用户名: 密码: 验证码:
利用宇生同位素~(10)Be对青藏高原东南部沙鲁里山第四纪冰期事件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Quaternary Ice Age Event of Mountain Saluli in the Southeast of Qinghai-Xizang Plateau by Cosmogenic Isotope ~(10)Be
  • 作者:徐孝彬
  • 论文级别:博士
  • 学科专业名称:自然地理学
  • 学位年度:2004
  • 导师:王建
  • 学科代码:070501
  • 学位授予单位:南京师范大学
  • 论文提交日期:2004-04-01
摘要
由于宇宙射线的照射,地面岩石中生成稳定的和放射性的同位素,如~3He、~(10)Be、~(26)Al、~(14)C、~(41)Ca、~(21)Ne、~(36)Cl等,作者称之为宇生核素。岩石中生成的宇生核素的浓度是其生成速率、累积时间、侵蚀速率和地面隆升速率的函数,根据其原理来计算出地貌面的暴露年代。该测年技术已经成熟,特别是利用宇生核素~(10)Be、~(26)Al对年代的计算,该测年技术在国外的应用已相当普遍。本文应用宇生核素~(10)Be对青藏高原冰川地貌面的年代进行计算。由于石英的抗风化性、普遍存在性和成份的单一性,而被普遍运用于宇生核素~(10)Be的提取,并进行年代计算。
     在处理的样品中,属于稻城夷平面的有效样品为四组,共7个样品:X6、X7、X13、X8、X9、X15、X16。样品的处理包括石英中~(10)Be的提取和利用质谱加速器对比值进行测定。石英选取了1-0.25mm之间的颗粒,净化后溶解掉20%—30%的石英外壳,以去除大气成因的宇生核素~(10)Be。经实验获得BeO后,由质谱加速器测定出比值。实验精度通过三组数据反映出来,①三个空白样的测量比值(~(10)Be/~9Be)为:0.125*10~(-13)、0.029*10~(-13)、0.037*10~(-13),质谱加速器的测量本底值为10~(-15),将空白样的原子数与本组样品中原子数最少的样品相比较,反映出实验过程中外来~(10)Be所造成的最大误差为0.2%;②同一基岩面上相距50cm的两个样品,实验数据分别为6.88886*10~6atoms/g、6.810176*10~6atoms/g,实验误差为1.15%(这一误差也有可能来源于暴露历史);③相同样品的两次实验,实验数据为4.491689*10~6atoms/g、4.494642*10~6atoms/g,实验误差为0.07%。由此判断,实验数据是精确而可信的。
     年代计算过程中存在三个变量:暴露年代、侵蚀速率和高原的隆升速率。侵蚀速率的切入点是砾石覆压下的冰川擦痕与暴露状态的基岩面存在的约9cm的高差,计算获得的花岗岩的侵蚀速率为6.42(±0.41)*10~(-5) cm/a(样品X8、X9);将这一侵蚀速率应用于不同地点、不同暴露历史的样品将产生误差,对于采自花岗岩羊背石的样品X6来说,由于其形成年代较短,侵蚀速率对年代的影响很小,年代值的决定因素是宇生核素的形成速率,这一侵蚀速率100%的波动所造成的误差仍在1%范围内;对于取自花岗岩漂砾的样品X15、X16来说,由于形成于同
    
