用户名: 密码: 验证码:
三峡库区公路碎石土路基渗流弱化机理及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碎石土路基滑塌地质灾害是库区重庆公路地质灾害中存在最为广泛的灾害形式,给重庆公路交通造成了重大影响。论文在交通部科技项目《三峡库区极端气候衍生公路灾害监测预警技术研究》(项目号:2009318000001)的支持下,以库区重庆公路地质灾害调查为基础,选择库区重庆典型公路碎石土样本,进行路基碎石土室内试验及现场测试,以确定不同级配不同含水率下碎石土的物理力学特性、强度变形发展规律及其渗透特性,并以此为基础,进行公路碎石土路基流-固耦合分析,完成库水位影响下的路基边坡稳定性分析。研究有利于提高库区重庆公路的抗灾能力,降低日益严重的频发地质灾害对重庆公路交通造成的严重经济损失和不良社会影响。
     论文针对库区重庆公路碎石土路基特点,对以下内容进行了研究:
     针对库区重庆公路建设和养护工作中急需解决的地质灾害频发问题,通过对现有公路地质灾害已有研究成果及资料的收集与整理,特别是有关重庆公路历史地质灾害资料以及重庆公路地质灾害重发区奉节、巫山、云阳、万州四地的公路工程地质和区域地层条件资料的调查与分析,以充分掌握库区重庆山区公路区域工程地质、水文地质资料、库区重庆库水消落区分布及公路地质灾害特点。再考虑公路工程特点,进行重庆干线公路地质灾害源调查,并结合历史灾害数据,确定区重庆公路路基地质灾害类型及影响因素。同时,依据国土地灾部门已实施的库区二期滑坡综合治理项目资料,统计分析工程实践中的各碎石体力学参数值及分布规律,为后续试验研究及理论分析奠定基础。
     选择库区重庆典型公路路基碎石土样本,进行碎石土物理参数测试、室内压缩试验、直剪强度试验、三轴剪切试验及现场静载荷试验,确定碎石土的物理力学特性,P-S曲线及三轴CD试验曲线。在试验的基础上,确定含水率及细粒土d5百分含量与碎石土最大干密度的关系,细粒土百分含量及含水率对碎石土抗剪强度参数C、φ的影响,不同级配的碎石土压缩模量随荷载的梯度变化规律,以及碎石土渗透特性及其影响因素。再根据现场静载荷试验结果,分析不同级配不同含水率下的强度变形发展规律,以及浸水对于碎石土变形参数的影响。
     以库区重庆公路路基碎石土为研究对象,确定细颗粒对碎石土渗透性的影响,以及碎石土渗透系数K与细粒土p5质量含量的函数关系式。以Darcy定律为基础,分析碎石土应力与和渗流场的耦合作用机理,建立流-固耦合作用下碎石土渗透系数与碎石土孔隙率的动态计算函数式。
     考虑库水位变动对受其影响的公路碎石土路基稳定性的影响,采用潜水非稳定流的布西尼斯克(Buossinesq)标准方程对库水位下降中潜水非稳定浸润线的求解进行推导,采用采用Levenberg-Marquardt算法对λ与M (λ)值进行了拟合,给出了λ与M (λ)的指数拟合函数关系式。针对库区重庆公路碎石土路基滑坡地质灾害多为沿下伏具有一定坡度的外倾基岩面滑动,滑面多为土岩接触面的特点,提出了叠代求导地下水位浸润线的计算方法。最后考虑含水率对碎石土抗剪强度参数的影响,对库水位下降时的碎石土路基边坡稳定性进行了计算,并与常规计算结果进行对比分析。
     选取了巫山某受库水影响的公路路基碎石土边坡,根据滑体形态及滑体组成,分析了滑体失稳破坏的影响因素。通过现场剪切试验及室内试验成果,确定滑体稳定计算的物理力学参数。采用叠代计算确定库水位下降时滑体地下水位浸润线,并采用通过岩土数值分析软件对其进行模拟分析,判断其失稳演化过程。选用典型地质剖面,考虑碎石土含水率及库水位变化,对其安全系数进行了计算。
As for the highway roadbed in Chongqing region which consist of stone-soilwith different particle size and under the combined influence of ground water,landsliding and collapse are the two most widely types of geological disaster to themand could take a significant influence on the highway traffic of Chongqing. Thisthesis based on the study of regional geology and geological disaster investigationsof reservoir highways which locate on Chongqing region. In order to estimate soilbasic properties, rules of strength and deformation development and relatedhydraulic characteristics, this thesis taken some typical stone-soil samples withdifferent water contents and particle gradations to conduct field and laboratory tests.Based on these obtained parameters, we could take analysis for the liquid-solidcoupled effect and conduct our study for the stability of roadbed slope which isunder the condition of water level drawdown. These results could help us to have aninsight into this type of construction and build a series of methods to improvehighway capability that withstand more geological disasters, furthermore, to reducethe loss of society fortune and the negative influence on our normal life that inducedby geological disasters.
