用户名: 密码: 验证码:
水力发电机组轴系振动特性及其故障诊断策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力发电系统是一个水机电耦合的复杂非线性动力系统,其运行过程中水电机组故障的产生和发展包含大量的不确定性因素,难以用数学模型对其进行精确描述。同时,随着水力发电机组日趋大型化、复杂化、自动化,转子系统的非线性振动现象异常突出,由此引发的非线性动力学行为引起学术和工程界的广泛关注。因此,深入研究水电机组的动态行为,获得机组故障征兆描述的有力证据,解析机组故障的成因及其演化机理,实现水电机组的安全、可靠和高效运行,具有十分重要的理论意义和工程应用价值。考虑到振动问题在机组运行中的普遍性,本文对刚性联接平行不对中转子系统动力学特性、轴向推力作用下碰摩转子运动机理和水电机组轴系振动特性进行了系统的理论分析,同时对机组振动故障诊断策略进行了深入研究。论文的主要研究成果如下:
     (1)在分析转子系统平行不对中机理的基础上,建立了刚性联接平行不对中转子系统运动方程,为更好地探寻不对中转子系统动力学机理,对所建立的不对中转子系统微分方程进行了深入的理论分析,应用数值仿真方法验证分析结论。研究表明,刚性联轴节平行不对中时,故障特征频率主要为驱动轴频率;振动经过充分衰减后,转子系统轴心轨迹是比较稳定的圆。在转子系统中,质量偏心、联轴节平行不对中量、驱动轴转子质量和从动轴转子质量等取不同值时,驱动轴、从动轴振动幅度变化较为复杂。
     (2)通过对轴向推力作用下碰摩转子运动的解析,建立了碰摩转子在轴向推力作用下的非线性动力学模型,详细分析了转子转速比、质量偏心、摩擦系数、系统阻尼等参数对轴向推力作用下碰摩转子动力学特性的影响。分析发现,随着转速比、质量偏心、摩擦系数、系统阻尼等参数的变化,转子系统的振动特性的变化非常复杂,可能会出现周期运动、拟周期运动和复杂的混沌振动。
     (3)建立了水力发电机组动力学模型,分析水电机组发电机转子、水轮机转子及轴承之间的距离对机组振动特性的影响。研究发现,随着水轮机转子质量偏心的不断增加,发电机转子、水轮机转子的径向位移都近似线性增大。随着水轮机转轮叶片质量、发电机转子质量偏心、轴承之间的距离的不断变化,转子系统响应主要是简单的周期运动,但在局部会发生复杂的拟周期运动。
     (4)针对水力发电机组存在故障机理极其复杂、诊断系统实时性差、现有故障识别方法的诊断结论不甚理想等方面的问题,吸收并发展故障诊断理论的最新研究成果,将信息融合技术引入到水电机组振动故障诊断中,充分挖掘不同信息源的数据以及专家经验等获得机组故障相关信息,建立了熵权理论、灰色关联分析和证据推理技术相结合的水力发电机组故障诊断模型。该模型采用基于熵权的灰色关联分析方法对水电机组振动故障进行了初步诊断,然后对初步诊断结果应用证据理论进行有效的信息融合,按照最大关联度原则,获得水电机组的最终诊断结论。该诊断方法能够充分利用机组不同故障源提供的有效信息,抑制单一故障源的诊断局限性,可较好地确定机组故障的类型和部位。
With the rapid development of social economy and the sustained and rapid growth of electricity demand, the single unit capacity of the hydro-generating unit continues to increase; the safe and reliable operation of the units is directly related to the safety of hydropower plants and the stability of interconnected power system. Once a failure for generating units occurs, it may cause the plant to non-planned shutdown or reduce capacity, even serious heavy casualties and serious damage to the system may appear when encountering major accidents of units. Due to the universality of the vibration when the unit in the operation, the theoretical analysis of the vibration characteristics on hydro-generator shaft system is made, which studies the dynamic characteristics of two rotors connected by rigid coupling with parallel misalignment and the rotor rubbing under the axial thrust. At the same time, the vibration fault diagnosis strategies for the hydro-generating units are further researched. The main contents of the paper as follows:
     (1) The dynamical equation of parallel misalignment rotor-bearing systems is derived using Lagrangian dynamics. The effect of the rigid coupling parallel misalignment and the rotor unbalance is examined with theoretical and numerical analysis, where the numerical simulation methods are applied to verify the conclusions of the theoretical analysis. At steady state condition, the 1X-rotational speed excitation is presented in the lateral vibration direction, which indicates that parallel misalignment of the rigid coupling can be a source of lateral excitation. The axial locus of the rotor systems is a steady circle after full decay. Simulation results showed the changes of the amplitude of the driving shaft and the driven shaft are more complicated with the changes of the rotor mass eccentricity, the rigid coupling parallel misalignment, the rotor mass of the driving shaft and the driven shaft etc. The effect of the transient response on the parallel misalignment to the rotor-bearing systems with less bearing stiffness is stronger.
