用户名: 密码: 验证码:
汶川特大地震汉源震害异常研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日在汶川发生的8.0级特大地震,是新中国成立以来破坏最强、波及范围最广、救灾难度最大的一次地震。这起历史罕见的地震灾害所造成的巨大破坏,举国震惊,举世关注。距震中近250km的汉源县城为这一特大地震Ⅵ度区内唯一的Ⅷ度异常区,是十分典型而又罕见的远震高烈度异常区。汶川地震发生后,这一现象引起了国内外学者广泛关注。探索汉源县城震害异常成因,总结其形成条件和地震动特征,对促进场地条件工程抗震影响的研究以及提高工程抗震水平具有重要的理论意义和工程应用价值,本文就这一问题开展了系统的研究工作。
     本文全面系统地归纳、总结和评述了当前本领域的前沿研究成果和相关文献。在整理汶川地震汉源科学考察资料基础上,利用现场震害调查、震后科学考察、勘察测试所获得的资料,通过理论分析和数值模拟等方法给出了汉源震害异常的原因的初步解释,开展了以下几个方面研究工作。
     (1)开展了汉源县城的震害调查、科学考察和场地勘察工作。汶川地震发生后防灾科技学院组织部分教师组成科考队对汉源震害异常区进行了全面、深入的考察。野外考察获得了汉源县城详细的震害、地质构造、地震地质灾害、地形地貌、强震台站资料等数据信息;通过场地勘察及试验,获得了场地土层结构和土动力学参数资料。结合震害调查资料,本文采用经验公式法对汉源县城建筑物的自振周期进行分析,得到其破坏较严重结构类型建筑物的自振周期大致范围为0.1s~0.6s。
     (2)提出了汉源场地输入地震动的确定方法。本文采用人工合成地震动和强震记录反演两种方法来确定汉源县城输入地震动。在人工地震动合成方法中拟合了汶川地震发震断层下盘的基岩峰值加速度和反应谱衰减关系。分析表明,本文的衰减关系较好的反应了汶川特大地震发震断层下盘的基岩峰值加速度及反应谱衰减规律。根据所得的衰减关系本文确定汉源场地的峰值加速度及其反应谱值。结合相关的经验参数,人工合成给出了5组地震动加速度时程。本文提出利用强震记录反演场地输入地震动的方法,其做法是把距汉源最近的九襄强震台站作为反演台站,由于位于汉源县城附近22km的九襄强震台有详细的建台资料,并且在汶川地震中获取了宝贵的强震记录,本文利用这些资料,采用一维等效线性化频域分析方法反演得到水平向EW和NS基岩场地输入地震动时程。分析表明,反演的基岩地震动具有较高的可靠性,可以作为汉源县城输入地震动。
     (3)研究了土层结构对汉源震害异常的影响。本文在汉源县城场地通过工程地质勘察获得了场地土层以及土动力学参数试验数据。在此基础上,利用一维等效线性地震反应分析方法分别研究了表层土厚度、卵石层埋深、卵石层厚度、卵石层剪切波速以及最不利工况组合等对汉源县地表地震动的影响。研究结果表明,汉源县城特殊土层结构具有显著的放大效应,该放大效应对汉源县城震害异常有着重要的影响。
     (4)研究了地形效应对汉源震害异常的影响。根据汶川地震科学考察现场调查资料,本文分析了汉源县的地形地貌特征,实际测绘出汉源三维地形图,采用二维有限差分方法及人工透射边界的原理对地形影响进行了数值模拟,得到各个观测点的传递函数幅值谱并利用场地传递函数幅值表示放大效应。计算结果表明,汉源县城地形对地震动的放大效应比较明显,地形放大效应显著是汉源震害异常的主要原因之一。
     (5)研究了断裂构造对汉源震害异常的影响。采用二维有限差分和透射边界理论方法分析了断裂破碎带与研究点的距离和九襄断裂对汉源县城震害的影响。结果表明,对汉源震害异常可能有影响的断裂为九襄断裂。这是因为,九襄断裂做为一条隐伏断裂,是否通过县城有待进一步研究,但如果这一断裂通过汉源县城,对频带在4~9Hz之间的地震动放大效应更加显著。
     综上所述,造成汉源震害异常的主要原因是土层结构、地形效应和断裂对地震动的放大效应。计算结果表明,汶川地震在汉源的放大效应在2.0~10Hz频段内更显著。放大的地表峰值加速度值超过了《建筑抗震设计规范》(GBJ11-89)规定的汉源县城罕遇地震的峰值加速度。这使汉源县城的建筑物遭受了超过设计规范的地震惯性力,导致建筑物的破坏,同时其放大效应显著频带与建筑物的自振周期吻合,产生了共振效应更加重了震害,致使汉源县城震害异常。
     破坏性地震的震害异常现象综合反映了场地条件对地震动响应的程度,它既与场地条件密切相关,又与地震波的传播过程和震源物理过程密不可分,是一极具探索性的研究课题。本文利用汶川地震后现场调查和科学考察获得的部分资料,对汉源震害异常的现象做了初步的总结和解释。由于震害异常现象的复杂性,本文的认识是粗浅的,如有不当之处,敬请指正。
Wenchuan Ms8.0great earthquake, which occurred on May12,2008wasthe most destructive, widespread one with the biggest difficulty to providedisaster relief since the founding of People’s Republic of China. Rarely seen inhistory, the destruction, shocked the whole nation and attracted the attention ofthe whole world. Hanyuan County, about250km away from epicenter, is the onlyabnormal intensity Ⅷ in the zoneof intensityⅥ.It is also typical and rareteleseismic abnomal intensity area.This phenomenon has caused widespreadconcern from domestic and foreign scholars after Wenchuan earthquake. Theexploration of the reason of Hanyuan county’s abnomal intensity, as well as thesummarization of its forming conditions and ground motion characteristics, is ofgreat theoretical significance and engineering application value in promoting thestudy of site conditiong on anti-seismic engeering and impoving anti-seismicengeering level.
