用户名: 密码: 验证码:
快速扩张与rhBMP-2/胶原膜植入对大鼠矢状缝改建的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究外源性rhBMP-2/胶原膜复合物对大鼠矢状缝受扩张力后新骨形成的作用,同时观察rhBMP-2/胶原膜复合物对扩张力去除后矢状缝回弹复发的影响。
     方法:
     用镍钛开大簧以100g左右的初始扩张力建立矢状缝扩张模型。36只10周龄SD雄性大鼠随机分为正常对照组和3组扩张组;扩张组中其中两组在施加扩张力前分别在顶骨骨膜下放置胶原膜或rhBMP-2/胶原膜复合物,单纯施扩张力组仅给予100g的扩张力;正常对照组没有施加扩张力和放置任何材料。实验第21天去除扩张装置,第28天处死动物。在第0天、第21天和第28天时用双能X线骨密度仪(DEXA)测量矢状缝处的骨密度并分别在相应的各个时间点测量左右顶骨骨孔间的距离,计算扩张复发率。处死动物后,完整取下顶骨,拍摄X线片,用组织学方法观察矢状缝处的组织改建情况,用放免法检测该处的骨钙素含量以及用原子吸收分光光度计检测钙离子含量。
     结果:
     (1)第21天和第28天时各加力组左右顶骨两骨孔间的距离均比正常对照组大(P<0.01)。第21天时各加力组间的距离无差别(P>0.05),但第28天时rhBMP-2/胶原膜复合物植入组较其余两组大(P<0.05)。(2)矢状缝X线片观察正常对照组表现为“线形”透射影像;rhBMP-2/胶原膜复合物植入组透射影像消失,表现为模糊的阻射影像;其余两组表现为增宽的透射影像。(3)扩张后矢状缝中新骨形成活跃,rhBMP-2/胶原膜复合物植入组形成特有的骨质桥连接,但骨质尚未改建成熟。(4)rhBMP-2/胶原膜复合物植入组的骨钙素含量为87.56±8.65ng/mg,钙离子含量为92.01±14.76μg/mg,两者含量高于其余三组(p<0.01)。(5)正常对照组在3个时间点时的骨密度无明显变化(P>0.05);rhBMP-2/胶原膜复合物植入组骨密度在第21天时较第0天时增加(P<0.01),第28天时进一步增加,但与第21天相比无差别(P>0.05);其余两组在第21天时降低,第28
    
     快速扩张与rhBMPZ/M原膜植入对大鼠矢状缝改建的作用
    天时略有增加,但均比第0天低(P<0刀5)。(6)各加力组间的扩张复发率有明
    显差别,单纯扩张组、胶原膜植入组和 rhBMPZ/胶原膜复合物植人组的扩张复
    发率分别为53.25%土8.80%、sl.98%土5.55%和2.50%士0.71%,hBMP-2/胶原
    膜复合物植入组复发率明显降低(P<0刀门。
    结论:
     (1)DEXA能对矢状缝扩张时骨再生进行量化测定,可动态监测新骨再生
    情况。(2)rhBMP-2/胶原膜复合物可以促进矢状缝扩张时新骨的形成。(3)
    rhBMP2/胶原膜复合物的早期导入不影响骨缝的扩张,同时可以降低扩张复发
    率。
Purpose:
    The purpose of this study was to investigate the effects of exogenous rhBMP-2 on the new bone regeneration of the interparietal sagittal suture in the rats after rapid expansion, and to observe the relapse ratio of the interparietal sagittal suture after removing the expansion device.
    Methods:
    36 10-week old SD rats were divided into 4 groups consisting of 9 rats each. They were comprised of one normal control group and three expansion groups. All expansion groups were subjected to an initial force of 100g exerted by open coil spring. In two of the three groups expansion groups, a piece of absorbable atelo-type I collagen membrane or a piece of rhBMP-2/collagen membrane composite was simultaneously covered under the sagittal suture of the rat, the pure expansion control group only an initial force of lOOg was given. Each rat in the normal control group wasn't given any intervention. The expansion device was removed on the 21st day, and the animal was sacrificed on the 28th day. The distance between the two holes of the interparietal bone was calculated on days 0, 21 and 28. At the same time, the bone mineral density of the sagittal suture was also measured with the dual energy X-ray absorptiometry (DEXA) after the animal was anesthetized on the corresponding day. The amount of relapse was evaluate
    d in terms of relapse ratio. The interparietal bone was resected completely and X-ray examination was taken with a dental X-ray unit after the animals were sacrificed. The bone regeneration in the sagittal suture was estimated by histological method, the osteocalcin content was measured by radioimmunoassay and the calcium content was measured by atomic absorption spectrophotometer.
    
