRAS observer, the reference model is the measured rotor current, which compared to the estimation of the rotor current obtained from the stator voltages and currents. A proportional-integral (PI) controller adjusts the rotational rotor speed, driving the error between the measured and estimated currents to zero.
     5) In MATLAB/SIMULINK simulation platform, according to the real hardware system, the power circuit of 50 kW DFIG simulation system is build using plentiful power system and power electronic modules supplied by "SimPowerSystem" toolbox. Base on TI's routine code, simulation system's control loop is build partially using M function while not directly adopting modules supplied by "SimPowerSystem" toolbox. This could be a better method to restore the real experimental environment. Through variable speed tracking control in motoring mode and decoupled active/reactive power control in generating mode for simulation and laboratory experimental study, the effectiveness of the proposed MRAS based sensorless control scheme and DC bus voltage close loop vector control scheme is verified.
     6) A 50 kW DFIG prototype system is built to verify the theoretical analysis. In the dissertation, the configuration of the experimental hardware platform is presented, and that the generating and shutting down sequence in the experimental process is illustrated. In the analysis of the experimental results, the voltage and current waveforms in the charging process of DC bus capacity are firstly presented, and then the experimental results of the control strategies are analyzed. The experimental results have shown the robustness and satisfactory static and dynamic performance of the proposed control scheme.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359.
    [2]姚强,陈超.洁净煤技术.北京:化学工业出版社,2005:213-256.
    [3]马栩泉.核能开发与应用.北京:化学工业出版社,2005:12-29.
    [4]Thomas Ackermann. Wind power in power systems. England:John Wiley&Sons, Ltd,2005:523-651.
    [5]中华人民共和国国家统计局.中国统计年鉴(2001-2007).北京:中国统计出版社,2007:251-398.
    [6]王庆一.中国能源现状与前景.中国煤炭,2005,(2):22-27.
    [7]李俊峰.风力12在中国.北京:化学工业出版社,2005:44-81.
    [8]刘万琨,张志英,李银风,等.风能与风力发电技术.北京:化学工业出版社,2007:19-38.
    [9]Ann-Marie B, Jan K. Distributed generation, the power paradigm for the new millennium. New York:CRC Press,2001:111-134.
    [10]时璟丽.竞争性电力市场环境下可再生能源发电的国际发展经验和对我国的启示.中国电力,2007,(6):61-65.
    [11]周孝信,曹一家.我国发展大规模非水可再生能源发电的前景.电力科学与技术学报,2008,23(1):2-7.
    [12]卫蜀作,蔡邰.中国电网高速发展与可再生能源发电的关系.电网技术,2008,32(5):26-30.
    [13]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81.
    [14]栗文义,张保会,巴根.风能大规模利用对电力系统可靠性的影响.中国电机工程学报,2008,28(1):100-105.
    [15]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2006:51-75.
    [16]雷亚洲.国外风力发电导则及动态模型简介.电网技术,2005,29(12):27-32.
    [17]kWok L Shum, Chihiro Watanabe. Photovoltaic deployment strategyin Japan and the USA-an institutional appraisal. Energy Policy,2007,35(2):1186-1195.
    [18]Lalor G, Mullane A, O'Malley M. Frequency control and wind turbine technologies. IEEE Trans on Power Systems,2005,20(4):1905-1913.
    [19]J Baroudi, V Dinavahi, A Knight. A review of power converter topologies for wind generators. Renewable Energy,2007,32(14):2369-2385.
    [20]宋卓彦,王锡凡,滕予非,等.变速恒频风力发电机组控制技术综述.电力系统自动化,2010(10):8-17.
    [21]凌禹,张同庄.变速风力发电系统控制技术综述.电力自动化设备,2008,28(3):122-125.
    [22]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制.中国电机工程学报,2009,29(18):71-77.
    [23]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述.电工技术学报,2009,24(9):57-63.
    [24]操瑞发,朱武,涂祥存,等.双馈式风力发电系统低电压穿越技术分析.电网技术,2009,33(9):72-77.
    [25]张兴,张龙云,杨淑英,等.风力发电低电压穿越技术综述.电力系统及其自动化学报,2008,20(2):1-8.
    [26]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析.电力系统自动化,2007,31(23):84-89.
    [27]关宏亮,赵海翔,王伟胜,等.风电机组低电压穿越功能及其应用.电工技术学报,2007,22(10):173-177.
    [28]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,27(20):62-67.