     In this paper,the forefront results and literature of this field have beensummarized and commented.On the basis of scientific investigation in Hanyuanduring Wenchuan earthquake, the preliminary explanation of anbormal seismicdamage has been given by the method of damage investigation,scientificinvestigation after earthquake, survey, test, theoretical analysis and numericalsimulation. Researches have been carried out in the following areas.
     (1)Damage investigation,scientific investigation and site reconnaissancehave been carried out. Investigation group formed by teachers from Institue ofDisaster Preventionhave carried on comprehensive and deeply investigation.More detailed information about earthquake damage, geological structure,seismic geological disasters and topography data is acquired from pre-fieldwork.Site soil structure and soil dynamics parameters are got by the survey andtest.Combined with earthquake damage of scientific investigation, Hanyuanbuildings natural vibration periods are analyzed by empirical formula method.The natural vibration periods of building structural type that are more seriouslydamaged are about0.1s~0.6s.
     (2)The method for determining input ground motion is proposed. Twomethods of synthetic ground motion and inversion of strong motion records areused for determining Hanyuan city input ground motion. The method of syntheticground motion,the bedrock attenuation relations of peak accelerration and respnsespectrum are fitted,which is loacated on seismogenic fault footewall duringWenchuan earthquake.Analysis shows that the bedrock attenuation laws of peakacceleration and response spectrum on seismogenic fault footewall are wellreflected by the article’s attenuation relations. Hanyuan site peak acceleration andresponse spectrum value are determined according to the attenuation relations.Combined with empirical parameters,5acceleration time histories are given by synthetic ground motion.The method of inversion of strong motion records isproposed,and Jiuxiang strong motion is taken as inversion station in this paperThe station is22km away from Hanyuan town.As there is detailed site data aswell as precious strong records acquired during Wenchuan earthquake in Jiuxiangstrong motion station, this paper will use these data, and calculate EW and NSinput ground motion by one-dimensional equivalent linear frequency-domainanalysis method.At the same time, spectrum analysis is carried out by forwardand inversion method.The results showed that the inversion of bedrock motion iswith high reliability, which can be taken as Hanyuan input ground motion.