     According to these characteristics of highways which locate in reservoir region,this thesis focus on some fields as follow:
     As for these geological disasters we could meet in highway construction andmaintenance work and need to be solved urgently, some known research results abouthighway geological disaster have been collected and sorted, especially to theengineering geology history and regional stratum condition history of Chongqing regionand four typical cities which are the disaster easily to occur areas, namely, Fengjie,Wushan, Yunyang and Wanzhou. Based on these materials, we can estimate thesecharacteristics of engineering geology, hydrogeology, water level fluctuationdistribution and highway geological disaster of Chongqing region. Additionally, we alsopaid attention to the characteristics of highway construction, and spent a lot of time toseek the disaster source of arterial highway in Chongqing region. Combining these obtained results and historical disaster cases, we can estimate all the types of geologicaldisaster and corresponding impact factors. Meanwhile, based on these geologicalexploration and early designed data of65implemented cases of the second phaselandsliding management project which conducted by government, we taken statistic andanalysis for the rules of soil physical properties and distribution, and to use them as asolid principle for our following research work.
     Taken a typical reservoir highway roadbed in Chongqing region to conduct a seriesof tests, such as physical properties test, direct shear test, triaxial shear experiment andfield static load test, et al. Therefore, we can determine the corresponding characteristicsof soil physical properties, P-S curve, triaxial CD curve and other related data. Withthese above data, we can obtain a relationship among water content, particle percent ofthe d5size and maximum dry density of stone-soil, and estimate the influence of particlesize percent and water content on two typical shear strength parameters, C、φ, and thegradient change rule of stone-soil's compressibility modulus with varied load anddifferent gradations. Finally, on the basis of field static load test, we start analysis forsoil samples with different water contents and gradations and try to seek thedevelopment law of soil's strength and deformation, as well as the influence of wettingprocess on deformation parameters of soil.
     Taken the stone-soil of highway roadbed in Chongqing region as the object ofstudy, we can estimate the influence of finer particle on stone-soil permeability andobtain the function relationship between stone-soil permeability, K, and weight contentof a typical particle size, P5. Based on Darcy's law, an analysis about the mechanism ofstone-soil stress and seepage field was finished, and with the condition of fluid-solidcoupling, a dynamic calculation equation which can be used to describe the relation ofsoil permeability and porosity has been built. Taken the influence of water levelfluctuation on roadbed stability into consideration, and with the Buossinesq functionthat applied in the condition of unsteady flow of phreatic water, we can find a method todetermine the phreatic line which was influenced by water drawdown. UsingLevenberg-Marquardt solution to conduct fitting work for λ and M (λ), by the way,this thesis also presents an exponential relational expression between them. In fact, theroadbed soil mass has almost the same slope degree with that of the under-lied bedrock, and the sliding mass always slide along the bedrock surface, on the other hand, thesliding surface is a common type of soil-rock contact surface, therefore, we present aniteration process which need to be involved in our whole calculation process when wetry to estimate the phreatic line of groundwater.
     A typical roadbed slope is selected for case study, this slope locates on Wushan cityand is affected by the influence of water level fluctuation (drawdown as usual),according to sliding mass's configuration and its material components, we can start ananalytical work for these impact factors which will induce the slope to slide. Accordingto these obtained results from field shear test and laboratory shear test, some neededphysical parameters in sliding calculation can be determined. Select iterative calculationmethod to estimate the phreatic line within sliding mass which was influenced by waterlevel drawdown, and to have an insight into the evolutionary process of landslidingusing a commercial code to do simulation work for this slope. Calculating the factor ofsafety for a selected typical slope cross-section by employing the imbalance thrust forcemethod that suggest by the National Specification.
