用户名: 密码: 验证码:
复杂旋转侧喷流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次完成了高速旋转弹丸侧喷三维干扰湍流流场的数值模拟,分析了弹丸侧喷流场复杂的波系结构,研究了高速旋转、攻角、底喷等因素对弹丸侧喷流场的影响规律,深入分析了旋转侧喷弹丸的空气动力学特性。
     在旋转坐标系下,发展了一种含旋转源项的雷诺平均Navier-Stokes方程的三维有限体积TVD格式,时间离散采用隐式Euler方法。在非定常计算中,采用Jameson提出的双时间推进方法改进时间精度。湍流模型采用高雷诺数k-ε两方程模型。在改进传统网格生成方法的基础上,结合投影映射、分区拼接技术生成了弹丸侧喷流场单一区域三维计算网格,在侧喷流喷口边界实现了网格贴体化。
     系统研究了低阻远程弹丸在小攻角状态,低跨声速、高跨声速和超声速时的非对称绕流流场,为该弹形气动力研究提供理论指导并为弹丸侧喷流研究奠定基础,结果显示低阻远程弹丸外形具有优化绕流场、减小空气阻力的特点。对分区计算技术在弹丸绕流场数值模拟中的应用也进行了尝试,计算表明分区后计算稳定性有所下降。
     在无旋转、无攻角条件下完成了弹丸侧喷三维干扰湍流流场数值模拟,并完成了弹丸底喷流-侧喷流共同干扰流场的一体化计算。弹丸侧喷流与绕流的相互干扰形成了包含喷口前激波、再附激波以及沿喷流边界发展的膨胀波等复杂的波系结构,并延伸影响到弹底部流动。研究表明,侧喷流与来流马赫数之比是影响绕流场的重要因素,该值越大则侧喷干扰越强烈,矩形和椭圆形两种侧喷口形状对侧喷流场干扰波系的影响并不明显。侧喷口前绕侧喷流的激波和侧喷流对弹底部流动的引射导致了弹丸波阻和底阻系数的增大。底喷流动具有添质加能和引射两种相反作用,并能消弱侧喷流对弹丸底部流动的影响。
     为研究高速旋转对侧喷流绕流场的影响,进行了高速旋转弹丸侧喷三维干扰湍流流场的数值模拟。与无旋转情况对比表明,旋转对弹丸侧喷流以及底部流动均有影响,高速旋转导致侧喷射流向旋转来流方向倾斜,并减弱其对弹底流动的引射。在高速旋转弹丸底喷流-侧喷流共同干扰流场的计算中,发现高速旋转对底喷流动的影响没有对侧喷流动的明显。
     采用双时间推进法成功进行了有攻角高速旋转光弹体绕流和弹丸侧喷流两种非定常流场的数值模拟。计算表明,两种非定常流场在经过约一个旋转周期之后形成非定常周期流场。光弹体弹丸表面压力表现为周期性波动,从计算中得到的马格努斯力系数与实验值十分吻合。弹丸侧喷流场干扰波系的空间结构、弹体表面压力和各种空气动力参数均表现为稳定的周期性波动。
    
     系统分析了旋转侧喷弹丸复杂的空气动力学特性,分析了马格努斯力系数、法向
    力系数、偏航力矩系数、俯仰力矩系数和压力中心等参数的产生机理和变化规律。与
    光弹体相比,旋转侧喷弹丸的空气动力特性不仅在形成机理上发生了本质变化,而且
    在数值上表现出复杂的波动形式,这些特点将对旋转侧喷弹丸空气动力研究带来直接
    和深远的影响。
Three dimensional interaction flowfield over high-speed spinning projectile with lateral jets is numerically simulated in this dissertation firstly. Complicated shocks wave patterns is analyzed. Several factors concerned such as high-speed spinning, attack angle, base bleed and so on, are studied. The aerodynamics characteristic of spinning projectile with lateral jets is analyzed detailedly.
    In rotating frame of reference, the construction method of three dimensional finite volume TVD schemes is systemically analyzed, in which implicit Euler defiference is applied for time discretization. The high Reynolds number two-equation k- E turbulence model is used. The dual-time stepping method proposed by A.Jameson is applied to improve time precision for unsteady flowfield computation. The three dimensional grid for projectile with lateral jets, especially body-fitted for lateral jets exit, is generated by improved traditional methods with projection and zonal method.