     (3)The effect of soil layer construction on Hanyuan abnormal damage isstudied.On the basis of site invertigation,site soil and test dara soil dynamicsparameters are acquired. The effect of the thickness of topsoil, the depth of gravellayer, the thickness of the gravel layer,gravel layer shear wave velocity and themost unfavorable combination of conditions on Hanyuan surface ground motionare studied by One-dimensional equivalent linear seismic response analysismethod. The results show that special soil layer construction has a significantamplification effect on Hanyuan county, which plays an important impact on theHanyuan county earthquake abnormal damage.
     (4)The effect of topography on Hanyuan abnormal damage is studied.According to scientific investigation of the earthquake field investigations andgeological data, Hanyuan topography characteristics were analyzed, and theactual mapping of Hanyuan three-dimensional topographic map is acquired. Theeffect of topography is numerical simulated by the principle of two-dimensionalfinite difference method and artificial transmitting boundary, while the transferfunction amplitude spectrums of each observation were acquired, and amplitudeamplification effect is reflected by transfer function amplitude.The computationresults show that Hanyuan terrain amplification effect is significant, andtopographic amplification is one of the main causes of abnormal seismic damage.
     (5) The effect of fault structure on Hanyuan abnormal seismic damage isstudied. The effect of fracture crushing belt and Jiuxiang fracture on Hanyuanabnormal seismic damage are analyzed by two-dimensional finite-difference andtransmitting boundary theory. The results show that the fracture which has aneffect on Hanyuan abnormal seismic damage is possibly Jiuxiang fracture. It isbecause if Jiuxiang fracture, as a buried fault, went through Hanyuan town, theground motion could be amplified in the band of4~9Hz significantly.
     In summary, abnormal seismic damage is caused by amplification effect onground motion of soil structure, terrain effects and fault. The results show that theamplification effect of Wenchuan earthquake ground motion is remarkable in theband of2.0to10Hz. The amplified peak ground acceleration value in HanyuanCounty exceeds rare earthquake peak acceleration specified in the Code forseismic design of buildings (version of1989). This makes buildings in Hanyuancounty suffer from seismic inertia force which is more than design specifications,and results in building destruction. At the same time, the band of significant amplification is consistent with building vibration periods, and the earthquakedamage is increased by resonance effect, which caused abnormal seismic damagein Hanyuan.
     The extent of site conditions on grond motion is comprehensively reflectedby abnomal seismic damage of destructive earthquake. It is closely related to siteconditions, but also to propagation of seismic waves and source physicalprocesses.Thus it is a highly exploratory research topic.This paper has made apreliminary summary and explanation on the phenomenon of Hanyuan seismicabnormal damage with part of data acquired by scene investigation and scientificinvestigation after Wenchuan earthquake. Because of the complexity of abnomaldamage, the study in this paper is superficial. Please feel free to correct theinadequacies.
引文
[1]薄景山,李秀领,刘德东等.土层结构对反应谱平台值的影响[J].地震工程与工程振动,2003,23(4):29-33.
    [2]薄景山,李秀领,李山有.场地条件对地震动影响研究的若干进展[J].世界地震工程,2003,19(2):11-l5
    [3]薄景山,李秀领,刘德东等.土层结构对反应谱特征周期的影响[J].地震工程与工程振动,2003,23(5):42-45
    [4]薄景山,李秀领,刘德东等.土层结构对反应谱平台值的影响[J].地震工程和工程振动,2003,23(4),29-33.