引文
[1]朱冬林,任光明,聂德新,等.库水位变化下对水库滑坡稳定性影响的预测[J].水文地质工程地质,2002,3:69.
    [2] Oda M., Experiment study of antistrophic shear strength of sand by plane strain test, Soil Fdn,1978, Vol12No.1:25-38.
    [3] Oda M., Stress-induced anisotropy in granular masses, Soil Fdn,1985, Vol25No.3:85-97.
    [4] Marsal R.J., Large scale testing of rockfill materials, J. Soil Mech. Fdn Engng Div. Am. Soc.Civ. Engrs.93,1967, SM2:27-34.
    [5] Vesic A.S.&Clough G.W., Behaviour of granular materials under high stresses, J. Soil Mech.Fdn Engng Div. Am. Soc. Civ. Engrs94,1968, SM3:661-668.
    [6] R.J. Marsal, Mechanical properties of rockfill, Embankment dam engineering, casagrandevolume, New York,1973:109-200.
    [7] Marachi N.D., Strength and deformation characteristics of rockfill materials, PhD thesis,University of California,1969
    [8] Marachi N.D., et al, Evaluation of pro.perties of rockfill materials, J. Soil Mech. Fdn EngngDiv. Am. Soc. Civ. Engrs98,1968, SM1:95-114.
    [9] Charles J.A., Watts K.S., The influence of confining pressure on the shear strength ofcompacted rockfill, Géotechnique30,1980, No.4:353-367.
    [10] Indraratna B. et al, Design for grouted rock bolts based on the convergence control method,Int. Rock Mech. Sci. Geomech. Abstr.27,1986, No.4:268-281.
    [11]何兆益,周虎鑫,张弛.山区机场高填方土石混填强夯参数的现场试验研究[J].公路交通科技,2002,04:30-32.
    [12]油新华,汤劲松.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报,2002,10:1537-1540.
    [13]李世海,汪远年.三维离散元土石混合体随机计算模型及单向加载试验数值模拟[J].岩土工程学报,2004,02:172-177.
    [14]李世海,李晓,刘晓宇.工程地质力学及其应用中的若干问题[J].岩石力学与工程学报,2006,06:1125-1140.
    [15]徐文杰,胡瑞林,谭儒蛟.等.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报,2006,06:1270-1277.
    [16]徐文杰,胡瑞林,曾如意.水下土石混合体的原位大型水平推剪试验研究[J].岩土工程学报,2006,07:814-818.
    [17]徐文杰,胡瑞林,谭儒蛟.三维极限平衡法在原位水平推剪试验中的应用[J].水文地质工程地质,2006,06:43-47.
    [18]李维树,夏晔,乐俊义.水对三峡库区滑带(体)土直剪强度参数的弱化规律研究[J].岩土力学,2006,S2:1170-1174.
    [19]李维树,丁秀丽,邬爱清.等.蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J].岩土力学,2007,07:1138-1342.
    [20]李晓,廖秋林,赫建明.等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报,2007,12:2377-2384.
    [21]欧阳振华,李世海,戴志胜.块石对土石混合体力学性能的影响研究[J].实验力学,2010,01:61-67.
    [22]廖秋林,李晓,李守定.土石混合体重塑样制备及其压密特征与力学特性分析[J].工程地质学报,2010,03:385-391
    [23]刘文平,时卫民,孔位学.等.水对三峡库区碎石土的弱化作用[J].岩土力学,2005,11:1857-1861.
    [24]时卫民,郑宏录,刘文平.等.三峡库区碎石土抗剪强度指标的试验研究[J].重庆建筑,2005,02:30-35.
    [25]李维树,邬爱清,丁秀丽.三峡库区滑带土抗剪强度参数的影响因素研究[J].岩土力学,2006,01:56-60.
    [26]夏元友,蒋超.云南祥临公路滑坡滑带土抗剪强度指标的统计分析[J].岩土力学,2006,06:920-924.
    [27]李振,邢义川.干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J].岩土力学,2006,12:2255-2260.
    [28]舒志乐,刘新荣,刘保县.等.土石混合体粒度分形特性及其与含石量和强度的关系[J].中南大学学报(自然科学版),2010,03:1096-1101.
    [29]杨冰,杨军,常在.等.土石混合体压缩性的三维颗粒力学研究[J].岩土力学,2010,05:1645-1650.