     (2) A model of a rigid rotor system under axial thrust with rotor-to-stator is developed based on the classic impact theory and analyzed by the Lagrangian dynamics. The effects of rotating speed, mass eccentricity, friction coefficient, and damping coefficient on dynamic characteristics of the rotor system are researched. With the changes of these parameters, the changes of vibration characteristics of rotor system turn to be very complicated, and the periodic motion, complicated quasi-periodic motion, or chaotic motion may occur in the response of the rotor system.
     (3) The kinetic equation for a hydrogenerator set system is deduced and the motion differential equation is simulated using numerical methods. Considering the effect of generator rotor's mass eccentricity, hydraulic turbine rotor's mass eccentricity, blades mass and the distance of guide bearings, the lateral vibration characteristics of the hydrogenerator set system are analyzed. Research results demonstrated that the radial displacement of generator rotor and hydraulic turbine rotor increases linearly with the increase of hydraulic turbine rotor's mass eccentricity. There mainly appears relatively simple periodic motion of the rotor systems, but accidentally the more complicated quasi-periodic motion may occur with the changes of blades mass, generator rotor's mass eccentricity, and the distance of guide bearings.
     (4) Considering that the complexity of diagnosis process and the diagnosis conclusion is not satisfying as expected for the vibration fault diagnosis of the hydraulic generator units, the information fusion technology is introduced to the units fault diagnosis, which enable us to make full use of different information sources of data and expertise to obtaine the relevant faults information of units. On this basis, the vibration fault diagnosis model of the hydraulic generator units is established using entropy weight coefficient, grey incidence analysis and information fusion technology. Taken the vibration spectrum characteristics and amplitude characteristics as the fault diagnosis samples, an initiative vibration fault diagnosis of hydraulic generator units is accomplished based on grey incidence analysis and entropy weight coefficient. The final diagnosis results are deduced by fusing different evidences using Dempster-Shafter theory. This diagnosis method can take full advantage of the effective information of different faults source of the hydraulic generator units, and also can restrain the diagnosis limitations of the single fault source. Thus this diagnosis method is able to better determine the type and location of unit faults. Diagnosis example demonstrated that the proposed method is a good candidate to be used as an online diagnosis tool for hydraulic generator units.
引文
[1]晏志勇.对我国水电发展的思考.水力发电,2008,34(12):14-17.
    [2]中华人民共和国可再生能源法.北京:法律出版社,2005.
    [3]赵永生.抽水蓄能电站效益评估理论与应用:[博士学位论文].武汉大学:武 汉大学图书馆,2001,5.
    [4]方军.市场条件下抽水蓄能电站动态效益的定量评价研究:[博士学位论文].华 北电力大学(保定):华北电力大学图书馆,2006,6.
    [5]刘大恺.水轮机.北京:中国水利水电出版社,1996.
    [6]张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析.工程力学,2007, 24(8): 143-150.
    [7]杨晓明,马震岳,张振国.水轮机迷宫密封系统非线性动力稳定性研究.大连理工大学学报,2007,47(1):95-100.
    [8]赵水荣,刘礼华,张巍,等.某电站水轮机振动测试及其可靠性分析.水力发电学报,2006,25(4):139-141.
    [9]叶青平.三峡左岸电站ALSTOM机组导叶小开度振动原因分析及解决方案.水力发电学报,2005,24(5):110-114.
    [10]于波,刘忠贤.水轮机在高水头低负荷工况下振动问题的研究.水力发电学报,2001,(1):58-65.
    [11]虞烈,刘恒.轴承-转子系统动力学.西安:西安交通大学出版社,2001.
    [12]闻邦椿,顾家柳,夏松波,等.高等转子动力学:理论、技术及应用.北京:机械工业出版社,2000.
    [13]P.S.Keogh,M.O.T.Cole.Contact dynamic response with misalignment in a flexible rotor magnetic bearing system.J.Eng.Gas Turbines Power,2006,128:362-369.
    [14]A.W.Lees.Misalignment in rigidly coupled rotors.Journal of Sound and Vibration, 2007,305:261-271.