    博士学位论文:利用宇生同位素’怕e对青藏高原东南部沙鲁里山第四纪冰期事件的研究
    一冰期事件,且两地相距约20公里,应具有相当的侵蚀速率;对于取自老终磺
    垄的样品X7、xl3来说,其侵蚀速率通过最大值与最小值来加以界定,取平均值
    来进行计算,并逐渐收敛,收敛于1 .53*1。一4 Cm/a。
     同时,由于青藏高原隆升观点的差异性,以及隆升存在的阶段性,使得年代
    计算存在一定的复杂性。青藏高原的隆升观点总括起来有两种,一是前期隆升观
    点,即第四纪以前青藏高原已达到现今高度;一是后期隆升观点,即青藏高原现
    今的高度是第四纪以来的阶段性隆升才达到的,但其隆升速率也存在着不同的观
    点,总体来说80万年来的阶段性的隆升速率介于0.133cm/a一0.4 cm/a之间。
     根据前期隆升观点,计算出老终债垄的形成年代为459.42ka,冰蚀基岩面
    的形成年代为122.ska;羊背石的形成年代为18.3 ka。根据80万年来的阶段
    性的隆升速率介于0.133 Cm/a一0.4 Cm/a之间,计算出老终债垄的形成年代
    为564.96 ka一656.27 ka,取值为610士50伙a;冰蚀基岩面的形成年代为130.85
    ka一149.37 ka,取值为140士9 ka;羊背石的形成年代为18.494 ka一18.790 ka,
    取值为18.6士0.Zka。由于终债垄是冰盛期结束时遗留下来的,而冰川擦痕面
    是冰期结束过程中暴露出来的,因此不同冰川地貌面反映的冰期中的冰力,事件是
    不同的。库照日附近的老终债垄形成于M工S16(后期隆升)或MIS12(前期隆升):
    老林口道班附近独立山坡上冰蚀基岩面形成于M工56;兔儿山以北的羊背石形成
    于MISZ。
     一般来说冰川到达的距离越远、冰川的厚度越大,冰期的规模就越大。根据
    三组样品所反映的三次冰期来看,形成于倒数第三次冰期的老终垄的保存,以及
    形成于倒数第二次冰期的冰川擦痕面的存在,说明最近三次冰期的规模由大到小
    依次为倒数第三次冰期、倒数第二次冰期和末次冰期。同时,由于形成于倒数第
    二次冰期的冰川擦痕面,位于稻城夷平面上的独立山坡上的基岩面上,相对高度
    约30m,它的保存说明末次冰期发育的冰川规模较小,冰川厚度在该地区没有达
    到这一高度,同样也说明了关于末次冰期统一大冰盖的观点将稻城夷平面地区包
    括在内是错误的。
     根据砾石翻转原理得出的年代值1 30ka--150ka反映出,砾石形成于倒数第二
    次冰期,期间遭受末次冰期的冰川覆盖。同时说明末次冰期冰川规模较小,冰川
    在高原面上的冰蚀作用也小,否则砾石年代值应在末次冰期年代范围之内。
Under cosmic-ray flux, stable cosmogenic nuclides and radioactive
    isotopes are created in geomorphic surface, for example 3He 10Be 26Al
    14C 41Ca 21Ne 36Cl. The concentration of cosmogenic isotope in rock surface is a function of age, production rate, erosion rate and uplift rate. Using this model, we can calculate the exposed age. This technique for surface dating is ripe now and often be used, especially cosmogenic
    isotopes 10Be and 26Al being used to dating. Cosmogenic isotopes Be was
    used to date the glacial geomorphic surface of Qinghai-Xizang Plateau in
    this paper. We used quartzite grains for Be because qrartzites are close
    to being pure Si02, quartzite is very resistant to weathering and easy
    found.
    Retreating samples included extracting Be from quart grains and
    measuring 10Be/9Be ratio by AMS. Quart grains were picked out in the 0.25
    to 1.0 mm size fraction and remove atmospheric Be by confining to the
    outer portion about 20%-30%. These samples were made into tergers for analysis by AMS at the Tandetron AMS facility at Gif-sur-Yvette, France.
    Experimental precision was indicated by three group data. CD 10Be/9Be ratio of three blank samples: 0.125*10-13 0.029*10-13, 0.037*10-15. The lowest ratio
    AMS can measure is 10-15. The maximum error of atmospheric contamination
    is 0.2% during experimenting. (2) Be concentration of two samples taking
    from same rock surface: 6.88886*106 atoms/g 6.810176*106 atoms/g. The
    error is 1.15%. (3) Be concentration of two same samples: 4.491689*10?
    atoms/g 4. 494642*106 atoms/g. The error is 0.07%. It can be judged that the experimental data is accurate.
    There are three variates during dating: exposure age, erosion rate
    