    
    Results:
    (1) The distance between the two holes of the rat interparietal bones: There was no significant difference among the expanded groups (P>0.05), but the distance of the rats in the expanded groups' were bigger than that of the normal control group's on the 21st day. The distance of the rats in the rhBMP-2/collagen membrane composite group were the biggest among the expanded groups on day 28 (P<0.05), the distance of the rats in all the three expanded groups were still bigger than that of the normal control group's (P<0.01). (2) X-ray examination: The roentgenography showed a "thread-like" transparent zone in the sagittal suture area of the rats in the normal control group; the translucent zone in the sagittal suture area of the rats were widened in both the expansion control group and the pure collagen membrane group; there was radiopacit vaguely in the sagittal suture area of the rat in the rhBMP-2/collagen membrane composite group instead of a transparent zone. (3) The bone regeneration was more active in th
    e suture after an expanding force was given. Even bone bridge could be formed in the rats of the rhBMP-2/collagen membrane composite group. (4) The calcium content was 92.01 ± 14.76μg/mg, the osteocalcin content was 87.56 ± 8.65ng/mg in the rhBMP-2/collagen membrane composite group on the 28th day, both of them were much higher than that of other three groups (P<0.01). (5) Bone mineral density: There failed to find any difference of the BMD in the normal control group among the three different time points (P>0.05). The BMD decreased on the 21st day and was less than the BMD of 0 day (P<0.01), although there was slightly increase on day 28,but the BMD was still less than that of 0 day both in the expansion control group and the pure collagen membrane group. The BMD in the rhBMP-2/collagen membrane composite group increased on the 21st day, and was higher than that of 0 day (P<0.01), on the 28th day, the BMD got a sustained increase, but there hadn't any difference as compared with the BMD on day 21 (P>0.05).
    (6) The relapse ratio: The relapse ratio was 53.25 % ± 8.80% in the expansion control group and 51.98 % ±5.55 % in the pure collagen membrane group, the ratio was 2.50%±0.71% in the rhBMP-2/collagen membrane composite group. There was a significant difference
    
    
    among the rhBMP-2/collagen
引文
1. Phillips C, Medland WH, Fields HW Jr, Proffit WR, White RP Jr. Stability of surgical maxillary expansion. Int J Adult Orthodon Orthognath Surg, 1992, 7(3): 139-146.
    2. Molina F, Ortiz Monasterio F. Mandibular elongation and remodeling by distraction: a farewell to osteomies. Plast Reconstr Surg, 1995, 96(4): 825-840.
    3. Cope JB, Samchurov ML, Cherkashin AM. Mandibular distraction perspective and fracture directions. Am J Orthod Dentofac Orthop, 1999, 115(4): 448-460.
    4. Ahn JG, Figueroa AA, Braun S, Polley JW. Biomechinal considerations in distraction of the osteomizec dentomaxillary complex. Am J Orthod Dentofac Orthop, 1999, 116(3): 264-270.
    5. Kisnisci RS, Fowel SD, Eoker BN. Distraction osteogenesis in silver Russell syndrome to expand the mandible. Am J Orthod Dentofac Orthop, 1998, 116(1): 25-30.
    6. Handelman CS. Non-surgical rapid maxillary alveolar expansions in adults: a clinical evaluation. Angle Orthod, 1997, 67(4): 291-305.
    7. Lines PA. Adult rapid maxillary expansion with corticotomy. Am J Orthod, 1975, 67(1): 44-56.
    8. Lehman JA, Hass AJ, Hass DG. Surgical orthodontic correction of transverse maxillary deficiency: a simplified approach. J Plast Reconstr Surg, 1984, 73(1): 62-68.
    9.王幼萍,周秀坤,段玉贵,肖邦良.快速扩大上颌的动物试验研究.中华口腔医学杂志,1991,26(1):21-23.
    10.张巧余,陈华,段银钟,林珠,陆先韫.固定矫治器快速上颌扩弓的实验和临床观察.中华口腔医学杂志,1990,25(1):70-72.
    11. Cohen SR, Burstein FD, Stewart MB, Rathburn MA. Maxillary-midface distraction in children with cleft lip and palate: a preliminary report. J Plast
    