    [5]薄景山,李秀领,刘红帅.土层结构对地表地震动峰值的影响[J].地震工程与工程振动,2003,23(3):35-40
    [6]薄景山,齐文浩,刘红帅等.汶川特大地震汉源烈度异常原因的初步分析[J].地震工程与工程振动,2009,29(6):54-64.
    [7]薄景山,吴兆营,翟庆生等.三种土层结构反应谱平台值的统计分析[J].地震工程与工程振动,2004,24(2):23-28.
    [8]薄景山,翟庆生,吴兆营等.三种土层结构反应谱特征周期的统计分析[J].地震工程与工程振动,2004,24(3):124-129.
    [9]薄景山,翟庆生,吴兆营等.基于土层结构的场地分类方法[J].地震工程与工程振动,2004b,24(4):46-49.
    [10]曹振中,侯龙青,袁晓铭等.汶川8.0级地震液化震害及特征[J].岩土力学,2010,31(11):645-650.
    [11]曹振中,袁晓铭,陈龙伟等.汶川大地震液化宏观现象概述[J].岩土工程学报,2010,32(4):3549-3555.
    [12]陈昌斌,楼梦麟,陶寿福.二维场地地震反应有限元分析的问题探讨[J].震灾防御技术,2006,1(4):292-301.
    [13]陈达生.几次大地震烈度异常概况.1981年地震小区划学术交流报告[R],1981:1-15.
    [14]陈国达.民国25年4月1日广东灵山地震记略[J].地质评论,3(4):427-448.
    [15]陈国兴,陈继华.软弱土层的厚度及埋深对深厚软弱场地地震效应的影响[J].世界地震工程,2004,20(3):66-73.
    [16]陈继华,贾学民,王伟.软弱夹层土对软土场地地震效应的影响[J].燕山大学学报,2006,30(5):451-455.
    [17]丁海平,刘启方,黄勇,金星.三维地震动场数值模拟并行计算系统[J].地震工程与工程振动,2004,24(2):19-22.
    [18]非明伦,周光全,施伟华等.大姚6.2级地震的烈度与震害分析[J].地震研究,2004,27(增):70-74.
    [19]高孟潭,陈学良,俞言祥等.5.12汶川8.0级地震汉源烈度异常机理的初步探讨[J].震灾防御技术,2008,3(3):216-223.
    [20]高振寰.唐山地震引起北京地区烈度异常区的原因分析[J].地震地质,1979,1(2):74-82.
    [21]谷洪彪,姜记沂,兰双双.汶川地震汉源县烈度异常地质构造背景分析[J].防灾科技学院学报,2009,(5):43-47.
    [22]郭迅,黄玉龙,袁一凡.香港场地类别划分的初步研究[J].世界地震工程,2000,16(1):51-60.
    [23]韩端龙,施卫星,魏丹.多层砌体校舍建筑低阶周期的测试与研究[J].地震工程与工程振动,2012,32(2):130-137
    [24]韩新民,周瑞琦.丽江7.0级地震的烈度分布[J].地震研究,1997,20(1):35-46.
    [25]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [26]胡聿贤,孙平善,章在墉等.场地条件对震害和地震动的影响[J].地震工程与工程振动,1980,试(1):35-41.
    [27]胡元鑫,刘新荣,罗建华等.汶川震区地震动三维地形效应的谱元法模拟[J].兰州大学学报,2011,47(4):23-31.
    [28]黄玉龙,郭迅,袁一凡.软泥夹层对香港软土场地地震反应的影响[J].自然灾害学报,2002,9(1):109-l16.
    [29]黄润秋等.汶川地震地质灾害研究[M].北京:科学出版社,2009.
    [30]霍俊荣.近场强地面运动衰减规律的研究[D].哈尔滨:国家地震局工程力学研究所,1989.
    [31]霍俊荣,胡聿贤.地震动峰值参数衰减规律的研究[J].地震动与工程振动,1992,12(2):1-11.