    The flowfield over low-drag and long-range projectile with small attack angle is numerically studied from transonic to supersonic velocity. It provides basic work for aerodynamics characteristic of this projectile and for lateral jet interaction flowfield, and it shows this projectile can decrease drag. Zonal method is tried to compute flow over projectiles and results is satisfied, but computation is much slower.
    Without spinning or attack angle, the three dimensional interaction flowfield over projectile with lateral jets is numerically simulated successfully, and unified interaction flowfield with lateral jets and base bleed is also calculated. The flow field that results from the interaction of lateral jets injection into supersonic flow over projectile has complicated shocks wave patterns, which include regions of shocks and expand waves, and the lateral jet interaction also effects base flow of projectile. The ratio of Mach number between lateral jet and free flow induce intensity degree of jet interaction. It has no obvious difference between two interactions with two types of nozzle exit configuration, rectangle and ellipse. The shock in front of jet results in increase of shock resistance and the jet ejection causes increase of base resistance. The base bleed has two contrary action of providing energy and ejection, and it can weaken the effect of lateral jet upon base flow.
    The interaction flow field over high-speed spinning projectile with lateral jets is simulated secondly. Comparison with nonspinning case shows spinning changes the flow structure and base flow of projectile with lateral jets. The lateral jets are caused to incline
    
    
    
    to the direction of rotating free flow and to weaken the effect upon base flow. Furthermore, the spinning effect upon lateral jet is much stronger than that upon base bleed.
    With attack angle, two types of unsteady flowfield over high-speed spinning projectile without and with lateral jets are successfully simulated respectively by dual-time stepping method. The two results of flowfield show unsteady and periodically after one period of spinning. The pressure of projectiles without lateral jets waves periodically and the Magnus force coefficient is in excellent agreement with the experiment data. In the result with lateral jets, the structure of jets, the pressure of projectile surface and the aerodynamics characteristics are all in steady periodical fluctuation.
    The complicated aerodynamics characteristic of spinning projectile with lateral jets and with attack angle is studied detailedly. The formation and changes are analyzed including Magnus force, normal force, yawing moment, pitching moment and pressure center. The aerodynamics characteristic of spinning projectile with lateral jets has constitutionally difference in formation from that without jet, and it waves periodically. These characteristics are very important for the study of aerodynamics of projectile with lateral jets.
引文
1.郭美芳,姜辉.国外地基/舰载远程精确打击弹药的发展研究.防空反导与远程弹药技术论文集,中国兵工学会弹药专业委员会第29届年会,四川成都,2001,9:182-196
    2.钱建平,翁佩英等.底排-火箭复合增程炮弹的发展动态.防空反导与远程弹药技术论文集,中国兵工学会弹药专业委员会第29届年会,四川成都,2001,9:197-203
    3.苏维厚,张莉.远程炮弹火箭增程技术探讨.防空反导与远程弹药技术论文集,中国兵工学会弹药专业委员会第29届年会,四川成都,2001,9:214-217
    4.张庆书.大口径弹药技术发展方向.防空反导与远程弹药技术论文集,中国兵工学会弹药专业委员会第29届年会,四川成都,2001,9:218-221
    5.武晓松.弹丸(含底部排气)绕流流场的数值研究.南京理工大学博士后研究工作总结报告,1993