    Reconstr Surg, 1997, 99(5): 1421-1428.
    12. Polly JW, Figueroa AA. Management of severe maxillary deficiency in childhood and adolescence through distraction osteogenesis with an external adjustable rigid distraction device. J Craniofac Surg, 1997, 8(3): 181-186.
    13. Cope JB, Harper RP, Samchukov ML. Experimental tooth movement through regenerate alveolar bone: A pilot study. Am J Orthod Dentofacial Orthop, 1999, 116(5): 501-505.
    14. Lion EJ, Huang CS. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofac Orthop, 1998, 114(3): 372-382.
    15.陈曦,强永乾,周洪,叶湘玉,李天亮,陈廷.牙周膜牵张成骨快速牙移动移动牙张力侧变化的X线观察.西安医科大学学报,2002,23(1):70-72.
    16. Fischgrund J, Paley D, Suter C. Various affecting time to bone healing during limb lengthing. Clin Orthop, 1994, 301: 31-37.
    17. Curran AR, Kuo KN, Lubicky JP. Simutaneous ipsilateral femoral and tibial lengthing with the Ilizarov method. J Pediatr Orthop, 1999, 19(3): 386-390.
    18. Aldgeheri R. Femoral callotasis. J Pediatr Orthop, 1997, 6(1): 42-47.
    19. Vardimon AD, Brosh T, Spiegler A, Lieberman M, Pitaru S. Rapid palatal expansion. Part 2: Dentoskeletal changes in cats with patent versus synostosec midpalatal suture. Am J Orthod Dentofacial Orthop, 1998, 113 (5): 488-497.
    20. Hamanishi C, Yoshii T, Totani Y, Tanaka S. Lengthened callus activated by axial shortening. Histological and cutomorphometrieal analysis. Clin Orthop, 1994, 307: 250-254.
    21. Pepper JR, Herbert MA, Anderson JR, Bobechko WP. Effect of capacitive coupled electrical stimulation on regenerate bone. J Orthop Res, 1996, 14(2): 296-302.
    22. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop, 1997, 111(5): 525-532.
    23. Tavakoli K, Walsh WR, Bonar F, Smart R, Wulf S, Poole MD. The role of latency
    