    [30]周中,傅鹤林,刘宝琛.等.土石混合体渗透性能的正交试验研究[J].岩土工程学报,2006,09:1134-1138.
    [31]周中,傅鹤林,刘宝琛.等.土石混合体渗透性能的试验研究[J].湖南大学学报(自然科学版),2006,06:25-28.
    [32]周中,傅鹤林.刘宝琛.等.土石混合体边坡人工降雨模拟试验研究[J].岩土力学,2007,07:1391-1396.
    [33]顾金略,李晓,李守定.等.伺服控制土石混合体压力渗透仪研究[J].工程地质学报,2009,05:711-716.
    [34]高谦,刘增辉,李欣.等.露天坑回填土石混合体的渗流特性及颗粒元数值分析[J].岩石力学与工程学报,2009,11:2342-2348.
    [35]周蓓蓓,邵明安.不同碎石含量及直径对土壤水分入渗过程的影响[J].土壤学报,2007,05:801-807.
    [36]杨艳芬,王全九,曾辰.等.土石混合介质水分入渗特性试验研究[J].水土保持学报,2009,05:87-90.
    [37]杨艳芬,王全九,曾辰.等.土石混合介质入渗模型及其参数影响因素研究[J].干旱地区农业研究,2010,01:7-10.
    [38]徐文杰,胡瑞林,岳中琦.等.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,2007,02:300-311.
    [39]徐文杰,胡瑞林,王艳萍.基于数字图像的非均质岩土材料细观结构PFC~(2D)模型[J].煤炭学报,2007,04:358-362..
    [40]廖秋林,李晓,朱万成.等.基于数码图像土石混合体结构建模及其力学结构效应的数值分析[J].岩石力学与工程学报,2010,01:155-162.
    [41]丁秀丽,李耀旭,王新.基于数字图像的土石混合体力学性质的颗粒流模拟[J].岩石力学与工程学报,2010,03:477-484.
    [42]徐文杰,王永刚.土石混合体细观结构渗流数值试验研究[J].岩土工程学报,2010,04:542-550.
    [43]薛雷,李维朝,孙强.等.基于数字图像像素单元建立准三维FLAC~(3D)模型[J].岩土力学,2010,06:2001-2005.
    [44]成国文,赫建明,李晓.等.土石混合体双轴压缩颗粒流模拟[J].矿冶工程,2010,04:1-8.
    [45] De. Mello, Y.F.B., Reflections on design decisions of practical significance to embankmentdams, Géotechnique27,1977, No.3:279-355.
    [46] Indraratna B., Development and applications of a synthetic material to simulate softsedimentary rocks, Géotechnique40,1990, No.2:189-200.
    [47]刘新荣,黄明,祝云华.等.土石混合体填筑路堤中的非线性蠕变模型探析[J].岩土力学,2010年08期:2453-2458.
    [48]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,02:196-199.
    [49]徐文杰.大型土石混合体滑坡空间效应与稳定性研究[J].岩土力学,2009, S2:328-333.
    [50]许建聪,尚岳全.碎石土古滑坡稳定性分析[J].岩石力学与工程学报,2007,01:57-65.
    [51]程久龙,于师建,王玉和.等.碎石质混合土的瑞雷波探测[J].工程勘察,2000,03:65-67.
    [52] Kacimov A R. Analytical solutions in a hydraulic model of seepage with sharp interfaces[J].Journal of Hydrology,2002,258:179-186.
    [53] Kacimov A R., Obnosov Y V, Perret J. Phreatic surface flow from a near-reservoir saturatedtongue[J].Journal of Hydrology,2004,296:271-281.
    [54] Kacimov A R. Analytic element solutions for seepage towards topographic depressions[J].Journal of Hydro-logy,2006,318:262-275.
    [55] Warrick A W, Wierenga P J, Pan L. Downward water flow through sloping layers in thevadose zone:analytical solutions for diversions[J]. Journal of Hydrology,1997,192:321-337.
    [56]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,18:3203-3210.
    [57]张文杰,詹良通,凌道盛.等.水位升降对库区非饱和土质岸坡稳定性的影响[J].浙江大学学报(工学版),2006,08:1365-1428.
    [58]汪斌,唐辉明.含弱透水层岸坡地下水渗流特征的数值分析[J].岩土力学,2006,S1:193-197.
