用户名: 密码: 验证码:
低NOx排放微型燃气轮机燃烧室的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着分布式供能系统的发展,微型燃气轮机在我国得到了高度重视。燃烧室是微型燃气轮机的核心部件,高效低污染燃烧室是发动机排放性能先进性的体现。本学位论文的工作以国家863项目为依托,研究了100kW级微型燃气轮机低NOx排放燃烧室的设计方法,并对其流动、燃烧特性及NOx排放特性进行了数值模拟和实验研究。主要内容如下:
     1.研究了100kW级微型燃气轮机的低NOx燃烧室设计方法,该设计方法的特点是采用燃料径向分级、值班火炬稳燃、主燃料贫预混燃烧方式。这种设计在保持燃烧室稳定运行的基础上,增大了燃烧室头部空气量,降低了燃烧室高温区的火焰峰值温度,大大降低了燃烧室的NOx排放。
     2.采用三维计算流体力学设计方法,对影响燃烧室性能及NOx排放的重要结构参数和运行参数进行了研究。揭示了进口温度、主燃区进气旋流强度、值班区进气旋流强度以及主燃区和值班区燃料配比对燃烧室流动、燃烧特性以及NOx排放性能的影响规律。研究发现,总压恢复系数随燃烧室进气温度的升高呈线性降低趋势,即进气从300K提高到873K,燃烧室冷态总压恢复系数从97.5%降到93.3%,影响十分显著;随着主燃区进气旋流强度的增加,燃烧室火焰峰值温度有所降低,燃烧室NOx排放浓度也显著降低。可见,适当提高燃烧室主燃区进气旋流强度有利于降低燃烧室NOx的排放;值班区进气旋流强度对燃烧室温度场影响不大,但当值班区旋流强度增加到一定程度时,值班区通道出口贴近内壁处速度较低,预混气流容易在该处形成回火,从而可能威胁到燃气轮机机组的安全性;燃料配比实验表明,随着值班区燃料量占总燃料量的比例增大,其NOx排放浓度急剧增加,影响十分显著。
     3.采用三维计算流体力学方法对所设计的燃烧室进行了全尺寸数值分析,并根据数值结果对燃烧室的性能进行评估得到,设计燃烧室总压恢复系数达到93.3%,燃烧室出口NOx排放浓度约为15ppmv。
     4.建立了微型燃气轮机燃烧室实验台平台,对100kW级设计燃烧室的点火性能、燃烧室在额定工况下的燃烧特性以及部分变工况特性进行了常压模化实验研究。实验结果表明,所设计的100kW燃烧室点火可靠、燃烧效率为99.8%,总压恢复系数为92.2%,NOx排放为9ppmv,CO排放为16ppmv。通过实验结果与数值模拟结果的比较,发现二者在变化趋势上是一致,但具体数值上还有一定差别,这也说明燃烧流场模拟的复杂性,同时,实验和数值模拟结果的比较也表明本文数值模拟结果从工程应用角度看还是可行的。
In recent years, with the quickly development of the distributed energy systems, microgas turbine has been received great attentions in China. The combustion chamber is one ofthe core components of the micro gas turbine. It is a manifestation of an advanced enginewith the combustion chamber of high efficient and low emissions. The thesis supported bythe national 863 project studied the design methods for a low NOx emissions combustionchamber of a 100kW grade microturbine. Its flow, combustion characteristics and NOxemissions were investigated numerically and experimentally. The main contents of thedissertation are as follows:
     1. The design methods of the low NOx emissions combustor were developed. Theoutlet of the methods is that the combustor is a two-stage premixed combustor designedfor use with natural gas fuel. The piloting flame severiced as the duty torch to stable thelean premixed flame. The primary premixed passageway is concentric about the pilotpremixed passageway, which operatered at lean premixed mode. The features of thedesign are the increase of the dome air volume fraction and the decrease of the flame zonepeak temperature while maintaining stable operation of the combustion chamber. As aresult, the NOx emissions were greatly reduced.
     2. Effects of structural and operating parameters on combustion performances andNOx emissions were investigated by using the 3-D CFD methods. The variation trendsdescribed the influences of the inlet temperature, the primary flow swirling intensity, thepilot flow swirling intensity, as well as the fuel ratio of the main passageway to the pilotpassageway on the combustor's flow, combustion and NOx emissions. The results showthat, with the increase of the inlet temperature, the total pressure recovery coefficientdeceased linearly. For example, when the inlet air temperature increased from 300K to873K, the total pressure recovery coefficient decreased from 97.5% to 93.3%. With the increase of the primary inlet swirling intensity, the peak flame temperature decreased. TheNOx emission is also decreased significantly. That is to say, the increase of the primaryinlet swirling intensiy was benefited to decrease the NOx emission of the combustor. Thevariations of the pilot inlet swirling intensities were unimportance for the temperatureprofiles and NOx emissions. But when the pilot inlet swirling intensity increased a certaindegree, the flashback maybe observed, which could cause safety threat of the combustor.The fuel allocating experiments showed that NOx emissions sharply increased with theincrease of the pilot fuel fraction.