    [29]Datta R, Ranganathan V T. A method of tracking the peak power points for a variable speed on energy conversion. IEEE Trans on Energy Conversion,2003, 18(1):163-168.
    [30]Eduard Muljadi, Butterfield C P. Pitch-controlled variable-speed wind turbine generation. IEEE Transactions on Industry Applications,2001,1(37):240-246.
    [31]Eftichios Koutroulis, Kostas Kalaitzakis. Design of a Maximum Power Tracking System for Wind energy conversion Applications. IEEE Transactions on Industrial Electronics,2006,53(2):486-494.
    [32]Torbjon Thiringer, Jan Linders. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wind speed range. IEEE Transactions on Energy Conversion,1993,18(3):520-526.
    [33]Wang Quincy, Chang Liuchen. An Intelligent Maxi-mum Power Extraction Algorithm for Inverter-based Variable Speed Wind Turbine Systems. Power Elec-tronics, IEEE Transactions on,2004,19(5):1242-1249.
    [34]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究.中国电机工程学报,2003,23(11):122-125.
    [35]王中,孙元章,李国杰,等.双馈风力发电矢量控制电流环参数特性分析.电 力系统自动化,2008,32(21):91-96.
    [36]郭金东,赵栋利,林资旭,等.变速恒频双馈风力发电机励磁电源控制技术.电力电子技术,2007,41(4):1-3.
    [37]Badrul HC, Chellapilla S. Double-fed induction generator control forvariable speed wind power generation. Electric Power Systems Research,2006,76(12): 786-800.
    [38]Lie Xu. Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans. Energy Convers,2006,21(3):750-758.
    [39]Chiowdhury H, Chellapilla S. Double-fed induction generator control for variable speed wind power generation. Electric Power System Research,2006, 76(9/10):786-800.
    [40]苑国锋,李永东,柴建云,等.1.5MW变速恒频双馈风力发电机组励磁控制系统试验研究.电工技术学报,2009,24(2):45-50.
    [41]郭金东,赵栋利,林资旭,等.兆瓦级变速恒频风力发电机组控制系统.中国电机工程学报,2007,27(6):1-6.
    [42]刘其辉,贺益康,赵仁德.交流励磁变速恒频风力发电系统的运行与控制.电工技术学报,2008,23(1):129-136.
    [43]吴国祥,马炜,陈国呈,等.双馈变速恒频风力发电空载并网控制策略.电工技术学报,2007,22(7):169-175.
    [44]任永峰,李含善,李建林,等.并网型双馈电机风力发电系统建模与仿真.电力系统及其自动化学报,2009,21(5).
    [45]黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电网运行的影响分析.电工技术学报,2010(4):23-28.
    [46]吴国祥,陈国呈,蔚兰.变速恒频风力发电柔性并网及解列控制.华中科技大学学报(自然科学版),2009,37(3):98-103.
    [47]石立宝,戴世强,徐政,等.大规模双馈型风电场并网的系统暂态稳定仿真.电力系统及其自动化学报,2009,21(4):59-64.
    [48]Vladislav A. Analysis of dynamic behavior of electric power systems with large amount of wind power. Copenhagen:Technical University of Denmark,2003: 298-345.
    [49]Moursi E, Joos G, Abbey C. A secondary voltage control strategy for transmission level interconnection of windgeneration. IEEE Trans on Power Electronics,2008,23(3):1178-1190.
    [50]Yazhou Lei, Alan Mullane, Gordon Lightbody, et al. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers.2006,21(1):257-264.
    [51]吴胜,黄声华,周理兵,等.双馈电机的交/直/交控制.中国电机工程学报,2005,25(19):146-151.
    [52]张宪平,李亚西,许洪华.新型拓扑滤波器的双馈风电网侧变流器阻尼策略.中国电机工程学报,2009,29(21):1-7.
    [53]童建东,张新宇,白宪庆,等.双馈风力发电机组网侧变换器电压空间矢量电流滞环控制.中国电力,2007,40(7):87-91.
    [54]吴佳佳,卫志农,韩连山.采用智能控制的DFIG风力发电系统.电力系统及其自动化学报,2009,21(6):12-16.
    [55]郭晓明,贺益康,何奔腾,等.DFIG风电机组网侧变换器的复开关表直接功率控制.电力系统自动化,2007,31(21):67-71.
    [56]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究.中国电机工程学报,2006,26(22):134-139.
    [57]Malesani L M, Rossetto L, Tomasin P. AC/DC/AC PWM converter with reduced energy storage in the DC link. IEEE Transactions on Industry Applications,1995,31(2):287-292.