    [15]A.S.Sekhar,B.S.Prabhu.Effects of coupling misalignment on vibrations of rotating machinery.Journal of Sound and Vibration,1995,185(4):655-671.
    [16]Y.S.Lee,C.W.Lee.Modelling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems.Journal of Sound and Vibration,1999,224(1):17-32.
    [17]安学利,周建中,向秀桥,等.刚性联接平行不对中转子系统振动特性,中国电机工程学报,2008,28(11):77-81.
    [18]K.M.Al-Hussain.Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment.Journal of Sound and Vibration,2003,266:217-234.
    [19]K.M.Al-Hussain,Ⅰ.Redmond.Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment.Journal of Sound and Vibration,2002,249(3):483-498.
    [20]韩捷,石来德.转子系统齿式联接不对中故障的运动学机理研究.振动工程学报,2004,17(4):416-420.
    [21]付波,周建中,彭兵,等.固定式刚性联轴器不对中弯扭耦合振动特性.华中科技大学学报(自然科学版),2007,35(4):96-99.
    [22]黄典贵,蒋滋康.平行不对中和交角不对中轴系的扭振特征比较.汽轮机技术,1996,38(2):114-118.
    [23]H.Ma,T.Yu,Q.K.Han,et al.Time-frequency features of two types of coupled rub-impact faults in rotor systems.Journal of Sound and Vibration,2009,321:1109-1128.
    [24]J.S.Cheng,D.J.Yu,J.S.Tang,et al.Local rub-impact fault diagnosis of the rotor systems based on EMD.Mechanism and Machine Theory,2009,44(4):784-791.
    [25]T.H.Patela,A.K.Darpeb.Vibration response of a cracked rotor in presence of rotor-stator rub.Journal of Sound and Vibration,2008,317:841-865.
    [26]Wenming Zhang,Guang Meng,Di Chen,et al.Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model.Journal of Sound and Vibration,2008,309:756-777.
    [27]褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性.清华大学学报(自然科学版),1996,36(7):52-57.
    [28]胡茑庆,陈敏,刘耀宗,等.非线性转子系统碰摩现象的动力学仿真.国防科技大学学报,2000,22(6):101-104.
    [29]Paul Goldman,Agnes Muszynska.Rotor-to-stator rub-related thermal mechanical effects in rotating machinery.Chaos,Solitons & Fractals,1995,5(9):1579-1601.
    [30]B.O.Al-Bedoor.Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing.Journal of Sound and Vibration,2000,229(3):627-645.
    [31]褚福磊,汤晓瑛,唐云.碰摩转子系统的稳定性.清华大学学报(自然科学版),2000,40(4):119-123.
    [32]刘占生,鲁建,吕伟剑,等.转子-电磁轴承系统动静件碰摩动力特性研究.航空动力学报,2004,19(1):38-45.
    [33]李永强,刘杰,刘宇,等.碰摩转子弯扭摆耦合振动非线性动力学特性.机械工程学报,2007,43(2):44-49.
    [34]王宗勇,吴敬东,闻邦椿.质量慢变转子系统的松动与碰摩故障研究.振动工程学报,2005,18(2):167-171.
    [35]刘长利,姚红良,罗跃纲,等.松动碰摩转子轴承系统周期运动稳定性研究.振动工程学报,2004,17(3):336-340.
    [36]罗跃纲,曾海泉,李振平,等.基础松动-碰摩转子系统的混沌特性研究.振动工程学报,2003,16(2):184-188.
    [37]Y.Kang,G.J.Sheen,S.M.Wang.Development and modification of a unified balancing method for unsymmetrical rotor-bearing systems.Journal of Sound and Vibration,1997,199(3):349-369.
    [38]吴敬东,刘长春,王宗勇,等.非对称转子系统的碰摩运动研究.振动工程学报,2006,19(1):37-41.
    [39]刘占生,黄森林,苏杰先,等.非对称转子-轴承系统的稳定性分析.热能动力工程,2001,16(1):70-72.
    [40]沈松,郑兆昌,应怀樵.非对称转子-轴承-基础系统的非线性振动.振动与冲击,2004,23(4):31-33.
    [41]肖锡武,杨正茂,肖光华,等.不对称转子系统的非线性振动.华中科技大学学报(自然科学版),2002,30(5):81-84.
    [42]冯国全,朱梓根.具有初始弯曲的转子系统的振动特性.航空发动机,2003,29(1):20-22.
    [43]林富生,孟光.具有初始弯曲转子振动峰值的控制方法.振动与冲击,2002,21(3): 46-48.