    
    
    and uplift rate of plateau. The erosion altitude 9 cm was determined by the glacial rock surface under big stone and surround rock surface. The erosion rate of granite can be calculated : 6. 42*10 cm/a( through samples: X8 X9) . The erosion rate can be used to other granite samples because they are so near. The erosion rate of samples X7 X13 being taken from the old moraine can be restricted using the maximum erosion rate and the minimum erosion rate. During calculating, the mean value of erosion convergent to 1. 53*10 cm/a.
    There are different ideas about Qinghai-Xizang Plateau uplift. In brief, there are two situations. One is Qinghai-Xizang Plateau reached modern height before Quaternary, the other is Qinghai-Xizang Plateau uplifted stage to the height since Quaternary. But there are different ideas about Qinghai-Xizang Plateau uplifting rate. The uplift rate changes from 0. 133 cm/a -0.4 cm/a in 800 ka BP.
    According to the idea of uplift early, it can be calculated that the old moraine was formed in 459. 42 ka BP, the glacial rock surface was formed in 122. 5 ka BP and the roche moutonnee was formed in 18. 3 ka BP. According to the uplift rate of 0. 133-0.4 cm/a, the old moraine was formed in 610 ?0ka, the glacial rock surface was formed in 140? ka and the roche moutonnee was formed in 18. 6?. 2 ka. Because moraine remained when ice flourished age was over, and glacial rock surface began to expose during ice age is over, they indicate the glaciation event are different. The old moraine near Kuzhaore was formed in MIS16(uplift late) or Misl2(uplift early). The glacial rock surface on the independent hill near Laolinkou Daoban was formed in MIS6. The roche moutonnee in the north of Mountain Tuershang was formed in MIS2.
    Normally , the distance glacial reached is further and the height of glacial is bigger, the scale of ice age is bigger. The old moraine formed in the last but two glaciation and the glacial rock surface formed in the
    IV
    
    last but one glaciation can be remained, that indicate the scale of ice age is the last but two glaciation, the last but one glaciation and the last glaciation from the largest to the least. The glacial rock surface formed in the last but one glaciation on the independent hill indicates that the last glaciation was not reach the height. It also indicate that the idea about successive ice sheet includ
引文
[1] 郑本兴,马秋华,川西稻城古冰帽的地貌特征与冰期探讨。冰川冻土[J],1995,17(1):23—32。
    [2] 周尚哲,李吉均,第四纪冰川测年研究新进展。冰川冻土[J],2003,25(6):661—666。
    [3] 顾兆炎,刘东生,D.Lal,~10Be和~26Al在地表形成和演化研究中的应用.第四纪研究[J],1997,第3期,211—221。
    [4] 马配学,郭之虞,李坤,穆治国,~10Be和~26Al就地产率与在地表岩石中浓度积累的定量模型。地球物理学进展[J],1998,13(1):101—114。
    [5] 黄德志,戴塔根,孔华等.安徽张八岭构造带石英脉型金矿成矿流体来源研究[J].大地构造与成矿学,2000,24(3):231-236.
    [6] 张永军,黄钟瑾.张八岭推覆体特征及其成因机制[J].高校地质学报,1998,4(4):444-451.
    [7] 王建,徐孝彬.地面测年技术—宇生同位素测年.地球科学进展[J],2000,15(2),237-240.
    [8] 李吉均.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质,1999,19(1),1-11.
    [9] 徐孝彬,王建等.地貌学与第四纪研究的新手段-陆地宇生核紊研究[J].地理科学,2002,(5):587-591.
    [10] 周尚哲,李吉均.冰期之青藏高原新研究,地学前缘[J],2001,8(1):67-75。
    [11] 徐孝彬,王建等.张八岭地区岩群出露年代研究.海洋地质与第四纪地质[J],2003,1,77-79.
    [12] 李吉均,方小敏.青藏高原隆起与环境变化研究,科学通报[J],1998,43(15):1569-1574.
    [13] 王成善,丁学林,青藏高原隆升研究新进展综述.地球科学进展[J],1998,13(6):526—532。
    [14] 李吉均,方小敏,潘保田等,新生代晚期青藏高原强烈隆起及其对周边环境的影响。第四纪研究[J],2001,21(5):381—391。
    