    [59]章广成,唐辉明,胡斌.非饱和渗流对滑坡稳定性的影响研究[J].岩土力学,2007,05:995-970.
    [60]吴琼,唐辉明,王亮清.等.库水位升降联合降雨作用下库岸边坡中的浸润线研究[J].岩土力学,2009,10:3025-3031.
    [61]段祥宝,谢罗峰.水位降落条件下非稳定渗流试验研究[J].长江科学院院报,2009,10:7-12.
    [62]唐辉明,马淑芝,刘佑荣.等.三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究[J].地球科学-中国地质大学学报,2002,05:621-625.
    [63]马淑芝,贾洪彪,唐辉明.等.水-岩耦合三维有限元法在滑坡分析中的应用[J].地质科技情报,2006,06:91-95.
    [64]常宏,王旭升.滑坡稳定性变化与地下水非稳定渗流初探-以三峡库区黄蜡石滑坡群石榴树包滑坡为例[J].地质科技情报,2004,01:94-98.
    [65]郑颖人,唐晓松,赵尚毅.等.有限元强度折减法在涉水岸坡工程中的应用[J].水利水运工程学报,2009,04:1-10.
    [66]贾官伟,詹良通,陈云敏.水位骤降对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报,2009,09:1798-1803.
    [67]唐晓松,郑颖人,叶海林.涉水岸坡稳定性分析相关问题的研究[J].合肥工业大学学报(自然科学版),2009,10:1585-1589.
    [68]刘新喜,夏元友,张显书.等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,08:1439-1444.
    [69]闵弘,谭国焕,戴福初.等.蓄水期库岸古滑坡的水动力学响应监测-以三峡库区泄滩滑坡为例[J].岩石力学与工程学报,2004,21:3721-3726.
    [70] Gasmo J M, Rahardjo H, Leong E C. Infiltra-tion effect on stability of a residual soil slope[J].Com-puters and Geotechnics,2000,26(2):145165.
    [71] Zhan L T, Charles W W N. Analytical analysis of rainfall infiltration mechanism inUnsaturated soils [J].In-ternational Journal of Geomechanics,2004,4(4):273284.
    [72] Fredlund,D. G.,Rahardjo H.Soil Mechanics for unsaturated soils[M]. New York: Wiley,1993.
    [73] Fredlund,D. G.,Xing,A., Equations for the soil-wa-ter characteristic curve [J].CanadianGeotechnical Jour-nal,1994,31(3):521532.
    [74] Fredlund,D. G.,Xing,A., Fredlund M D, et al.The relationship of the unsaturated soil shearstrength function to the soil-water characteristic curve [J].Cana-dian GeotechnicalJournal,1995,32:420448.
    [75] Fredlund,D. G.,Xing,A.,Huang S Y. Predicting the permeability function for unsaturatedsoils using the soil-water characteristic curve [J].Canadian Geotechnical Journal,1994,31:533546.
    [76] Fredlund,D. G.,Xing,A.,1994. Equations for the soil2water characteristic curve. Can.Geotech. J.,31:521-532.
    [77]张卢明,郑明新,何敏.滑坡防治前后滑带土基质吸力特征研究[J].岩土力学,2010,10:3305-3312.
    [78]张卢明,何敏,郑明新.等.降雨入渗对滑坡渗流场和稳定性的影响分析[J].铁道工程学报,2009,07:15-19.
    [79]王睿,张嘎,张建民.降雨条件下含软弱夹层土坡的离心模型试验研究[J].岩土工程学报,2010,10:1582-1587.
    [80]陈伟,莫海鸿,陈乐求.非饱和土边坡降雨入渗过程及最大入渗深度研究[J].矿冶工程,2009,06:13-21.
    [81]汤明高,许强,黄润秋.等.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报,2006,02:355-362.
    [82]黄润秋,戚国庆.滑坡基质吸力观测研究[J].岩土工程学报,2004,02:216-219.
    [83]林鸿州,于玉贞,李广信.等.土水特征曲线在滑坡预测中的应用性探讨[J].岩石力学与工程学报,2009,12:2569-2576.
    [84]戚国庆;黄润秋.降雨引起的边坡位移研究[J].岩土力学,2004,25(03):379-382.