    [58]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究.中国电机工程学报,2002,22(11):100-105.
    [59]Kayikci M, Milanovic J V. Reactive power control strategies for DFIG-based plants. IEEE Transactions on Energy Conversion,2007,22(2):389-396.
    [60]Tapia G, Tapia A, Ostolaza J X. Proportional-Integral Regulator-Based Approach to Wind Farm Reactive Power Management for Secondary Voltage Control. IEEE Transactions on Energy Conversion,2007,22(2):488-498.
    [61]赵成勇,胡冬良,李广凯.新型双馈入直流输电系统无功调节特性分析.电力系统自动化,2008,32(21):51-55.
    [62]严干贵,王茂春,穆钢,等.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究.电工技术学报,2008,23(7):29-34.
    [63]Johan M, Sjoerd H. Ridethrough of wind trubines with doubly-fed induction generator during a voltage dip. IEEE Transactions on Energy Conversion, 2005,20(2):435-441.
    [64]Abbey C, Joos G. Effect of low voltage ride through (LVRT) characteristic on voltage stability. IEEE Transactions on Industry Applications,2005,41(3): 1-7.
    [65]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报,2006,26(10):130-135.
    [66]张学广,徐殿国,潘伟明,等.基于电网电压定向的双馈风力发电机灭磁控制策略.电力系统自动化,2010(7):95-99.
    [67]王庆龙.交流电机矢量控制系统滑模变结构控制策略研究:[合肥工业大学博士学位论文].合肥:合肥工业大学电气与自动化工程学院,2007:56-81.
    [68]朝泽云.无速度传感器矢量控制系统的若干问题研究:[华中科技大学博士学位论文].武汉:华中科技大学电气与电子工程学院,2006:23-34.
    [69]马小亮,刘志强.基于电流辨识速度的双馈矢量调速系统的研究.电工技术学报,2003,18(4):89-93.
    [70]Mihai Comanescu, Xu Longya. An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors. IEEE Transactions on Industry Electronics,2006,53(1):50-56.
    [71]张学广,徐殿国,李伟伟.双馈风力发电机无速度传感器控制.太阳能学报,2009,30(10):89-94.
    [72]苑国锋,李永东,柴建云.双馈异步风力发电机新型无位置传感器控制方法.清华大学学报(自然科学版),2009(4):114-120.
    [73]Mihai Comanescu, Xu Longya. Sliding-mode MRAS speed estimators for sensorless vector control of induction Machine. IEEE Transactions on Industry Electronics,2006,53(1):146-153.
    [74]Xu Longya, Cheng W. Torque and reactive power control of a doubly-fed induction machine by position sensorless scheme. IEEE Transactions on Industry Applications,1995,31(3):636-641.
    [75]Abolhassani M, Niazi P, Toliyat H, et al. A sensorless integrated Doubly-Fed electric alternator/active filter (IDEA) for variable speed wind energy system.38th IAS Annual Meeting on Industry Applications, Salt Lake City, UT,2003,10:1891-1896.
    [76]Datta R, Ranganathan V T. A simple position sensorless algorithm for rotor side field oriented control of wound rotor induction machine. IEEE Transactions on Industrial Electronics,2001,48(4):786-793.
    [77]Bogalecka E, Krzeminski Z. Sensorless control of a double-fed machine for wind power generators. EPE-PEMC-2002, Dubrovnik, Croatia,2002,8: 1209-1215.
    [78]Comanescu M, Xu Longya. Sliding-mode MRAS speed estimators for sensorless vector control of induction machine. IEEE Transactions on Industrial Electronics,2005,53(1):146-153.
    [79]杨淑英,张兴,张崇巍,等.基于转子电流偏差角的双馈感应电机速度观 测.电力系统自动化,2009,33(4):92-95.
    [80]王庆龙,张崇巍,张兴.交流电机无速度传感器矢量控制系统变结构MRAS转速辨识.中国电机工程学报,2007,27(15):70-74.
    [81]高剑,黄守道,马晓枫,等.基于交互式MRAS策略的无轴承异步电机无速度传感器矢量控制系统.电工技术学报,2008,23(11):41-46.
    [82]祝龙记,王宾.基于MRAS速度辨识矢量控制系统的仿真研究.电工技术学报,2005,20(1):60-65.
    [83]Marcetic D P, Vukosavic S N. Speed-sensorless AC drives with the rotor time constant parameter update. IEEE Transactions on Industrial Electronics,2007, 54(5):2618-2625.