    in mandibular osteodistraction. J Craniomaxillofac Surg, 1998, 26(4): 209-219.
    24. Stewart KJ, Lvoff GO, White SA, Bonar SF, Walsh WR, Smart RC, Poole MD. Mandibular distraction osteogenesis: a comparison of distraction rates in the rabbit model. J Craniomaxillofac Surg, 1998, 26(1): 43-49.
    25. Jonathan S L, Michael F P, Babak J M. Mandibular distraction osteogenesis in the rat: latency, rate and rhythm determine the adaptive response. J Am Coll Surg, 2000, 191(4): s90.
    26. Farhadieh RD, Dickinson R, Yu Y, Gianoutsos MP, Walsh WR. The role of TGF-13, IGF-I and bFGF in distraction osteogenesis of mandibule. J Craniofac Surg, 1999, 10(1): 80-86.
    27. Sawada M, Shimizu N. Stimulation of bone formation in the expanding mid-palatal suture by growth factor-betal in the rat. Eur J Orhod, 1996, 18(2): 169-179.
    28. Yeung HY, Lee KM, Fung KP, Leung KS. Sustained expression of transforming growth factor-betal by distraction during distraction osteogenesis. Life Sci, 2002, 71(1): 67-79.
    29. Rauch F, Lauzier D, Travers R, Glorieux F, Hamdy R. Effects of locally applied transforming growth factor-β 1 on distraction osteogenesis in a rabbit limb-lengthening model. Bone, 2000, 26(6): 619-624.
    30. Chang H N, Garetto L P, Potter R H. Angiogenesis and osteogenesis in an orthopedically expanded suture. Am J Orthod, 1997, 111(3): 382-390.
    31. Stewart KJ, Weyand B, van't Hof RJ, White SA, Lvoff GO, Maffulli N, Poole MD. A quantitative analysis of the effect of IGF- I infusion during mandibular distraction osteogenesis in rabbits. Br J Plast Surg, 1999, 52(5): 343-350.
    32. Okazaki H, Kurokawa T, Nakamura K, Matsushita T, Mamada K, Kawaguchi H. Stimulation of bone formation by recombinant fibroblast growth factor-2 in callotasis bone lengthening of rabbits. J Calcif Tissue Int, 1999, 64(4): 542-546.
    33.胡静,王志国,高占巍,李继华,王大章,廖运茂.成纤维细胞因子对兔下颌骨牵张成骨的影响.临床口腔医学杂志,2002,18(1):6-7.
    
    
    34. Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Hicklin DJ. Effect of platelet-derived growth factor on tibial osteogenesis in rabbits. Bone, 1994, 15(2): 203-208.
    35. Trippel SB. Growth factors as therapeutic agents. Instr Course Lect, 1997, 46: 473-476.
    36. Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop, 1991, 264: 295-301.
    37. Kiyosue S. Effect of human growth hormone on restoration process of midpalatal suture areas after maxillary expansion in rats. Fukuoka Shika Daiaku Gakkai Zasshi, 1990, 17(2): 179-197.
    38. Raschke MJ, Bail H, Windhagen HJ, Kolbeck SF, Weiler A, Raun K, Kappelgard A, Skiaerbaek C, Haas NP. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone, 1999, 24(2): 81-88.
    39. Bail HJ, Raschke MJ, Kolbeck S, Krummrey G, Windhagen HJ, Weiler A, Raun K, Mosekilde L, Haas NP. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone, 2002, 30(1): 117-124.
    40. Little DG, Cornell MS, Briody J, Cowell CT, Arbuckle S, Cooke-Yarborough CM. Intravenous parmidronate reduces osteoporosis and improves regenerate formation during distraction osteogenesis. A study in immature rabbits. J Bone Joint Surg(Br), 2001, 83: 1069-1074.
    41. Little DG, Cornell MS, Hile MS, Briody J, Cowell CT, Bilston L. Effect of pamidronate on distraction osteogenesis and fixator-related osteoporosis. Injury, 2001, 32(4): 14-20.
    42. Lee K, Hiroki S, Shinji I, Kazuo T. Effects of bisphophonate on the remodeling of the rat saggital suture after rapid expansion. Angle Orthod, 2001, 71(4): 265-273.
    43. Tsurukami H, Nakamura T, Suzuki K, Sato K, Higuchi Y, Nishii Y. A novel
    