    [32]蒋溥,王启鸣,徐峰等.唐山地震引起的几个异常破坏区的原因探讨[J].地震地质,1979,1(1):90-98.
    [33]兰景岩,吕悦军,刘红帅.地震动强度及频谱特征对场地地震反应分析结果的影响[J].震灾防御技术,2012,7(1):37-45.
    [34]李锰,伊力亚尔,张云峰等.1998年8月27日伽师6.6级地震宏观烈度与震害[J].内陆地震,2000,14(1):46-50.
    [35]李山有,陈学良,金星等.团树断层场地地震反应的数值模拟[J].地震工程与工程振动,2003,23(4):17-21.
    [36]李山有,马强,武东坡等.断层场地地震反应特征研究[J].地震工程与工程振动,2003,23(5):32-37.
    [37]李春峰,赵金宝,唐晖.台湾集集大地震及其余震长周期地震动特性[J].地震学报,2006,28(4):417-428.
    [38]李小军,周正华,于海英等.汶川8.0级地震强震动观测及记录初步分析[A].汶川地震建筑震害调查与灾害重建分析报告.2008.
    [39]黎晓鹰,徐植信.二维地表局部不规则区域对P、SV波传播的影响[J].固体力学学报.1991,12(3):225-234.
    [40]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002.
    [41]廖振鹏,黄孔亮,杨柏坡,袁一凡.暂态波透射边界[J].中国科学A辑,1984,(6):556-564.
    [42]廖振鹏,李小军.地表土层地震反应的等效线性化解法[A].地震小区划—理论与实践[C].北京:地震出版社,1989:141-153.
    [43]廖振鹏,刘晶波.波动有限元模拟[J].地震工程与工程振动,1989,9(4):1-14.
    [44]廖振鹏,杨柏坡.频域透射边界[J].地震工程与工程振动,1986,6(4),1-9.
    [45]廖振鹏,杨柏坡,袁一凡.三维地形对地震地面运动的影响[J].地震工程与工程振动,1981,1(1):56-77.
    [46]梁沙河,陈忠范.底层框架砖房自振周期计算公式的探讨[J].江苏建筑,2006(4):18-30.
    [47]刘曾武.考虑软弱夹层的影响对设计反应谱修正的简易方法[A].第四届全国地震工程会议论文集(一)[C].哈尔滨,1994:86-91.
    [48]刘曾武,吕根盛,吴显德等.唐山地震宁河烈度异常区场地影响的研究[A].第二届全国地震工程会议论文集[C].1984:38-43.
    [49]刘曾武,寇殿卿,吕根盛等.唐山地震玉田低烈度异常原因的探讨[J].地震工程与工程振动,1982,2(2):11-24.
    [50]刘浪.汶川地震地震动衰减特性分析[D].哈尔滨:中国地震局工程力学研究所,2010.
    [51]刘红帅,王根龙,薄景山.背后山古滑坡对汉源老县城震害的影响[J].地震研究,2011,34(4):511-517.
    [52]刘晶波.波动的有限元模拟及复杂场地条件对地震动的影响[D].哈尔滨:国家地震局工程力学研究所,1989.
    [53]刘洪兵,朱晞.地震中地形放大效应的观测和研究进展[J].世界地震工程,1999,15(3):20-25.
    [54]刘红帅,薄景山,吴兆营等.土体参数对地表加速度峰值和反应谱的影响[J].地震研究.2005,28(2):167-171.
    [55]楼梦麟,李遇春,李南生等.深覆盖土层地震反应分析中的若干问题[J].同济大学学报(自然科学版).2006,34(4):427-432.
    [56]卢涛,薄景山,李巨文等.汶川大地震汉源县城建筑物震害调查[J].地震工程与工程振动,2009,29(6):88-95.
    [57]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报.2007,29(1):67-75.