    [84]杨淑英,张兴,张崇巍,等.基于转子电流偏差角的双馈感应电机速度观测.电力系统自动化,2009,33(4):92-95.
    [85]Cardena R, Pena R, Asher G, et al. MRAS observer for doubly fed induction machines. IEEE Transactions on Energy Conversion,2004,19(2):467-468.
    [86]Cardena R, Pena R, Proboste J, et al. MRAS observer for sensorless control of standalone doubly fed induction generator. IEEE Trasaction on Energy Conversion,2005,20(4):710-718.
    [87]Pena R, Cardenas R, Proboste J, et al. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Transactions on Industrial Electronics,2008,55(1):330-339.
    [88]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究:[华中科技大学博士学位论文].武汉:华中科技大学电气与电子工程学院,2008:43-59.
    [89]刘其辉.变速恒频风力发电系统运行与控制研究:[浙江大学博士学位论文].杭州:浙江大学电气工程学院,2005:34-47.
    [90]肖运启.双馈型风力发电机励磁控制与优化运行研究:[华北电力大学(北京)博士学位论文].北京:华北电力大学(北京)能源与动力工程学院,2008:51-78.
    [91]舒进,张保会,李鹏,等.变速恒频风电机组运行控制.电力系统自动化,2008,32(16):89-93.
    [92]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述.电力系统自动化,2004,28(23):92-96.
    [93]Ion B, Lucian T, Ioan S. Variable speed electric generators and their control: an emerging technology. Journal of Electrical Engineering,2002,1(3):20-28.
    [94]黄守道,王耀南,王毅,等.无刷双馈电机有功和无功功率控制研究.中国电机工程学报,2005,25(4):87-93.
    [95]黄守道,王耀南,黄科元,等.无刷双馈电机转子磁场定向控制策略的研究.电工技术学报,2002,17(2):34-39.
    [96]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究:[重庆大学博士学位论文].重庆:重庆大学电气工程学院,2006:31-56.
    [97]Tang Yifan, Xu Longya. A flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Transactions on Power Electronics,1995,10(4):472-478.
    [98]Xu Longya, Li Zhen, Kim E H. Field-orientation control of a doubly excited brushless reluctance machine. IEEE Transactions on Industry Applications, 1998,34(1):148-155.
    [99]郭家虎.变速恒频双馈风力发电系统控制技术的研究:[上海大学博士学位论文].上海:上海大学信息科学与工程学院,2008:40-68.
    [100]Pena R, Clare J C, Asher G M. A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine. IEE Proceedings-Electric Power Applications,1996,143(5): 380-387.
    [101]战杰,张彦,刘其辉,等.基于电网虚拟磁链的变速恒频风力发电机柔性并网技术.电力自动化设备,2009,29(12):104-107.
    [102]马祎炜,俞俊杰,吴国祥,等.双馈电机风力发电柔性并网方式的分析与比较.上海大学学报(自然科学版),2009,15(3):51-54.
    [103]石立宝,徐政,Zhaoyang Dong.大规模双馈风力发电机组并网的动态仿真模型与初始化.电力系统自动化,2008(3):44-48.
    [104]赵清声,王志新.双馈风力发电机组系统接入与稳定运行仿真.电网技术,2007,31(22):69-74.
    [105]Chai Chompooinwai, Lee Weijen, Fuangfoo P, et al. System impact study for the interconnection of wind generation and utility system. IEEE Transactions on Industry Applications,2005,41(1):163-168.
    [106]张国新.风力发电并网技术及电能质量控制策略.电力自动化设备,2009,29(6):51-54.
    [107]杨淑英,张兴,张崇巍,等.变速恒频双馈风力发电机投切控制策略.中国电机工程学报,2007,27(17):103-108.
    [108]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系.电工技术学报,2006,21(2):39-44,62.
    [109]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究.中国电机工程学报,2006,26(22):134-139.
    [110]乔嘉赓,徐飞,鲁宗相,等.基于相关机会规划的风电并网容量优化分析.电力系统自动化,2008,32(10):84-87.
    [111]Anca D Hansen, Poul Sorensen, Florin Iov, et al. Centralised power control of wind farm with doubly fed induction generators. Renewable Energy,2006, (31):935-951.
    [112]贺益康,何鸣明,赵仁德,等.双馈风力发电机交流励磁用变频电源拓扑浅析.电力系统自动化,2006,30(4):105-112.