    6.吴小平等.含喷流炮弹绕流场数值模拟.推进技术,1998,19(3):57-60
    7.王建文.含侧喷流的155mm炮弹绕流场的数值模拟.南京理工大学硕士学位论文,1998
    8. Sahu J, Nietubicz C J, Steger J L. Navier-Stokes computations of projectile base flow with and without base injection. AIAA J. 1985,23(9): 1348-1355
    9. Sturek,W.B. Boundary layer studies on a spinning cone. AD 762564,May 1973
    10. Sturek, W,B. Schiff, W,B. Numerical simulation of steady supersonic flow over spinning bodies of revolution. AIAA Journal 1982,20(12): 1724-1731
    11. Sturek W B, Nietubicz C J, Sahu J, Weinacht P. Recent applications of CFD to the aerodynamics of army projectiles. AD-A262 953
    12. Sturek W B. Application of CFD to the aerodynimics of spinnin shell. AIAA Paper 84-0323,1984
    13. Sturek W B, Schiff L B. Computations of the magnus effect for slender bodies in supersonic flight. AIAA Paper 80-1586-CP,1980
    14. Sturek W B, Mylin D C. Computational parametric study of the Magnus effect on boatailed shell at supersonic speeds.AIAA Paper 81-1900,1981
    15. Sturek W B, Dwyer H A, Kayser L D.Nietubicz C J, Reklis R P, Opalka K O. Computations of magus effects for a yaw, spinning body of revolution. AIAA J. 1978,16(7):687-692
    16. Sahu J, Nietubicz C J, Steger J L. Navier-Stokes computations of projectile base flow with and without base injection. AIAA J. 1985,23(9): 1348-1355
    17. Sahu J, Danberg J E. Navier-Stokes computations of Transonic Flow with a two equation model. AIAA J. 1986,24(11): 1744-1751
    18. Sahu J, Steger J L. Numerical simulation of three dimensional transonic flows. AIAA Paper 87-2293,1987
    19. Sahu J. Transonic Navier-Stokes computations for a spinning body revolution. BRL-TR-3265,1991
    20. Sahu J. Numerical computations of supersonic base flow with special emphasis on turbulence
    
    modeling. AIAA Paper 92-4352,1992
    21. Sahu J, Nietubicz C J.A computational study of cylindrical segments in the wake of a projectile. BRL-TR-3254,1991
    22. Sahu J, Nietubicz C J. Three dimensional flow calculations for a projectile with standard and dome bases. SAE Paper 89-2291,1989
    23. Sahu J. Three dimensional base flow calculation for a projectile at transonic velocity. BRL-MR-3610,1987
    24. Sahu J. A computational study of the base region flow field for the M865 projectile. ARL-TR-109,1993
    25. M.P.Netterfield. Modern CFD methods applied to aerodynamics predictions of spinning projectiles. AIAA 93-0500
    26. P.Weinacht, B.J.Guidos, L.D.Kayser,et al. PNS computations for spinning and fin-stabilied projectiles at supersonic velocities. AD-A160 393
    27. A.B.Wardlaw, F.J.Priolo, J.M.Solomon. Multiple-Zone strategy for supersonic missiles. J.of spacecraft and rockets, 1987,24(4) ,377-384
    28. H.L.Edge. Computation of the roll moment coefficient for a projectile with wrap-around fins. AD-A260 784
    29. Spaid,F.W.,and Zukoski,E.E., A Study of the interaction of Gaseous Jets from Transverse Slots with Supersonic External Flows, AIAA Journal,Vol.6,No.6,1968,pp.205-211
    30. Billig,F.S., Orth,R.C., and Lasky.M. A Unified Analysis of Gaseous Jet Penetration. AIAA Journal, Vol.9,No.6,June, 1971 ,pp. 1048-1058
    31. Young,C.T.K, and Baifield,B.F., Viscous Interactions of Sonic Transverse Jets with Supersonic External Flows, AIAA Journal,Vol. 10,No.7,July,1972,pp.853-854
    32. Werle.MJ., Driftmeyer,R.T., and Shaffer,D.G, Jet-Interaction-Induced Seperation: The Two-Dimensional Problem, AIAA Journal,Vol. 10,Feb, 1972,pp. 183-193