    [44]邹剑,陈进,董广明.含初始弯曲裂纹转子振动特性.上海交通大学学报,2004, 38(7): 1218-1221.
    [45]张韬,孟光.具有初始弯曲和刚度不对称的转子碰摩现象分析.上海交通大学学报,2002,36(6):844-848.
    [46]沈小要,贾九红,赵玫.具有初始弯曲的不平衡转子碰摩条件的研究.振动与冲击,2007,26(9):11-13.
    [47]罗跃纲,李振平,曾海泉,等,非线性刚度转子系统碰摩的混沌行为.东北大学学报(自然科学版),2002,23(9):895-898.
    [48]吴敬东,侯秀丽,刘长春,等.非线性刚度转子系统主共振解析分析.中国机械工程,2006,17(5):539-541.
    [49]R.Tiwari,V.Chakravarthy.Simultaneous estimation of the residual unbalance and bearing dynamic parameters from the experimental data in a rotor-bearing system.Mechanism and Machine Theory,2009,44(4):792-812.
    [50]Cheng-Chi Wang.Application of a hybrid method to the nonlinear dynamic analysis of a flexible rotor supported by a spherical gas-lubricated bearing system.Nonlinear Analysis:Theory,Methods & Applications,2009,70(5):2035-2053.
    [51]Wei Zhang,Jean W.Zu.Transient and steady nonlinear responses for a rotor-active magnetic bearings system with time-varying stiffness.Chaos,Solitons & Fractals,2009,38(4):1152-1167.
    [52]Helio Fiori de Castro,Katia Lucchesi Cavalca,Rainer Nordmann.Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model.Journal of Sound and Vibration,2008,317:273-293.
    [53]A.S.Das,M.C.Nighil,J.K.Duttc,et al.Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters.Mechanism and Machine Theory,2008,43(10):1295-1316.
    [54]Shuliang Lei,Alan Palazzolo.Control of flexible rotor systems with active magnetic bearings.Journal of Sound and Vibration,2008,314:19-38.
    [55]C.Villa,J.J.Sinou,F.Thouverez.Stability and vibration analysis of a complex flexible rotor bearing system.Communications in Nonlinear Science and Numerical Simulation,2008,13(4):804-821.
    [56]Wenhui Xie,Yougang Tang,Yushu Chen.Analysis of motion stability of the flexible rotor-bearing system with two unbalanced disks.Journal of Sound and Vibration,2008,310:381-393.
    [57]T.H.Young,T.N.Shiau,Z.H.Kuo.Dynamic stability of rotor-bearing systems subjected to random axial forces.Journal of Sound and Vibration,2007,305(3):467-480.
    [58]An Sung Lee,Byung Ok Kim,Yeong-Chun Kim.A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space Newmark scheme and comparisons with experiments.Journal of Sound and Vibration,2006,297:595-615.
    [59]汪慰军,吴昭同,陈进.转子-轴承系统不平衡响应的非线性动力学特性分析. 上海交通大学学报,2001,35(5):771-773.
    [60]陈照波,焦映厚,陈明,等.非线性转子-轴承系统动力学分叉及稳定性分析.哈尔滨工业大学学报,2002,34(5):587-590.
    [61]武新华,张新江,薛小平,等.弹性转子-轴承系统的非线性动力学研究.中国机械工程,200l,12(11):1221-1224.
    [62]李振平,闻邦椿.刚性转子-轴承系统的复杂非线性动力学行为研究.振动与冲击,2005,24(3):36-39.
    [63]成玫,荆建平,孟光.转子-轴承-密封系统的非线性动力学研究.振动与冲击,2006, 25(5):171-174
    [64]H.B.Dong,X.F.Chen,B.Li,et al.Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model.Mechanical Systems and Signal Processing,2009,23(3):869-883.
    [65]S.K.Georgantzinos,N.K.Anifantis.An insight into the breathing mechanism of a crack in a rotating shaft.Journal of Sound and Vibration,2008,318:279-295.
    [66]J.R.Jain,T.K.Kundra.Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems.Mechanics Research Communications,2004,31(5):557-568.
    [67]Robert Gasch.Dynamic behaviour of the Laval rotor with a transverse crack.Mechanical Systems and Signal Processing,2008,22(4):790-804.
    [68]Jean-Jacques Sinou.Effects of a crack on the stability of a non-linear rotor system.International Journal of Non-Linear Mechanics,2007,42(7):959-972.
    [69]A.S.Sekhar.Multiple cracks effects and identification.Mechanical Systems and Signal Processing,2008,22(4):845-878.