     3. Numerical simulations were completed for the designed combustor with 3-Dfull-scale model. According to the results, the performances of this combustor wereevaluated. It is shown that the total pressure recovery coefficient was 93.3%, and the NOxemission of the combustor was 15ppmv.
     4. An experimental setup for the micro gas turbine combustion chamber wasestablished. Experimental investigations were completed to study the performances of thereference the 100kW combustor. The experimental results indicated that 100kW designedcombustor was ignition flexible, high combustion efficiency of 99.8%, medial totalpressure recovery factor of 92.2%, low NOx emission of 9ppmv and low CO emission of16ppmv. By comparison of the experimental results with the numerical results, they havethe identical variation trends, although the data are different. This is because of thecomplex of the combustion simulations. However, the results showed that the numericalmethods used in this thesis are feasible from the perspective of engineering application.
引文
[1] Alanne K, Saari A. Distributed energy generation and sustainable development. Renewable and Sustainable Energy Reviews. 2006, 10(6): 539-558.
    [2] Maribu K M, et al. Distributed energy resources market diffusion model. Energy Policy, 2007, 35(9): 4471-4484.
    [3] Laurie R A, Distributed Generation: Reaching the Market Just in Time. The Electricity Journal, 2001,14(2): 87-94.
    [4] Greene N, Hammerschlag R, Small and Clean Is Beautiful: Exploring the Emissions of Distributed Generation and Pollution Prevention Policies. The Electricity Journal, 2000, 13(5): 50-60.
    [5] Banerjee R, Comparison of options for distributed generation in India. Energy Policy, 2006, 34(1): 101-111.
    [6] 姚景州,曹小林.分布式能源系统的研究现状.沈阳工程学院学报:自然科学版,2007,3(1):6-9.
    [7] 徐建中,隋军,金红光.分布式能源系统现状及趋势.太阳能,2004(4):14-16.
    [8] 杜建一,王云,徐建中.布式能源系统与微型燃气轮机的发展与应用.工程热物理学报,2004.25(5):786-788.
    [9] 徐建中,科学用能与分布式能源系统.中国能源,2005.27(8):10-13.
    [10] 黄东风,分布式能源发展的影响因素分析.能源工程,2005(1):7-10.
    [11] 冉鹏.分布式能源系统的研究现状与应用前景.热力发电,2005,34(3):1-3.
    [12] 华贲,左政,杨艳利.分布式能源系统对中国天然气下游市场开拓的重要性.沈阳工程学院学报:自然科学版,2006,2(2):97-103.
    [13] 张泽.分布式能源系统将引领用能革命.环境,2006(11):32-34.
    [14] Ackermann T G, Anderson L S. Distributed generation: a definition. Electric Power Systems Research, 2001, 57(3): 195-204.
    [15] Pepermans G, et al. Distributed generation: definition, benefits and issues. Energy Policy, 2005, 33(6): 787-798.
    [16] El-Khattam W, Salama M M A. Distributed generation technologies, definitions and benefits. Electric Power Systems Research, 2004, 71(2): 119-128.
    [17] Gillette S F. Market development of Microturbine combined heat and power applications. Cogeneration and Distributed Generation Journal, 2004, 19(2): 46-59.
    [18] Pilavachi P A. Mini and micro-gas turbines for combined heat and power. Applied Thermal Engineering, 2002, 22(18): 2003-2014.
    [19] Aristotle M. Optimization of integrated Microturbine and absorption chiller system in CHP for building, in Graduate school of the university of Maryland. 2002.
    [20] Pilavachi P A. Power generation with gas turbine systems and combined heat and power. Applied Thermal Engineering, 2000, 20(15-16): 1421-1429.
    [21] 龚婕,华贲.分布式能源系统:联产和联供.工厂动力,2007,(2):1-6,27.
    [22] 陈霖新.冷热电联供是我国推行分布式能源系统的主要形式.工厂动力,2004,(4):1-8.
    [23] Kuhn V, Klemes J, Bulatov I. MicroCHP: Overview of selected technologies, products and field test results. Applied Thermal Engineering. In Press, Corrected Proof.