    [58]齐文浩,薄景山,郭迅等.汶川地震中一个特殊场地研究初探[J].地震工程与工程振动,2010,30(3):53-58.
    [59]钱胜国.软土夹层地基场地土层地震反应特性的研究[J].工程抗震,1994(1):32-36.
    [60]钱永波,唐川.四川省北川县暴雨泥石流的发育与汶川地震的响应特征[J].灾害学,2011,26(4):73-80.
    [61]首培休,袁雨亭,安绍思.烈度异常区的地面脉动研究[J].地震研究,1983,6(增):497-510.
    [62]孙静,袁晓铭,孙锐.土动剪切模量和阻尼比的推荐值和规范值的合理性比较[J].地震工程与工程振动,2004,24(2):125-133.
    [63]孙若昧,Vaccari F,Panza G F.局部地质条件对强地面运动影响的剪切波模拟[J].地球物理学报,2000,43(1):81-89
    [64]唐川,梁京涛.汶川震区北川9.24暴雨泥石流特征研究[J].工程地质学报,2008,16(6):751-758.
    [65]唐荣昌,韩渭宾,四川活动断裂与地震[M].北京:地震出版社,1993.
    [66]唐荣昌,黄祖智.鲜水河断裂带的地震地质基本特征及其研究现状[J].国际地震动态,1983,No.3.
    [67]田启文,孙平善,邹夕林等.唐山地震玉田低烈度异常区调查报告[A].1981年地震小区划学术交流报告[C].1981:1-8.
    [68]王广军.场地条件影响和抗震设计反应谱的若干问题[J].工程抗震,1992,(3):28-32.
    [69]王广军,樊水荣.建筑自振周期经验公式的评述(上)[J].世界地震工程,1989(3)31-36.
    [70]王广军,樊水荣.建筑自振周期计算方法和实测资料手册[M].北京:中国建筑科学研究院,1988.
    [71]王海云,谢礼立.自贡市西山公园地形对地震动的影响[J].地球物理学报,2010,53(7):1631-1638.
    [72]王海云.渭河盆地中土层场地对地震动的放大作用[J].地球物理学报,2011,54(1):137-150.
    [73]王伟.地震动的山体地形效应[D].哈尔滨:中国地震局工程力学研究所,2011.
    [74]王松涛,陈向东,魏钢等.超软弱土层对场地地震反应的影响[A].第四届全国地震工程会议论文集(一)[C].哈尔滨,1994:79-85.
    [75]王卫东,张永志,吴芳等.周至两次地震烈度异常的研究[J].华南地震,2008,28(1):67-70.
    [76]王钟琪,谢君斐,石兆吉.地震工程地质导论[M].北京:地震出版社,1983.
    [77]谢君斐,石兆吉.天津市震害异常的初步探讨[A].中国科学院工程力学研究报告[C].1978,33.
    [78]谢小碧,姚振兴.二维不均匀介质中点源P—SV波响应的有限差分法[J].地球物理学报,1988,31:540-555.
    [79]许强.汶川大地震诱发地质灾害主要类型与特征研究[J].地质灾害与环境保护,2009,20(2):86-93.
    [80]徐锡伟,闻学泽,叶建青等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):86-93.
    [81]杨柏坡,陈庆彬.显式中心差分有限单元法在复杂场地地震反应分析中的应用[J].地震研究,1992,15(1),70-78.
    [82]叶文华,徐锡伟,汪良谋.中国西部强震的地表破裂规模与震级、复发时间间隔关系的研究[J].地震地质,1996,18(2):37-44.
    [83]于海英,王栋,杨永强等.汶川8.0级地震强震动初步分析[J].震灾防御技术,2008,3(4):l-16.
    [84]于海英,王栋,杨永强等.汶川8.0级地震强震加速度记录的初步分析[J].地震工程与工程振动,2009,29(1):l-13.
    [85]俞维贤,谷一山,毛玉平等.耿马县城烈度异常的地震地质及场地地质条件分析[J].地震研究,1994,17(2):177-182.