    
    [15] 伍永秋,崔之久,葛道凯,刘耕年,青藏高原何时隆升到现代的高度—以昆仑山垭口地区为例.地理科学[J],1999,19(6):481—484.
    [16] 潘保田,李吉均,朱俊杰,曹继秀,青藏高原:全球气候变化的驱动机与放大器。兰州大学学报(自然科学版),1995,31(4):160—167。
    [17] 袁道阳,张培震,青藏高原新生代构造和第四纪研究的进展及问题讨论。西北地震学报[J],2001,23(2):199—205。
    [18] 李春雷,陈骏,季峻峰,青藏高原的隆起与海洋锶同位素组成的演化.地球科学进展[J],1999,14(6):582—588。
    [19] 崔之久,伍永秋,刘耕年等,关于“昆仑—黄河运动”。中国科学(D辑)[J],1998,28(1):53—59。
    [20] 施雅风,李吉均,李炳元等.晚新生代青藏高原的隆升与东亚环境变化,地理学报[J].1999,N0.1,5-12.
    [21] 施雅风,郑本兴,李世杰,叶佰生。青藏高原中东部最大冰期时代高度与气候环境探讨,冰川冻土[J],1995,17(2):97-112.
    [22] 吴锡浩,王富葆,安芷生等。晚新生代青藏高原隆升的阶段和高度.黄土、第四纪地质、全球变化(第3集),北京:科学出版社,1992,1-13。
    [23] 崔之久.中国西部第四纪冰川覆盖类型问题。地质学报[J],1964,44(2):229-246.
    [24] 郭正堂,吴海彬,魏建晶,姜文英,赵希涛.用古土壤有机质碳同位素探讨青藏高原东南缘的隆升幅度。第四纪研究[J],2001,21(5):392-398.
    [25] 李炳元,李吉均.青藏高原第四纪冰川遗迹分布图。北京:科学出版社,1991.
    [26] 李吉均,冯兆东,周尚哲。横断山冰川。北京:科学出版社,1996。
    [27] 中国科学院青藏高原综合科学考察队,青藏高原研究:横断山考察专集。北京科学技术出版社,1986。
    [28] 中国科学院青藏高原综合科学考察队,西藏冰川。科学出版社,1986。
    [29] 施雅风主编,中国冰川与环境:现在、过去和未来。科学出版社,2000。
    [30] 李吉均,青藏高原的地貌演化于亚洲季风,海洋地质与第四纪地质,1999,19(2):60-72。
    [31] 施雅风,第四纪中期青藏高原冰冻圈的演化及其全球变化的联系,冰川冻土,
    
    1998,20(3):197-207.
    [32] 王建,席萍,刘泽纯,汪永进。柴达木盆地西部新生代气候与地形变化,地质评论,1996,43(2):166-173。
    [33] 吴锡浩,李永昭.青藏高原的冰渍层与环境。第四纪研究,1990,(2):146-158
    [34] 吴锡浩,安芷生.黄土高原黄土—古土壤序列与青藏高原隆升.中国科学(D辑),1996,26(2):103-110.
    [35] 张青松,周耀飞,陆祥顺,徐秋六.现代青藏高原上升速度问题。科学通报,1990,(7):529-531.
    [36] 西尼村B M.关于亚洲高原第四纪冰川问题[J].地理译报,1958(1):22-30.
    [37] 王明业,政绵平.青藏高原第四纪冰川以及[J].地理学报,1965,31(1):65-72.
    [38] 韩同林.藏大兵盖[M].京:地质出版社,1991,1-109.
    [39] 徐道明,沈永平.藏高原的泛冰盖遗迹与冰期[J],冰川冻土,1995,17(3):213-229.
    [40] 李吉均,郑本兴,杨锡金等,西藏冰川[M],北京:科学出版社,1986,194-276.
    [1] Albrecht A, HerzogGF, Klein J et al. Quatemary erosion and cosmicray-exposure history derived frim ~10Be and ~26Al produced in situ:An example from Pajarito plateau, Valles caldera region. Geology, 1993, 21:551-554
    [2] Bierman P R, Gillespie A R, Caffee M W. Cosmogenic ages for earthquake recurrence intervals and debris flow fan deposition, Owens Valley, California. Science, 1995,270:447-450.
    [3] Brook, E., J., Nesje, AA., Lehman, S.J., Raisbeck, G.M., Yiou, F. Cosmogenic nuclide exposure ages along a vertical transect in western Norway: Implications for the height of the Fennoscandian ice sheet. Geology[J], 1996, 24(3):207-210.
    [4] Briner,J., Swanson, T.W. Using inherited cosmogenic ~36Cl to constrain glacial erosion rate of the cordilleran ice sheet. Geology [J], 1998,
    