    [24] Peirs J, Reynaerts D, Verplaetsen F. A Microturbine for electric power generation. Sensors and Actuators A: Physical, 2004. 113(1): 86-93.
    [25] 魏兵,王志伟等.微型燃气轮机冷热电联供系统及其在国外的发展状况.电力需求侧管理,2006,8(6):62-64.
    [26] El-Sharkh M Y, Sisworahardjo N S, et al. Dynamic behavior of PEM fuel cell and Microturbine power plants. Journal of Power Sources, 2007. 164(1): 315-321.
    [27] Uzunoglu M, et al. Parallel operation characteristics of PEM fuel cell and Microturbine power plants. Journal of Power Sources, 2007, 168(2): 469-476.
    [28] Energetics. Summary of the Microturbine Technology Summit. Report No. DOE/ORO 2081, 1998.
    [29] 陈启梅等.高温燃料电池与燃气轮机相结合的混合发电系统.热能动力工程,2005,20(2):111-115.
    [30] 袁春,何国库.微型燃气轮机发电技术进展.移动电源与车辆,2002,(4):39-40,23.
    [31] 靳智平.微型燃气轮机发电在我国的应用前景.电力学报,2004.19(2):95-97.
    [32] 杨策,刘宏伟等.微型燃气轮机技术.热能动力工程,2003.18(1):1-4.
    [33] 王建,王志伟.微型燃气轮机在我国能源工业中的发展前景.发电设备,2006,20(6):394-397.
    [34] 翁一武,苏明等.先进微型燃气轮机的特点与应用前景.热能动力工程,2003.18(2):111-116.
    [35] 赵士杭.新概念的微型燃气轮机的发展.燃气轮机技术,2001,14(2):8-13.
    [36] 张昊志,李政等.正在兴起的微透平技术.动力工程,2001,21(6):1532-1538.
    [37] Microturbines. 2007, Butterworth-Heinemann: Burlington.
    [38] Advanced Microturbine System Program Plan for fiscal Years 2000-2006. U.S. DOE Report, 2000.
    [39] 国家高技术研究发展计划(863计划)重大专项可行性报告.科技部能源办公室,2002.
    [40] Sisworahardjo N S, El-Sharkh M Y, Alam M S. Neural network controller for Microturbine power plants. Electric Power Systems Research, 2008, 78(8): 1378-1384.
    [41] 于丹,吴君华等.分布式能源系统在某现代商城应用的可行研究.能源技术(上海),2005.26(5):215-216.
    [42] 余南华,王岳,秦永革,冷热电联产系统与微型燃气轮机.可再生能源,2003,(5):33-34,36.
    [43] Colombo L P, Armanasco M F, Perego O. Experimentation on a co-generative system based on a Microturbine. Applied Thermal Engineering, 2007, 27(4): 705-711.
    [44] Gamou S R, Yokoyama K Ito. Optimal operational planning of cogeneration systems with Microturbine and desiccant air conditioning units. Journal of Engineering for Gas Turbines and Power, 2005.127(3): 606-614.
    [45] Gamou S R, Yokoyama K Ito. Parametric study on economic feasibility of Microturbine cogeneration systems by an optimization approach. Journal of Engineering for Gas Turbines and Power, 2005.127(2): 389-396.
    [46] Massardo A F, McDonald C F, Korakianitis T. Microturbine/fuel-cell coupling for high-efficiency electrical-power generation. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 110-116.
    [47] Abbie Layne, Scott Samuelsen, Mark Williams, Patricia Hofman. Hybrid Heat Engines: The Power Generation Systems of the Future. in ASME Turbo Expo 2000, 2000-GT-0549.
    [48] Alfaro J A, et al. Integrated pressurized gasification of biomass for small gas turbines. 2006. Barcelona, Spain: American Society of Mechanical Engineers.
    [49] Ferreira S B, Nascimento Do. Gas turbine engine off-design performance simulation using syngas from biomass derived gas as fuel. 2007. Montreal, Que., Canada: American Society of Mechanical Engineers.
    [50] Hiramatsu M, et al. Combustion characteristics of small size gas turbine combustor fueled by biomass gas employing flameless combustion. 2007. Montreal, Que., Canada: American Society of Mechanical Engineers.
    [51] Rabou L M, et al. Micro gas turbine operation with biomass producer gas and mixtures of biomass producer gas and natural gas. Energy and Fuels, 2008, 22(3): 1944-1948.
    [52] Chiaramonti D, Riccio G, Martelli F. Preliminary design and economic analysis of a biomass fed micro - Gas turbine plant for decentralised energy generation in tuscany. 2004. Vienna, Austria: American Society of Mechanical Engineers.