    [113]吴胜,黄声华,周理兵,等.双馈电机的交/直/交控制.中国电机工程学报,2005,25(19):146-151.
    [114]张承慧,叶颖,陈阿莲,等.基于输出电流控制的光伏并网逆变电源.电工技术学报,2007,22(8):41-45.
    [115]张强,张崇巍,张兴,等.风力发电用大功率并网逆变器研究.中国电机工程学报,2007,27(16):55-59.
    [116]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制.中国电机工程学报,2008,28(18):36-41.
    [117]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术.中国电机工程学报,2009,29(27):36-41.
    [11 8]赵成勇,胡冬良,李广凯.新型双馈入直流输电系统无功调节特性分析.电力系统自动化,2008,32(21):51-55.
    [119]王庆龙.交流电机矢量控制系统滑模变结构控制策略研究:[合肥工业大学博士学位论文].合肥:合肥工业大学电气与自动化工程学院,2007:39-48.
    [120]朝泽云.无速度传感器矢量控制系统的若干问题研究:[华中科技大学博士学位论文].武汉:华中科技大学电气与电子工程学院,2006:22-43.
    [121]李东东,陈陈.风力发电机组动态模型研究.中国电机工程学报,2005,25(3):114-119.
    [122]李晶,宋家骅,王伟胜.考虑变频器特性的变速恒频双馈风力发电机组控制策略的研究与仿真.电网技术,2004,28(21):11-16.
    [123]尹明,李庚银,周明,等.双馈感应风力发电机组动态模型的分析与比较.电力系统自动化,2006,30(13):22-27.
    [124]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究:[华北电力大学(保定)博士学位论文].保定:华北电力大学(保定)电气与电子工程学院,2004:31-49.
    [125]尹明,李庚银,赵辉,等.双馈式感应风力发电机组建模及其控制研究.华北电力大学学报,2007,34(5):17-21.
    [126]冯双磊,赵海翔,任普春,等.基于PSCAD/EMTDC的双馈式变速恒频风 电机组动态模型仿真.电网技术,2007,31(17):30-35.
    [127]乔嘉赓,鲁宗相,严慧敏,等.双馈感应风力发电机功率控制器的建模与仿真.电力系统自动化,2007,31(24):34-37,41.
    [128]Tapia A, Tapia G, Ostolaza J X, Saenz J R. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. on Energy Convention,2003,18(2):194-204.
    [129]Feijoo A E, Cidras J. Modeling of wind farms in the load flow analysis. IEEE Trans on Power Systems,2002,15(1):110-115.
    [130]王晓波,严干贵,郑太一,等.双馈感应风电机组联网运行仿真及实证分析.电力系统自动化,2008,32(7):87-91.
    [131]Salman K, Teo J. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator. IEEE Trans on Power Systems,2003,18(2):793-803.
    [132]邢文琦,晁勤.含不同风电机组的风电电网仿真研究.电网技术,2009,33(7):99-102.
    [133]Danie J Trudnowski, Andrew Gentile, Jawad M Khan, et al. Fixed-speed wind generator and wind-park modeling for transient stability studies. IEEE Transactions on Power Systems,2004,19(4):1911-1917.
    [134]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,2006:217-232.
    [135]黄梅,万航羽.在动态仿真中风电场模型的简化.电工技术学报,2009,24(9):23-28.
    [136]严干贵,魏治成,穆钢,等.直驱永磁同步风电机组的动态建模与运行控制.电力系统及其自动化学报,2009,21(6):71-75.
    [137]吉同军,丁晓群,刘皓明.双馈式风力发电系统的运行控制与建模仿真.中国电力,2008,14(3):81-86.
    [138]庄晓丹, John N Jiang.大型风电场的风能损失计算.电力系统自动化,2009,33(12):85-90.
    [139]乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略.电力系统自动化,2010(5):96-101.
    [140]魏书荣,符杨,马宏忠.双馈风力发电机定子绕组匝间短路诊断与实验研究.继电器,2010,38(11):25-28.
    [141]杨思祥,李国杰,阮思烨,等.应用于DFIG风电场的VSC-HVDC控制策略.电力系统自动化,2007,31(19):64-67.
    [142]张兴,张显立,谢震,等.双馈风力发电变流器长缆驱动及其过电压抑制.电力系统自动化,2006,30(21):91-95.
    [143]王克成,曾大可,余达太.具有自适应观测器的双馈电动机磁场能量线性模型控制.中国电机工程学报,2000,20(2):78-80,84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700