    33. Warfield,M.J., Calculation of Supersonic Interaction Jet Flows, AIAA Paper 89-0666,1989
    34. Aso.S., Okuyama,S., Kawai.M., and Ando.Y., Experimental Study on Mixing Phenomena in Supersonic Flows with Slot Injection, AIAA Paper 91-0016,1991
    35. Clark,S.W., and Chan,S.C., Numerical Investigation of a Transverse Jet for Supersonic Aerodynamic Control, AIAA Paper 92-0639,1992
    36. Rizzetta,D.,NumericaI Simulation of Slot Interaction into a Turbulent Supersonic Stream, AIAA Paper 92-0827, 1992
    37. 张涵信,刘君.超音速主流中横向喷流场的激波.旋涡的数值模拟.空气动力学报, 1991,9(1) , 8-13
    38. Baker,A.J., Snyder.P.K., and Orzechowski,J.A., Three-Dimensional Nearfield Characterization of a
    
    VSTOL Jet in Turbulent Crossflow, AIAA Paper 87-0051,1987
    39. Yu,Sheng-Tao., Shuen,Jian-Shun., Three-Dimensional Simulation of an Underexpaned Jet Interaction with a Supersonic Cross Flow, AIAA Paper 88-3181,1988
    40. Heister,S., and Karagozian,A., The Gaseous Jet in Supersonic Crossflow, AIAA Paper 89-2547,1989
    41. 徐旭,张振鹏,朱森元.三维横流流场的数值模拟,固体火箭技术, 1998, 21 (2) , 8-13
    42. Shang,J.S., McMaster,D.L., Scaggs,N., and Buck,M., Interaction of Jet in Hypersonic Cross Stream, AIAA Paper 87-0055, 1987
    43. McMaster,D.L.,Shang,J.S., and Golbitz,W.C., Supersonic,Transverse Jet from a Rotating Ogive Cylinder in a Hypersonic Flow, AIAA Paper 87-1441,1987
    44. Yeneriz,M.A., Davis,J.C., Cooper,GK., and Harvey,D.W., Computation of Calculation and Experiment for a Lateral Jet From a Hypersonic Biconic Vehicle, AIAA Paper 89-2548, 1989
    45. McDonough,J., and Carton,I., Calculation of a Lateral Jet in a Hypersonic Cross-Flow, AIAA Paper 89-2549, 1989
    46. Chamberlain,R., Calculation of Three-Dimensional Jet Interaction Flowfields, AIAA Paper 90-2099, 1990
    47. Weatherly,D.C., and McDonough, Performance Comparions of Navier_Stokes Codes for Simulating Three-Dimensional Hypersonic Cross-Flow/Jet Interaction, AIAA Paper 91-2096,1991
    48. Yeneriz,M.A., Davis,J.C., and Harvey,D.W., Comparison of Calculation and Experiment for a Lateral Jet From a Hypersonic Biconic Vehicle,Part Ⅱ:Effect of Angle of Attack, AIAA Paper 91-2097,1991
    49. Chan,S.C., Roger,R.P., Edward,G.L., and Brooks,W.B., Integrated Jet Interaction CFD Predictions and Comparison to Force and Moment Measurements For A Thruster Attitude Controlled Missile, AIAA Paper 93-3522,1993
    50. Hsieh,T., and Wardlaw,A.B., Numerical Simulation of Cross Jets in Hypersonic Flows Over a Biconic Body, AIAA Paper 94-0165,1994
    51. Brandeis,J., and Gill,J., Experimental Investigation of Side Jet Steering for Missiles at Supersonic and Hyersonic Speeds, AIAA Paper 95-0316,1995
    52. Brandeis J, Gill J. Experimental investigation of side-jet steering for supersonic and hypersonic missiles. J.Spacecraft and Rockets, 1996,33(3) :346-352
    53. Brandeis J, Gill J. Experimental investigation of super-and hypersonic jet interaction on missile configurations. J.Spacecraft and Rockets, 1998,35(3) :296-302
    54. Srivastava B.Lateral jet control of a supersonic missile:CFD predictions and comparison to force and moment measurements.AIAA Paper 97-0639,1997
    55. Srivastava B.Computational analysis and validation for lateral jet controlled missiles.J.Spacecraft
    
    and Rockets, 1997,34(5):584-592