    [53] Elmegaard B, Qvale B. Analysis of indirectly fired gas turbine for wet biomass fuels based on commercial micro gas turbine data. 2002. Amsterdam, Netherlands: American Society of Mechanical Engineers.
    [54] Kaneko T, Brouwe J, Samuelsen G S. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system. Journal of Power Sources, 2006. 160(1): 316-325.
    [55] Sucipta M, Kimijima S, Suzuki K. Solid oxide fuel cell-micro gas turbine hybrid system using natural gas mixed with biomass gasified fuel. Journal of the Electrochemical Society, 2008, 155(3): B258-B263.
    [56] 李孝堂等.现代燃气轮机技术.2006,北京:航空工业出版社.
    [57] Waitz I A, Gauba G, Tzeng Y S. Combustors for micro-gas turbine engines. 1996. Atlanta, GA, USA.
    [58] 郝吉明,马广大.大气污染控制工程.2002,北京:高等教育出版社.
    [59]Bowen C,Reader G T,Potter I J.NOx emissions-formation,control and the future.1994.Monterey,CA,USA:IEEE.
    [60]Kim S K,Kim Y M.Prediction of detailed structure and NOx formation characteristics in turbulent non-premixed hydrogen jet flames.Combustion science and technology,2000,156(1-6):107-137.
    [61]Miura S,et al.NOx formation with various combustion process of premixed gas.Technical Review-Mitsubishi Heavy Industries,1979.16(1):44-55.
    [62]J A Miller,C T Bowman.Mechanism and modeling of Nitrogen Chemistry in combustion.Progress in Energy and Combustion Science,1989.15:287-338.
    [63]Stephen.R.Turns,A introduction to combustion.McGRAW-HILL International Editions.2000
    [64]Drake M C,R J Blint.Caculation of NOx formation pathways in Propagating Laminar,High Pressure CH4/air flame.Combustion science and technology,1991.75:261-285.
    [65]Zeldovich Y,P Sadovnikov,D Frank-Kamenetskii.Oxidation of Nitrogen in Combustion,in Academy of Sciences of the USSR.1947.
    [66]岑可法,姚强等.高等燃烧学.浙江大学出版社,2000.
    [67]Fenimore C.Formation of NOX in premixed hydrocarbon flames.13th International Symp.On Combustion,1971:373-379.
    [68]Fenimore C.Reactions of Fuel Nitrogen in Rich Flame Gases.Combustion and Flame,1976.26:249-260.
    [69]Fenimore C P,H A Fraenkel.Formation and inter-conversion of fixed-nitrogen species in laminar diffusion flames.Symposium (International) on Combustion,1981:143-149.
    [70]Fenimore C P.Formation of nitric oxide from fuel nitrogen in ethylene flames.Combustion and Flame,1972.19(2):289-296.
    [71]Tang J T,Engstrom F.Technical Assessment of Ahlstrom Pyroflow and Conventional Bubbling Fluidzed Bed Combustion System,in Proceeding of 9th Int.Conf.on FBC.1987.
    [72]Johnson J E,Amand L E,Leckner B.Modelling of NOx formation in a Circulating Fluidized Bed Boller Circulating Fluidized Technology Ⅲ.Pergomen Press,1990.
    [73] 李洵天,倪明江,岑可法.煤燃烧过程中燃料型NOx的生成特性.工程热物理学报,1990.11:338-341.
    [74] Robert E.Jones. Gas turbine engine emission--problems, progress and future. Progress in Energy and Combustion Science 1978.4:73-113.
    [75] 金如山,航空燃气轮机燃烧室.北京:宇航出版,1985.
    [76] Sanjay M Correa. A review of NOx formation under Gas-turbine Combustion conditions. Combustion Science and Technology, 1992. 87: 329-362.
    [77] 徐旭常,周力行.燃烧技术手册.化学工业出版社,2008
    [78] Mahias O, Bastin F, Raver F. Lean Premixed Combustor Emission Performance Modeling Using 3D CFD Codes. AIAA paper, 2000. 2000-3199.
    [79] M C Drake, R J Blint. Calculations of NOx formation pathways in propagatiing laminar, High premixed CH4/Air flames. Combustion Science and Technology, 1991.75: 261-285.
    [80] Garrido L, S Sarkar. Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation. Proceedings of the Combustion Institute, 2005. 30(1): 621-628.
    [81] Huang Y, V Yang. Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science. In Press, Corrected Proof.
    [82] Huang Y, V Yang. Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proceedings of the Combustion Institute, 2005.30(2): 1775-1782.
    [83] Pizza G., et al. Dynamics of premixed hydrogen/air flames in micro scale channels. Combustion and Flame, 2008. 155(1-2): 2-20.