    26(1):3-6.
    [5] Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E,J. Examination of surface exposure ages of Antarctic moraines using in situ produced ~10Be and ~26Al. Geochimica et Cosmochimica Acta[J], 1991, 55:2269-2283.
    [6] Brook, J.E., Brown, E.T., Kura, M.D.,etal. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic ~10Be and ~26AL[J]. Geology, 1995, 23(12): 1063-1066.
    [7] Bierman P R, Marsella K A, Patterson C, Davis P T, Csffee M. 1999. Mid-Pleistocene cosmogenic minimum-age limits pre-Wisconsinan glacil surfaces in southwestern Minnesota and southern Baffin Island:a multiple nuclide approach. Geomorphology, 27:25-39.
    [8] Briner J, Swanson TW. 1998. Using inherited cosmogenic ~36Cl to constrain glacial erosion rate of the cordilleran ice sheet. Geology, 26(1):3-6
    [9] Bruno L A, Baur H, Graf T, Schluchter C. 1997. Dating of Sirius Group tillites in the Antarctic Dry Valleus wuth cosmogenic ~3He and ~21Ne. Earth and Planetary Science Letter, 147:37-54.
    [10] Craig H. andPoredaR. J. (1986) Cosmogenic ~3He in terrestrial rocks: The summit lavas of Maui. Proc. Nat. Acad. Sci. USA 83,1970-1974.
    [11] Cui Z J. 1964.On the Quaternary gglacier types of Western China. Acta Geological Sinica, 44(2):229-246(in Chinese with English abstract).
    [12] D. Lal. Cosmic ray labeling of erosion surfaces:in situ muclide production rates and erosion models. Earth and Planetary Science Letters[J], 1991,104: 424-439.
    [13] Dunai, T.J. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letter[J], 2000, 176: 157-169.
    [14] Dunne J, Elmore D, Muzikar P. 1999. Scaling factors for the rates of
    
    production of cosmogenic nuclides for geometric shieling and attenuation at depth on sloped surfaces. Geomorphologu, 27:3-11.
    [15] DERBYSHIRE E, SHI Yafeng, LIJijun, et al. Quaternary glaciation of Tibe:the geological evidence[J].Quaternary Science Review, 1991,10:485-510.
    [16] Erik T. Brown and John M. Edmond et al. (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced IOBe and 26Al. Geochimica et Cosmochimica Acta 55:2269-2283.
    [17] Edward J Brook, Erik T Brown, Mark D Kurz, et al. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic ~10Be and ~26Al. [J]. Geology, 1995, 23(12): 1063~1066
    [18] Francoise Yiou, Karl Diel et al. (2000) Preparation of microgram quantities of carrier-free iodine for AMS analysis. Nuclear Instruments and Methods in Physics Research B 172:395-398.
    [19] G.M. Raisbeck and F. Yiou (1984) Production of long-lived cosmogenic nuclei and their applications. Nuclear Instruments and Methods in Physics Research B 5:91-99.
    [20] Garzione C N Quade J, Decelles P G, English N B. 2000. Predicting paleoelevationof Tibet and the Himalaya form δ ~18O vs altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letter, 183:215-229.
    [21] Gosse J C,Phillips F M. 2001. Terrestrial in situ cosmogenic nuclides:theory and application. Quaternery Science Reviews, 20:1475-1560.
    [22] Guo Z T, Wu H B, Wei J J,Jiang W Y,Zhao C T. 2001. Uplift amplitude of the southern part of the Tibetan Plateau based on the carbon isotope of the paleosols. Quaternary Science in China, 21(5):392-398(in Chinese with English abstract).
    