    synthetic vitamin analogue, 2 β -(3-hydroxypropoxy)-1 α , 25-dihydroxyvitamin D3(ED-71) increases bone mass bystimulating the bone formation in normal and ovariectomizedrats. J Calcif Tissue Int, 1994, 54(2): 142-149.
    44. Yamane K, Okano T, Kishimoto H, Hagino H. Effect of ED-71 on modeling of bone in distraction osteogenesis. Bone, 1999, 24(3): 187-193.
    45. Takamine Y, Tsuchiya H, Kitakoji T, Kurita K, Ono Y, Ohshima Y, Kitoh H, Ishiguro N, Iwata H. Distraction osteogenesis enhanced by osteoblastlike cells and collagengel. Clin Orthop, 2002, 399: 240-246.
    46. Bessho K, Tagawa T, Murata M. Comparison of bone matrix derived bone morphogenetic proteins from various animals. J Oral Maxillofacsurg, 1992, 50(5): 496-501.
    47. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation:molecular colones and activities. Science, 1988, 242(4885): 1528-1534.
    48.赵明,王会信,周延冲.重组人骨形态发生蛋白-2成熟肽在大肠杆菌中的表达及其诱导成骨活性.生物化学杂志,1994,10(3):319-321.
    49. Hots G, Herr G. Bone substitute with osteoinductive materials-structural and clinical applications. Int J Oral Maxillofac Surg, 1994, 23(6): 413-417.
    50. Rauch F, Lauzier S, Croteau R, Travers R, Gloroeux F H, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, -7 during distraction osteogenesis. Bone, 2000, 27(3): 453-459.
    51. Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, Yasui N. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res, 1999, 14(7): 1084-1095.
    52.陈富林,毛天球,王常勇,赵明,王会信.几丁质/rhBMP2/胶原复合物修复骨缺损的实验研究.实用口腔医学杂志,2002,18(4):341-343.
    53. Reddi H, Noreen E S. Matrix-induced endochondral bone differentiaion: influence of hypophysectomy, growrh hormone, and thyroid-stimulating
    
    hormone. Endocrinology, 1980, 107(5): 1291-1299.
    54.许建辉,孟昭业,梁河清.聚乳酸和无活性脱钙骨基质载体对rhBMP-2异位诱导骨形成的比较性研究.口腔颌面外科杂志,1999,9(1):30-34.
    55. Snyder CC, Levine GA, Swanson HM, etal. Mandibular lengthening by gradual distraction. Preliminary report. Plast Reconstr Surg, 1973, 51(5): 506-508.
    56.王志国,胡静,邹淑娟,王大章,廖运茂.局部应用β1转化生长因子对兔下颌牵张成骨的影响.口腔医学研究,2002,18(4):228-230.
    57. Cillo JE Jr, Gassner R, Koepsel RR, Buckley MJ. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral RadiolEndod, 2000, 90(2): 147-154.
    58.王志国,胡静,邹淑娟,王大章,廖运茂.局部应用胰岛素样生长因子对下颌牵张成骨的作用.口腔医学杂志,2002,22(3):113-114.
    59. Schmid C. The regulation of osteoblast function by hormones and cytokines with special reference to insulin-like growth factors and their binding proteins. J Intern Med, 1993, 234(6): 535-542.
    60.杜俊杰,罗卓荆,曹艳杰,胡蕴玉,袁志,吕荣.碱性成纤维细胞生长因子增强重组人骨形态发生蛋白-2诱导成骨能力的剂量依赖性.中华骨科杂志,2002,22(8):496-499.
    61. Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop, 1985, 200: 322-42.
    62. Ten Cate A.R, Freeman E, Dickson J.B. Sutural development: Structure and its response to rapid expansion. Am J Orthod, 1977, 71(6): 622-636.
    63. Hulth A. Current concepts of fracture healing. Clin Orthop, 1989, 249: 265-284.
    64. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol, 1998, 16(3): 247-252
    65. Jingushi S, Urabe K, Okazaki K, Hirata G, Sakai A, Ikenoue T, Iwamoto Y. Intramuscular bone induction by human recombinant bone morphogenetic
    