    [84] Adzic M, et al. Effect of a Microturbine combustor type on emissions at lean premixed conditions. 2006. Sacramento, CA, United States: American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191-4344, United States.
    [85] Furuhata T, et al. Development of can-type low NOx combustor for micro gas turbine (fundamental characteristics in a primary combustion zone with upward swirl). Fuel, 2007.86(15): 2463-2474.
    [86] Sadamasa A, Atushi I, et al. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute, 2007. 31(2):3131-3138
    [87] C Fureby, F F Grinstein, et al. An experimental and computational study of a multi-swirl gas turbine combustor. Proceedings of the Combustion Institute, 2007. 31(2): 3107-3114
    [88] 航空发动机设计手册 第九册:航空工业出版社.
    [89] Liedtke O, A Schulz. Development of a new lean burning combustor with fuel film evaporation for a micro gas turbine. Experimental Thermal and Fluid Science, 2003.27(4): 363-369.
    [90] Liedtke O, A Schulz, S Wittig. Design study of a lean premixed pre-vaporized counter flow combustor for a micro gas turbine. 2002. Amsterdam, Netherlands: American Society of Mechanical Engineers.
    [91] Lledtke O, A Schulz, S Wittig. Emission performance of a micro gas turbine LPP-combustor with fuel film evaporation. 2003. Atlanta, GA, United States: American Society of Mechanical Engineers, New York, NY 10016-5990, United States.
    [92] 林宇震,刘俊等.微小“Γ”型蒸发管在常压条件下蒸发率研究.2006.
    [93] 林宇震,彭云晖,刘高恩.分级/预混合预蒸发贫油燃烧低污染方案NOx排放初步研究.2003.
    [94] 彭云晖,林字震等.双旋流空气雾化喷嘴喷雾、流动和燃烧性能.2008.
    [95] 张弛,张荣伟等.直射式双旋流空气雾化喷嘴的雾化效果.2006.
    [96] Pfeiffer A, A. Schulz, S Wittig. Principles of the ITS Ceramic Research Combustor Design:Segmented Flame Tube and Staged Combusion. ASME, 1991. 91-GT(63).
    [97] Munz S, A Schulz, S Wittig. Evaluation of a new Design concept for a Ceramic flame tube under engine conditions. ASME, 1996.96-GT(498).
    [98] Rosskamp H, et al. An enhanced model for prediction the heat transfer to Wavy shear-driven liquid wall film. Third International Conference on Multiphase Flow, 1998. ICMF'98.
    [99] Elasaber A, et al. Dynamics of Shear-Driven Liquid Film. Proceeding of the 7th International Conference of Laser Anemometry, 1997:8-11.
    [100] Mellor A M. Design of Mordern Turbine Combustor. London: Academic Press. 1990
    [101] Lefebvre A H. Gas Turbine Combustion. Hemisphere Pubulishing Coproration. 1983
    [102] 焦树建.原型燃烧室的低压模拟实验.燃气轮机技术,1995.8(4):36-43.
    [103] Patankar, S. V., Recent developments in computational heat transfer. Journal of Heat Transfer, Transactions ASME, 1988. 110(4(B)): p. 1037-1045.
    [104] 帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1984.
    [105] Launder B E, D B Spalding. Numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1990: 269-289.
    [106] Spalding D B, F Villasenor. Numerical simulation of Kelvin-Helmholtz instability in a stratified shear flow. PhysicoChemical Hydrodynamics, 1987. 9(1-2): 379-386.
    [107] Spalding D B, Z Y Wu. Numerical studies of propagating flames exhibiting the Landau and Rayleigh-Taylor instabilities. PCH, PhysicoChemical Hydrodynamics, 1986. 7(5-6): 353-384.
    [108] 陶文铨,数值传热学(第二版).西安交通大学出版社,2001
    [109] Spalding D B. A two-equation model of turbulence. VDI-Forshung-sheft, 1972. 549: 5-16.
    [110] Markatos N C. The mathematical modeling of turbulence flow. Appl Math Modeling, 1986. 10: 190-220.
    [111] Leonard B P. A stable and accuate convective modeling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng. 1979, (29): 59-98.
    [112] 崔玉峰,徐纲等.数值模拟在合成气燃气轮机燃烧室设计中的应用.中国电机工程学报.2006,26(16):109-116
    [113] 崔玉峰,徐纲等.燃气轮机燃烧室进气孔流量系数的数值模拟.航空动力学报. 2005,20(2):192-196
    [114] 赵士杭,燃气轮机循环与变工况性能.北京:清华大学出版社.1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700