    [86]俞言祥,汪素云.青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J].地震学报,2004,26(6)591-600.
    [87]俞言样,汪素云.中国东部和西部地区水平向基岩加速度反应谱衰减关系[J].震灾防御技术,2006,1(3):206-216.
    [88]袁一凡,田启文.工程地震学[M].北京:地震出版社,2009.
    [89]袁一凡.四川汶川8.0级地震损失评估[J].地震工程与工程振动,2008,28(5):10-19.
    [90]杨光,刘曾武.使用当前地震小区划方法研究玉田低烈度异常[J].中国地震,1995,11(1):15-25.
    [91]张皎,郭明珠,季杨.简论人造地震动的研究[J].世界地震工程.2008,24(3):159-162.
    [92]张素灵,赵京轶,王建芳等.2006年文安5.1级地震的烈度异常区初探.中国地震,2009,5(1):24-30.
    [93]中国地震局.地震现场工作(第三部分)(GB/T18208.3-2000)[S].北京:地震出版社,2000.
    [94]中国地震局/建设部.中国地震烈度表(GB/T17742—1999)[S].北京:地震出版社,1999.
    [95]中华人民共和国建设部,国家质量监督检验检疫局.中国地震烈度区划图[S].北京:地震出版社,2001.
    [96]中华人民共和国建设部.建筑抗震设计规范(GB50011-2010)[S].北京:中国建筑工业出版社,2011.
    [97]中国地震局.工程场地地震安全性评价工作规范(DB001-94).北京:地震出版社,1994.
    [98]中国人民共和国建设部.建筑抗震设计规范(GBJ11-89)[S].北京:中国建筑工业出版社,1989.
    [99]中华人民共和国基本建筑委员会.工业与民用建筑抗震设计规范(TJ11-78)[S].北京:中国建筑工业出版社,1978.
    [100]中华人民共和国建设部.地基动力测试规范(GB/T50269-97)[S].北京:中国计划出版社,1997.
    [101]中华人民共和国建设部/国家质量监督检验检疫局.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2001.
    [102]中国地震局.工程场地地震安全性评价(GB17741-2005)[S].北京:中国标准出版社,2005.
    [103]周锡元,王广军,苏经宇.场地·地基·设计地震[M].北京:地震出版社,1991.
    [104]周锡元,杨俊卫,闫维明.对若干地震动包线函数的比较分析[J].世界地震工程,2006,22(3):1-9.
    [105] Abrahamson N A. Near-fault ground motion from the1999Chi-Chi earthquake. Proc.Of U.S. Japan Workshop on the Effects of Near-Field Earthquake Shaking, San Franci-sco, California,2000.
    [106] Abrahamson N.A and Silva. Empirical Response Spectral Attenuation Relations forShallow Crustal Earthquake, Seism.Res.Lett.1997,68,94-127.
    [107] Anderson J. G., Bodin P, Brune J. N, et al.. Strong ground motion from the Mich-oacfin, Mexico earthquake[J]. Science,1986,233,1043-1048.
    [108] Bonilla L F,Steidl J H, Lindley G T, et al.Site amplification in the San Fernando Val-ley, California: Variability of site-effect estimation using the S–wave, Coda, and H/Vmethods[J].Bulletin of the Seismological Society of America,1997,87(3):710-730.
    [109] Celebi M.Topographical and geological amplification-case studies and engineeringimplications [J]. Structural Safety,1991,10:199-217.
    [110] Clough R, Pension J. Dynamics of Structure[M].New York,McGraw Hill,1993
    [111] Cassano R C. Earthquake code-posion or panacea[A].ASCE National Structural Engi-neering Meeting [C].1973,1.
    [112] Dezfulian H,Seed H B. Seismic response of soil deposits underlain by sloping rockboundaries [J].Journal of the Soil Mechanics and Foundations Division,1970,96(6):1893-1916.