    protein-2 with beta-tricalcium phosphate as a carrier: in vivo bone banking for muscle-pedicle autograft. J OrthopSci, 2002, 7(4): 490-494.
    66. Lozupone E, Favia A, Grimaldi A. Effect of intermittent mechanical force on bone tissue in vitro: preliminary results. J Bone Miner Res, 1992, 7(Suppl 2): S407-409.
    67.叶凌,李江宁,李联钦综述.骨钙素在体内的表达.国外医学口腔医学分册,2002,29(4):228-229.
    68. Peretz A. Osteocalcin, Marker of bone metabolism. Bull Men Acad R Med Belg, 1993, 148(2): 90-99.
    69. Lee AJ, Walsh TF, Hodges SJ, Rawlinson A. Gingival crevicular fluid osteocalcin in adult periodontitis. J Clin Periodontol, 1999, 26(4): 252-256.
    70. Kobayashi ET, Hashimoto F, Kobayashi Y, Sakai E, Miyazaki Y, Kamiya T, Kobayashi K, Kato Y, Sakai H. Force-induced rapid changes in cell fate at midpalatal suture cartilage of growing rats. J Dent Res, 1999, 78(9): 1495-1504.
    71. Meyer U, Meyer T, Vosshans J, Joss U. Decreased expression of osteocalcin and osteonectin in relation to high strains and decreased mineralization in mandibular distraction osteogenesis. Cranio-MaxillofacialSurgery, 1999, 27: 222-227.
    72. Zahrowski JJ, Turley PK. Force magnitude effects upon osteoprogenitor cells during premaxillary expansion in rats. Angle Orthod, 1992, 62(3): 197-202.
    73. Fink B, Fox F, Singer J, Skripitz R, Feldkamp J. Monitoring of bone formation during distraction osteogenesis via osteocalcin: a time sequence study in dogs. J Orthop Sci, 2002, 7(5): 557-561.
    74.林珠 主编.口腔正畸学.沈阳:辽宁科学技术出版社,2000,第一版,472-485.
    75.王林.成人RME矫治后长期稳定性的初步探讨.口腔正畸学,2001,8(4):158-160.
    76. Oppenheim OG, Montes IA. Rapid maxillary expansion in the deciduous and mixed dentition evaluated through posteroanterior cephalometric analysis. Am J Orthod Dentofacial Orthop, 1995, 107(3): 268-277.
    77. Halazonetis DJ. Changes in cheek pressure following rapid maxillary
    
    expansion. Eur J Ortho, 1994, 16(4): 295-300.
    78. Sarns KV, Bjk A, Rune B. Long-term effect of rapid maxillary expansion studied in one patient with the aid of metallic implants and roentgen stereometry. Eur J Ortho, 1992, 14(6): 427-432.
    79. Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone, 1998, 22(6): 591-603.
    80. Cook SD. Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites. Orthopedics, 1999, 22(7): 669-671.
    81. Reddi AH. Bone and cartilage differentiation. Curr Opin Genet Der, 1994, 4(5): 737-744.
    82. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, Coughlin JE, Tucker MM, Pang RH, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem, 1992, 267(28): 20352-20362.
    83. Brosh T, Vardimon AD, Ergatudes C, Spiegler A, Lieberman M. Rapid palatal expansion Part 3: Strains developed during active retention phase. Am J Orthod Dentofacial Orthop, 1998, 114(2): 123-133.
    84. Roux C, Fournier B, Laugier P, Chappard C, Kolta S, Dougados M, Berger G. Broadband ultrasound attenuation imaging: a new imaging method in osteoporosis. J Bone Miner Res, 1996, 11(8): 1112-1118.
    85. Sievanen H, Kannus P, Nieminen V, Heinonen A, Oja P, Vuori I. Estimation of various mechanical characteristics of human bones using dual energy X-ray absorptiometry: methodology and precision. Bone, 1996, 18(1 Suppl): 17S-27S.
    86. Raymaekers G, Aerssens J, Van den Eynde R, Peeters J, Geusens P, Devos P, Dequeker J. Alterations of the mineralization profile and osteocalcin concentrations in osteoarthritic cortical iliac crest bone. Calcif Tissue Int, 1992, 51(4): 269-275.
    
    
    87.陈金标,秦林林,马海波,张卫,葛崇华,肖艳霞.双能X射线吸收法在大鼠骨矿测量中的精确度和准确度.中日友好医院学报,1996,10(3):213-216.
    88.郭建刚,赵然,候桂英,王芳轩.骨组织成分与Masson三色染色反应的关系分析.中医正骨,2001,13(11):5-6.
    89.张震康.牵引成骨技术—正颌外科矫治牙颌面畸形的新技术.中华医学杂志,2001,81(6):963.
    90. Musgrave DS, Pruchnic R, Wright V, Bosch P, Ghivizzani SC, Robbins PD, Huard J. The effect of bone morphogenefic protein-2 expression on the early fate of skeletal muscle-derived cells. Bone, 2001, 28(5): 499-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700