    
    [23] Gosse J C, Klein J, Evenson E B et al. Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence. Science, 1995, 268:1329-1333
    [24] Gosse J C, Evenson E B, Klein J et al. Precise cosmogenic ~10Be measurements in western North America:Support for a global Youger Dryas cooling event. Geology, 1995,23:877-880
    [25] Harrison T M, Copeland P, Kidd W S F, Yin A. 1992. Rising Tibet. Science, 255:1663~1670
    [26] HUNINGTON E. PANGONG:a glacial lake in the Tibetan Plateau[J].The Joumal of Geology, 1906,14(7):599-617
    [27] Jone O. Stone (2000) Air pressure and cosmogenic isotope production. Journal of Geophysical Research, Vol. 105, No. B10, 23 753-23 759.
    [28] Jull A.J.T. and A.E. Eilson et al. (1992) Measurements os cosmogenic~14C produced by spallation in high-altitude rocks. Radiocarbon 34: 737-744.
    [29] KUHLE M. Subtropical mountain and highland glaciation as Ice Age triggers and the waning of the glacial periods in the Pleistocene[J].Geo Journal, 1987.14(4):393-421
    [30] KUHLE M. Reconstruction of the 2.4 million km~2 Late Pleistocene ice sheet on the Tibetan Plateau and its impact on the Global climate[J]. Quaternary International, 1998,45/46:71-108.
    [31] Li B Y, Li J J. 1991. Map of the Quaternary Glaciers Distribution on she Qinghai-Tibetan Plateau Beijing: Science Press of China(in Chinese)
    [32] Li J J, Feng Z D, Zhou S Z1996. Glaciers of Hengduan Mountains. Beijing: Science Press of China(in Chinese)
    [33] Li J J 1999. Landform evolution of the Quaternary-Xizang Plateau and the Asian Monsoon.Marine Geology and Quaternary Geology, 19(2):60-72(in Chinese with English abstract)
    
    
    [34] Lal D, and Peters B. (1967) Cosmic ray produced radioactivity on the earth. In handbuch der physik(ed. S. Flugge), Vol. XL VI/2, Spring-Verlag.
    [35] Leavy B.D. and Phillips F.M. et al. (1987) Measurement of cosmogenic~36Cl/Cl in young volcanic rocks: An application of accelerator mass spectrometry in geochronology. Nucl. Inst. Meth. Phys. Res. B29, 246-250.
    [36] Molnar P, England P, Martinod J. 1993. Mantke dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4):357-396
    [37] Monaghan M C, Krishnaswami S, Turekian K K. The global average production rate of beryllium-10. [J]. Earth Planet Sci Lett, 1985, 76:279~287
    [38] Nishiizumi K, Winterer E L, Kohl C P et al. Cosmic ray production rates of ~10Be and ~26Al in quarte from glaciallu polished rocks. Journal of Geophysical Research, 1989,94:17907-17915
    [39] Nishiixumi, K., Kohl, C.P., Arnold, J.R., Klein, J., Klein, J., Fink, D., and R. Middleton. Cosmic ray produced ~10Be and ~26Al in Antarctic rocks: exposure and erosion history. Earth and Planetary Science Letter[J], 1991:104:440-454.
    [40] Nishiizi, K. and Lal D. et al. (1986) Production of ~10Be and ~26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature 319, 134-136.
    [41] Owen A h, Finkel C R, Caffee W M. 2002. A note on the extent of glaciation throughout the Himalaya during the Global Last Glacial Maximum. Quaternay Science Reviews, 21:147-157
    [42] Prell W L, Kutzbach J E. 1992. Sensitivity of its evolution. Nature, 36:647-652
    [43] Paul R. Bierman and Kimberly A. Marsella et al. (1999) Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinsn glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide
    