    [113] Dezfulian H,Seed H B. Response of nonuniform soil deposits to travelling seismicwaves[J].Journal of the Soil Mechanics and Foundation Division,1971,97(SM1):27-46.
    [114] D.Rote,D.Fah,L.F.Bonilla,S.Alvarez-Rubio,T.M.Weber.Estimation of non-linear site re-sponse in a deep Alpine valley[J].Geophys.J.Int.2009(178),1597-1613.
    [115] Geli L,Bard P Y,Jullin B. The effect of topography on earthquake ground motion:a re-view and new results[J].Bulletin of the Seismological Society of America,1988,78:42-63.
    [116] Hadjian,A. H. Scaling of earthquake accelerograms-a simplified approach[J].The Am-erican Society of Civil Engineers,1972,98, ST2.
    [117] Housner G W.Behaviour of structures during earthquake[J].The American Society ofCivil Engineers,1959,85(EM4):109-129.
    [118] Idriss I M. Response of soft soil sites during earthquake [A]. Proceeding of a memorialSymposium to honor Professor Seed H B [C].University of California,Berkeley,1990.
    [119] Idriss M.I. and Sun J. Users Manual for SHAKE91. Structures Division of Buildingand Fire Research Laboratory, National Institute of Standards and Technology andCenter for Geotechnical Modeling of Department of Civil&Environmental Engi-neering, University of Califora,1992.
    [120] Kenneth W. Campbell Near-source attenuation of peak horizontal acceleration[J]. Bul-letin of the Seismological Society of America,1981,71,2039-2070.
    [121] Mohraz B.A Study of Earthquake Response Spectra for Different Geological Cond-itions[J]. Bulletin of the Seismological Society of America,1976,66(3):915-935
    [122] Olsen K B. Sit amplification in the Los Angeles basin from three-dimensional mo-deling of ground motion[J].Bulletin of the Seismological Society of America,2000,90(6B):S77-S94.
    [123] Parolai S, Bindi D, Baumbach M, et al.Comparison of different site response est-imation techniques using aftershocks of the1999Izmit earthquake [J].Bulletin of theSeismological Society of America,2004,94(3):1096-1108.
    [124] Reimer R B,Clough R W,Raphacl J M. Evaluation of the Pacoima dam accelerogram[A]. Proc.5th, WCEE[C].1973.
    [125] Somerville, Smith, Graves.Modification of empirical strong ground motion attenuationrelations to include the amplitude and duration effects of rupture directivity.Seism.Res.Lett.1997,68(1)199-222.
    [126] Seed, H. B. I. M. Idriss and F. W. Kieter. Characteristics of rock motions during earth-quakes[J]. The American Society of Civil Engineers,1969,No.SM5.
    [127] Scanlan R,Sachs H K.Earthquake time histories and response[J].The American Societyof Civil Engineers,1974,100(4):635-655.
    [128] Tsuda K, Koketsu K, Hisada Y, et al. Inversion analysis of site response in the Kantobasin using data from a dense strong motion seismograph array[J].Bulletin of the Sei-smological Society of America,2010,100(3):1276-1287.
    [129] Trifunac M.D.Pesudo Relative Velocity Spectra of Earthquake Ground-Motion at Lon-g Period [J].Soil Dynam.Earth.Eng.,1995,14,331-334.
    [130] XiaojunLi,Lang Liu,et al.Analysis of Horizontal Strong Motion Attenuation in the Gr-eat2008Wenchuan Earthquake [J].Bulletin of the Seismological Society of Ameri-ca,2010,100,2440-2449.
    [131] Wang G Q, Zhou X Y.3D finite-difference simulations of strong ground motions inthe Yanhuai area, Beijing, China during the1720Shacheng earthquake(Ms7.0) usinga stochastic finite-fault model[J].Soil Dynamics and Earthquake Engineering,2006,26-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700