    56. Srivastava B.Lateral jet control of a supersonic missile:computational and experimental comparisons. J.Spacecraft and Rockets, 1998,35(2):140-146
    57. Srivastava B.Aerodynamic performance of supersonic missile body-and wing tip-mounted lateral jets. J.Spacecraft and Rockets, 1998,35(3):278-286
    58. Srivastava B.Asymmetric divert jet performance of a supersonic missile:computational and experimental comparisons. J.Spacecraft and Rockets, 1999,36(5):621-632
    59.李桦,王承尧.三维高超声速喷流干扰流场的数值模拟.推进技术,1999,20(4),53-55
    60.武晓松,郭锡福,钱建平.底排-火箭复合增程弹研究.中国国防科学技术报告.NLG-2001-062,2001.12
    61.马铁犹.计算流体力学.北京:北京航空学院出版社,1986
    62.朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998
    63.苏铭德,黄素逸.计算流体力学.北京:清华大学出版社,1997
    64.付德薰.流体力学数值模拟.北京:国防工业出版社,1993
    65.吴子牛.计算流体力学基本问题.北京:科学出版社.2001
    66.王保国,黄虹宾.叶轮机械跨声速及亚声速流场的计算方法.北京:国防工业出版社,2000,1
    67. MacCormack R W. A perspective on a quarter century of CFD research. AIAA Paper 93-3291,1993
    68. Hirsch C. Numerical computation of internal and external flows. John Wiley & Sons, 1988
    69. Harten A. High resolution schemes for huperbolic systems of conservation laws. J.Comp.Phys. 1983(49):357-393
    70. Harten A. ENO schemes wih subcell resolution. J.Comp.Phys. 1989(83): 148-184
    71. Harten A, Osher S. Uniformly high-order accurate nonoscillalory schemes. J.Numer.Anal. 1987(24):279-309
    72. Harten A, Chakravarthy S. Uniformly high order accurate essentially non-osciilalary schemes. J.Comp.Phys. 1987(71):231-303
    73. Harten A. Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J.Comp.Phys. 1983(49)
    74. Chakravarthy S R,Osher S. A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Paper 85-0363,1985
    75. Yee H C. Construction of explicit and implicit symmetric TVD schemes and their applications. J.Comp.Phys. 1987(68): 151-179
    76. Yee H C, Warming R F, Harten A. Implicit total variation diminishing schemes (TVD) for steady state calculations. J.Comp.Phys. 1985(57):327-360
    77. Yee H C. Upwind and symmetric shock-capturing schemes. NASA TM,1987
    78. Yee H C. A class of high-resolution explicit and implicit shock-capturing methods. NASA
    
    TM-101088,1989
    79. Yee H C, Harten A. Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates. AIAA J. 1984,25(2):266-274
    80. Wang J C T, Widhopf G F. Numerical simulation of blast field using a high resolution TVD finite volume scheme. AIAA Paper 87-1320,1987
    81. Wang J C T, Widhopf G F. A high resolution TVD finite volume scheme for Euler equations in conservation form. J.Comp.Phys. 1989,84,145
    82.张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报.1988(6):143-164
    83.张涵信.差分计算中激波上下游解出现波动的探讨.空气动力学学报.1984(1):112-119
    84. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J.of Comp.Phys. 1988,77:439-471
    85. Shu C W, Osher S. S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J.of Comp.Phys Ⅱ. 1989,83:32-78
    86.是勋刚.湍流.天津:天津大学出版社,1994
    87. Cebeci T, Smith A M O. Analysis of turbulenct boundary layer.Acad.Press. 1974
    88. Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78-257,1978
    89. Jones W P, Launder B E. The prediction of Laminarization with a two-equation model of turbulence. Int.J.of Heat and Mass Transfer, 1972,15
    90. Jones W P, Launder B E. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int.J.of Heat and Mass Transfer, 1973,16: 1119-1130
    91.陈让福.三维高超声速无粘定常绕流的数值模拟.北京大学博士学位论文,1991