    [85]孙红月,吴红梅,李焕强.等.松散堆积土中的隔水层对边坡稳定性的影响[J].浙江大学学报(工学版),2010,10:2016-2020.
    [86]周志超,李向全,蒋良文.等.降雨条件下滇西典型土质滑坡渗流特性分析[J].工程勘察,2010,07:32-41.
    [87]邓华锋,李建林,王乐华.等.基于强度折减法的库岸滑坡三维有限元分析[J].岩土力学,2010,05:1604-1608.
    [88]田斌,童富果,戴会超.降雨条件下清江古树包滑坡体稳定性有限元分析[J].岩石力学与工程学报,2005,S2:5301-5307.
    [89]刘建军,裴桂红,薛强.降雨条件下道路边坡地下水渗流分析[J].岩土力学,2005,S2:196-198.
    [90]张延军,张延诘.非饱和渗流作用下土坡的数值计算分析[J].地球与环境,2005,03:121-124.
    [91]张延军,王恩志,王思敬.降雨渗流作用下滑坡变形数值分析[J].辽宁工程技术大学学报,2006,06:858-860.
    [92]刘小伟,刘高,谌文武.等.降雨对边坡变形破坏影响的综合分析[J].岩石力学与工程学报,2003,S2:2715-2718.
    [93]张卓,练继建,杨晓慧.不同降雨强度下岩体边坡的渗流场分析[J].水力发电学报,2006,05:27-30.
    [94]宁万辉,宁健,俞美华.等.降雨对碎石土边坡稳定性的影响分析[J].水电能源科学,2011,01:83-84.
    [95]张友谊,胡卸文,朱海勇.滑坡与降雨关系研究展望[J].自然灾害学报,2007,01:104-108.
    [96]刘艳辉,唐灿,李铁锋.等.地质灾害与降雨雨型的关系研究[J].工程地质学报,2009,05:656-661.
    [97]张珍,李世海,马力.重庆地区滑坡与降雨关系的概率分析[J].岩石力学与工程学报,2005,17:3185-3191.
    [98]毛以伟,周月华,陈正洪.等.降雨因子对湖北省山地灾害影响的分析[J].岩土力学,2005,10:1657-1662.
    [99]梁冰,郭俊平.降雨条件下边坡地下水运动规律[J].辽宁工程技术大学学报,2007,S2:89-91.
    [100]丁继新,尚彦军,杨志法.等.降雨型滑坡预报新方法[J].岩石力学与工程学报,2004,21:3738-3743.
    [101]张玲,黄敬峰,王深法.等.基于GIS的滑坡临界降雨指标的研究[J].浙江大学学报(农业与生命科学版),2003,05:493-498.
    [102]丁继新,杨志法,尚彦军.等.降雨型滑坡时空预报新方法[J].中国科学(D辑:地球科学),2006,06:579-586.
    [103]谢剑明,刘礼领,殷坤龙.等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报,2003,04:101-105.
    [104]高华喜,殷坤龙.降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J].岩土力学,2007,05:1055-1060.
    [105]陈剑,杨志法,李晓.三峡库区滑坡发生概率与降水条件的关系[J].岩石力学与工程学报,2005,17:3052-3056.
    [106]张桂荣,殷坤龙,刘礼领.等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统[J].岩土力学,2005,08:1312-1317.
    [107]王仁乔,周月华,王丽.等.大降雨型滑坡临界雨量及潜势预报模型研究[J].气象科技,2005,04:311-313.
    [108]詹良通,贾官伟,陈云敏.等.考虑土体非饱和特性的无限长斜坡降雨入渗解析解[J].岩土工程学报,2010,08:1214-1220.
    [109]于德海,彭建兵.降雨触发山区公路边坡失稳的气象判据研究[J].水土保持通报,2010,04:125-128.
    [110]吴火珍,冯美果,焦玉勇.等.降雨条件下堆积层滑坡体滑动机制分析[J].岩土力学,2010,S1:324-329.
    [111]张我华,陈合龙,陈云敏.降雨裂缝渗透影响下山体边坡失稳灾变分析[J].浙江大学学报(工学版),2007,09:1429-1435.
    [112]严绍军,唐辉明,项伟.降雨对滑坡稳定性影响过程分析[J].水文地质工程地质,2007,02:104-108.