    approach. Geomorphology 27: 25-39.
    [44] Reedy, R.C., J.R. Arnold, and K. Lal (1983) Cosmic-ray record in solar system matter. Annual Review of Nuclear and Particle Science 33:505-537.
    [45] Repka J L, Anderson R s, Dick G S. Rate constraints of river incision using cosmogenic radionuclides: Examples from fluvial terraces along the Fremont River, Utah, in Eighth International Conference on Geochemistry. [J]. Cosmochronology and Isotope Geology, abstracts: U.S. Geological Survey Circular, 1994, 1108:265
    [46] Schafer J M, Ivy-Ochs S, Weiler R, Leya I, Baur H, Denton G H, Schluchter C. 1999. Cosmogenic noble gas studies in the oldest landscape on earth:surface exposure ages of the Dry Valleys, Antarctic. Earth and Planetary Science Letter, 167:215-226
    [47] Shi Y F. 1998. Middle Quaternary crysphere evolution of the Qinghai-Xizang Plateau and its relationship to the global change. J. of Glaciology, 20(3) 197-207(in Chinese with English abstract)
    [48] Steig, E.J., Wolfe, A.P., Miller, G.H. Wisconsinan refugia and the glacial history of eastern Baffin Island, Arctic Canada:coupled evidence from cosmogenic isotopes and lake sediments[J]. Geology, 1998, 26(9):835-838.
    [49] Schafer, J.M., Ivy-Ochs, S., Weiler, R., et al. Cosmogenic noble gas srudies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctic[J]. Earth and Planetary Science Letter, 1999, 167:215-226.
    [50] Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical research[J],2000, 105, B10:23753-23759.
    [51] Simpson J.A. and Fagot W.C. (1953) Properties of the low energy nucleonic component at large atmospheric depth. Phys. Rev. 90,1068-1072.
    [52] Shea,M.A. and D.F. Smart et al. (1987) Estimating cosmic ray vertical cut-off rigidities as a function of the McIlwain L-Parameter for different
    
    epochs of the geomagnetic field. Physics of the Earth and Planetary Interiors 48:200-205.
    [53] Tibor J. Dunai (2000) Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176:157-169.
    [54] Wang J, Wang Y J, Liu Z C, Li J Q, Xi P. 1999. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of the centeal Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152:37-47
    [55] Wang J, Xu X B. 2000. A now technique for surface dating:cosmogenic isotope dating. Progress in Earth Science, 15(2):237-240(in Chinese with English abstract)
    [56] Wang J, Xi P, Liu Z C, Wang Y J. 1996. Cenozoic environmental and topographical evolution of Qaidam Basin. Geological Review, 42(2): 166-173(in Chinese with abstract)
    [57] Wu X H, Li Y Z,.1990. Moraines and environments of the Qinghai-Xizang Plateau. Quaternary Science in China, 2:146-158(in Chinese with English abstract)
    [58] Wu X H, An Z S. 1996. Loess-paleaosol sequences and the uplift of the Qinghai-Tibetan Plateau. Science in China (Series D),26(2):103-110(in Chinese with English abstract)
    [59] Yiou, F. Raisbeck, G.M., Bourles, D., Lestringuez, J., and Oeboffle, D. Measurement of ~10Be and ~ 26Al with a Tandetron accelerator mass spectrometer facility. Radiocarbon 2A[J], 1986, 198-203.
    [60] ZhangQS, Zhou Y F,Liu X S, Xu Q L. 1990. Modernuplifting rates of theQinghai-Tibetan Plateau. Chinese Science Bullitin, 7:529-531(in Chinese)
    [61] Zhou S Z, Li J J. 2001. A new study on Qinghai-Tibetan Plateau in Ice Ages. Earth Science Frontiers, 8(1):67-75(in Chinese with English abstract)
    
    
    [62] Bernard Hallet and Jaakko Putkonen. Surface Dating of Dynamic Landforms: Young Boulders on Aging Moraines. Science, 1994, 285, pp. 937-940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700