    92.陈让福.三维高超声速无粘定常绕流的数值模拟.计算物理,1993,10(3):309-317
    93. Jameson A. Time dependent calculation using multigrid with applications to unsteady flows past airfoils and wings. AIAA Paper 91-1596,1991
    94. Jiang Xiong, Chen Zuobin, Zhang Yulun. Numerical simulation of a hovering rotor flowfield using a dual-time method.空气动力学学报.1998,16(3):288-295
    95.宋文萍,杨永,乔志德,Pahlke K.双时间法求解大迎角翼型绕流非定常N-S方程.空气动力学学报.1999,17(4):466-471
    96.邹正平,徐力平.双时间步方法在非定常流场模拟中的应用.航空学报.2000,21(4):321
    97.黄国平.基于CFD的气动优化设计方法研究.南京:南京航空航天大学博士学位论文,2000,6
    98. John E.West, Robert H K. Supersonic interaction in the corner of intersecting wedges at high Reynolds numbers. AIAA Journal 1970,10(5):652-656
    99. Schiff L B, Sturek W B. Numerical simulation of steady supersonic flow over a Ogive-Cylinder-Boattail body. AIAA paper 1980-0066, AIAA 18th Aerospace Sciences
    
    Meeting,January 1980
    100. Steger J L, Warming R E Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J.Comp.Phys. 1981,40:263-293
    101. Thompson J F, Weatherill N P. Aspects of numerical grid generation: current science and art. AIAA Paper 93-3539,1993
    102. Thompson J F, Warsi Z U A, Mastin C W. Numerical grid generation: founcations and applications. North-Holland, 1985
    103. Thompson J F, Warsi Z U A, Mastin C W. Boundary fitted coordinate systems for numerical solution of partial differential equations-a review. J of Comp Phys. 1982,47(1): 1-108
    104.成娟.非结构网格粘性流动计算研究.南京:南京航空航天大学博士学位论文.2001,4
    105.武晓松.离心式叶轮内叶栅通道流场的研究.南京航空航天大学博士学位论文.1990,8
    106. Middlecoff, J.E Thomas,ED. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAA paper 79-1462, AIAA computational fluid dynamics conference,July 23-25,1979
    107.石周和.贴体网格的弧长参数生成法及其在叶轮机流场分析中的应用.南京航空航天大学博士学位论文,1990
    108.高旭东,姬晓辉,武晓松.应用TVD格式数值分析低阻远程弹丸绕流场.兵工学报,2002,23(2):36-39
    109.高旭东,武晓松.含侧喷流炮弹绕流场及气动特性研究.弹箭与制导学报,1999,4:19-22.
    110.高旭东,黄守龙,武晓松.含侧喷流弹丸三维绕流干扰流场数值分析.推进技术,2001,22(5):383-386
    111.高旭东,武晓松.弹丸侧喷三维干扰湍流场数值模拟.空气动力学学报,2002,20(1):89-95
    112. Gao Xudong, Wu Xiaosong. Numerical simulation of three dimensional interacting turbulence flowfield over projectile with lateral jets. International Workshop on Computational Methods for Continuum Physics and Their Applications (IWCCPA), May, 2001, NUAA, P.R.C
    113.高旭东,武晓松,鞠玉涛.机弹相容非定常流场的数值模拟.弹道学报,2001,1:10-15
    114.王保国,卞荫贵.转动坐标系中三维跨声速欧拉流的有限体积-TVD格式.空气动力学学报,1992,10(4):472-481
    115.鞠玉涛.弧形翼-身组合体空气动力特性的数值模拟研究.南京理工大学博士学位论文,1999
    116.高旭东,武晓松,鞠玉涛.分区算法数值模拟弹丸绕流流场.弹道学报,2000,4:45-48
    117.马大为.含复杂波系膛口非定常流场的数值模拟研究.南京:南京理工大学博士学位论文,1991
    118.张卫民,李素循.裙向后台阶超声速绕流特性数值模拟.空气动力学学报,1994,12.(3)
    119.沈仲书,刘亚飞.弹丸空气动力学.北京:国防工业出版社,1984
    120.郭锡福.底部排气弹外弹道学.北京,国防工业出版社,1995
    121. Howard J H G,Patankar S V,Borynuik R M. Flow prediction in rotating ducts using
    
    coriolis-modified turbulent models. J. of Fluids Engineering, 1980,102(12):456-461
    122. Lakshminarayana B. Turbulence modeling for complex shear flows. AIAA Journal 1985,24(12):1900-1917
    123.华耀南.旋转坐标系中可压缩湍流的基本方程和湍流模型.航空动力学报,1990,5(3):239-244
    124. Younis B A. Prediction of turbulent flow in rotating rectangular ducts. J of Fluids Engineering, 1993, 115(12):646-652
    125.李国彦,赵应长.用修正的k-ε方程计算旋转流动.昆明工学院学报,1995,20(2):111-115
    126.刘立军,徐忠,史峰.任意转速下旋转直通道内的流场数值模拟.航空学报,1996,17(4):385-390
    127.吕盘明.湍流应力输运方程中Π_(ij)和ε_(ij)的模型在旋转流动中的应用研究.工程热物理学报,1999,20(4):421-425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700