    [113]陈善雄,许锡昌,徐海滨.降雨型堆积层滑坡特征及稳定性分析[J].岩土力学,2005,S2:6-10.
    [114]贺可强,白建业,王思敬.降雨诱发型堆积层滑坡的位移动力学特征分析[J].岩土力学,2005,05:705-709.
    [115]贺可强,周敦云,王思敬.降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J].岩石力学与工程学报,2004,16:2665-2670.
    [116]胡明鉴,张平仓,汪稔.降雨对滑坡的激发作用实验研究-以蒋家沟流域滑坡堆积坡地为例[J].水土保持学报,2001,S1:116-118.
    [117]殷坤龙,汪洋,唐仲华.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,01:75-78.
    [118]朱文彬,刘宝琛.降雨条件下土体滑坡的有限元数值分析[J].岩石力学与工程学报,2002,04:509-512.
    [119]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,04:502-508.
    [120]许建聪,尚岳全,郑束宁.等.强降雨作用下浅层滑坡尖点突变模型研究[J].浙江大学学报(工学版),2005,11:1675-1679.
    [121]许建聪,尚岳全,陈侃福.等.强降雨作用下的浅层滑坡稳定性分析[J].岩石力学与工程学报,2005,18:3246-3251.
    [122]张延军.边坡渗流耦合变形分析方法的研究及其应用[J].吉林大学学报(地球科学版),2006年01期:103-107.
    [123]罗先启,刘德富,吴剑.等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报,2005,14:2476-2483.
    [124]许建聪,尚岳全,王建林.松散土质滑坡位移与降雨量的相关性研究[J].岩石力学与工程学报,2006,S1:2854-2860.
    [125]尹顺德,冯夏庭,周辉.等.降雨影响下滑坡变形预测的GA-NN模型研究[J].岩土力学,2003,06:1038-1041.
    [126]陈洪凯.三峡库区地质灾害[M].重庆:重庆交通大学出版社,2009.
    [127]王孔伟,张帆,林东成.三峡地区新构造活动与滑坡分布关系[J].世界地质.2007,3(26):26~32.
    [128]陈剑,李晓,杨志法.三峡库区滑坡的时空分布特征与成因探讨[J].工程地质学报,2005,13(3):305~309
    [129]地质矿产部编写组.长江三峡工程库岸稳定性研究[M].北京:地质出版社,1988.
    [130]杨达源.长江地貌过程[M].北京:地质出版社,2006.
    [131]西南大学等.三峡水库重庆消落区生态环境问题及对策研究[R].重庆市生态环境建设和保护领导小组办公室,2006,5.
    [132]中国长江三峡工程开发总公司.三峡工程泥沙问题[EB/OL].[2009-1-16].http://www.ctgpc. com.cn/sxslsn/index.php?mClassId=003010.
    [133]国土资源部.长江三峡库区地质灾害防治总体规划[Z].2001.10.
    [134]阎宗岭,堆石体物理力学特性及其工程应用研究,博士学位论文,重庆大学资源及环境科学学院,2003
    [135]南京水利科学研究院主编,《土工试验规程》水电部SL237-1999,北京,中国水利水电出版社,1999年12月第1版
    [136]时卫民,郑颖人.碎石土压实性能试验研究.岩土工程技术[J].2005,19(6):299-302.
    [137]武明.土石混合非均质填料力学特性试验研究[J].公路,1997,41(1):40-42,49.
    [138]秦红玉,刘汉龙,高玉峰,等.粗粒料强度和变形的大型三轴试验研究[J].岩土力学,2004,25(10):1575-1580.
    [139]李维树,丁秀丽,邬爱清.蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究.岩土力学[J].2007,28(7):1338-1342.
    [140]李维树,邬爱清,丁秀丽.三峡库区滑带土直剪强度参数的影响因素研究[J].岩土力学,2006,27(1):56-60.
    [141]苏爱军,王建锋.三峡工程重庆库区巫山新城区破碎岩体与滑坡群成因机制和治理利用
    [R].水利部长江勘测技术研究所;中国科学院力学研究所,2005.
    [142]长江科学院岩基研究所.长江三峡库区涪陵-巫山段30个滑坡原位直剪试验报告[R].武汉:长江科学院岩基研究所,2002-2004.
    [143]李会中,潘玉珍,王复兴.三峡库区奉节县新城区滑坡带土抗剪参数试验研究.湖北地矿[J].2002,16(4):28-32.
    [144]刘文平,时卫民,孔位学等.水对三峡库区碎石土的弱化作用[J].岩土力学,2005,26(11):1857-1861.
    [145]刘文平,张利民,郑颖人.等.三峡库区重庆段滑坡体抗剪及渗透参数研究.地下空间与工程学报[J].2009,5(1):45-49.
    [146]唐晓松,邓楚键,郑颖人.等.三峡库区碎石土地基浸水试验研究.地下空间与工程学报[J].2008,4(2):226-229.
    [147]周中,土石混合体滑坡的流-固耦合特性及其预测预报研究,博士学位论文,中南大学,2006.
    [148]许建聪.碎石土滑坡变形解体破坏机理及稳定性研究.浙江大学,2005.
    [149]南京大学水文地质工程地质教研室.工程地质学[M].北京:地质出版社,1982.
    [150]凤家骥,郭爱国,汪洋.等.砂砾石垫层料渗透试验研究[J].中国农村水利水电,1999,12:30-32.
    [151]李雷,盛金保.沟后坝砂砾料的工程特性[J].水利水运科学研究,2000,3:27-32.
    [152]钱康.天生桥一级水电站F8断层破碎带渗透稳定的定性分析[J].红水河,1993,12(4):6-10.
    [153]雍莉.沟后水库修复工程混凝土面板堆砂砾石坝垫及层间关系渗透稳定试验研究[J].甘肃水利水电技术,2003,39(2):112-113.
    [154]常中华,张二勇,柴建峰.等.应用主要分分析法研究渗透介质的渗透稳定问题[J].水文地质工程地质,2004,5:15-20.
    [155]吕衡.太平驿水电站闸基覆盖层渗透及渗透变开试验研究[J].水电站设计,1995,11(3):111-115.
    [156]李小泉.冶勒现场渗透变形试验研究[J].水电工程研究,1991,2:74-77.
    [157]唐洪祥,李锡夔.饱和多孔介质中动力渗流耦合分析的Biot-Cosserat连续体模型与应变局部化有限元模拟[J].工程力学,2007,24(9):8-18.
    [158]褚卫江,徐卫亚,苏静波.变形多孔介质流固耦合模型及数值模拟研究[J].工程力学,2007,24(9):56-64.
    [159]王进廷,杜修力,赵成刚.液固两相饱和介质动力分析的一种显式有限元法[J].岩石力学与工程学报,2002,218):1199-1204.
    [160]徐曾和,徐小荷,沈连山.可变形多孔介质中的一维非定常耦合渗流[J].应用力学学报,1999,6(4):46-52.
    [162] Brown W F. Solid mixture Pennittlvity.JournalofChemiealPhysie,1955,23(8):1514~1517.
    [163] Dagan G. Analysis of flow through heterogeneous random aquifers by the method ofembedding matrix-1:Steady flow. Water Resources Research,1981,17(l):107~122.
    [164] Noetinger B.The effeetive Permeability of a heterogeneous porous medium. Transport inPorous Media,1994,15:99-127.
    [165]时卫民,郑颖人库水位下降情况下滑坡的稳定性评价[J].工程勘察,2004,1:26-30.
    [166]唐晓松,郑颖人,叶海林.涉水岸坡稳定性分析相关问题的研究合肥工业大学学报(自然科学版)[J].2009,32(10):1585-1589.
    [167]唐晓松,郑颖人.水位下降对边(滑)坡稳定性的影响.公路交通科技[J].2007,24(10):44-47.
    [168]时卫民.三峡库区滑坡与边坡稳定性实用分析方法研究[博士学位论文][D].重庆:后勤工程学院,2004.
    [169]刘新喜.库水位下降对滑坡稳定性的影响及工程应用研究[博士学位论文][D].武汉:中国地质大学,2003.
    [170]唐晓松,郑颖人,林成功.浸润面位置的确定方法对涉水边坡稳定性分析的影响.岩石力学与工程学报[J].2008,27(S1):2814-2819.
    [171]郑颖人,唐晓松.库水作用下的边(滑)坡稳定性分析[J].岩土工程学报2007,29(8):1115-1121.
    [172]时卫民,郑颖人.库水位下降情况下滑坡的稳定性分析[J].水利学报,2004,(3):76–80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700