    [70]N.Le.Khoa.Time-frequency distributions for crack detection in rotors—A fundamental note.Journal of Sound and Vibration,2006,294:397-409.
    [71]D.Guo,Z.K.Peng.Vibration analysis of a cracked rotor using Hilbert-Huang transform.Mechanical Systems and Signal Processing,2007,21(8):3030-3041.
    [72]J.J.Sinou,A.W.Lees.The influence of cracks in rotating shafts.Journal of Sound and Vibration,2005,285:1015-1037.
    [73]Dong Ju Han.Vibration analysis of periodically time-varying rotor system with transverse crack.Mechanical Systems and Signal Processing,2007,21(7):2857-2879.
    [74]J.Zou,J.Chen.A comparative study on time-frequency feature of cracked rotor by Wigner-Ville distribution and wavelet transform.Journal of Sound and Vibration,2004,276:1-11.
    [75]Fangyi Wan,Qingyu Xu,Songtao Li.Vibration analysis of cracked rotor sliding bearing system with rotor-stator rubbing by harmonic wavelet transform.Journal of Sound and Vibration,2004,271:507-518.
    [76]林言丽,褚福磊,郝如江.开斜裂纹转子的动力特性.振动与冲击,2008,27(1): 25-29.
    [77]李舜酩,高德平.裂纹转子非线性振动特征的谐波小波与分形识别.航空动力学报,2004,19(5):581-586.
    [78]蒲亚鹏,陈进,邹剑,等.裂纹转子振动的非线性特性分析.上海交通大学学报,2002,36(6):849-852.
    [79]秦卫阳,孟光.裂纹转子系统响应的阵发性混沌与时域分叉现象.上海交通大学学报,2002,36(6):824-828.
    [80]F.Chu,Y.Tang.Stability and non-linear responses of a rotor-bearing system with pedestal looseness.Journal of Sound and Vibration,2001,241(5):879-893.
    [81]A.Muszynska,P.Goldman.Chaotic responses of unbalanced rotor-bearing stator systems with looseness or rubs.Chaos Solitons & Fractals,1995,5(9):1683-1704.
    [82]刘长利,姚红良,罗跃纲,等.松动碰摩转子轴承系统周期运动稳定性研究.振动工程学报,2004,17(3):336-340.
    [83]张靖,闻邦椿.带有两端支座松动故障的转子系统的振动分析.应用力学学报, 2004,21(3):67-71.
    [84]刘献栋,何田,李其汉.支承松动的转子系统动力学模型及其故障诊断方法.航空动力学报,2005,20(1):54-59.
    [85]罗跃纲,杜元虎,刘晓东,等.双跨转子系统支承松动的动态特性及故障特征 研究.机械强度,2006,28(3):327-331.
    [86]姚红良,刘长利,张晓伟,等.支承松动故障转子系统共振区动态特性分析.东北大学学报(自然科学版),2003,24(8):798-801.
    [87]JianPing Jing,Guang Meng,Yi Sun,et al.On the oil-whipping of a rotor-bearing system by a continuum model.Applied Mathematical Modelling,2005,29(5):461-475.
    [88]韩清凯,任云鹏,刘柯,等.转子系统油膜失稳故障的振动实验分析.东北大学学报(自然科学版),2003,24(10):959-961.
    [89]孟庆丰,李树成,焦李成.旋转机械油膜涡动稳定性特征提取与监测方法.振动工程学报,2006,19(4):446-451.
    [90]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征 分析.中国电机工程学报,2008,28(2):77-81.
    [91]马辉,陈雪莲,王凯,等.油膜失稳引起的轴承碰摩故障研究.东北大学学报(自然科学版),2007,28(9):1313-1316.
    [92]侯佑平,陈果.利用转子故障耦合动力学系统模型识别油膜涡动下的碰摩故障.机械科学与技术,2007,26(11):1447-1453.
    [93]Yongjun Chen,Changsheng Zhu.Active vibration control based on linear matrix inequality for rotor system under seismic excitation.Journal of Sound and Vibration,2008,314:53-69.
    [94]郭平英,李明,徐洁,等.汶川地震对运行中汽轮发电机组振动影响分析.汽轮机技术,2008,50(6):465-467.
    [95]祝长生,陈拥军,朱位秋.不平衡线性转子-轴承系统的非平稳地震激励响应分析.计算力学学报,2006,23(3):285-289.
    [96]赵岩,林家浩,曹建华.转子系统的平稳-非平稳随机地震响应分析.计算力学 学报,2002,19(1):7-11.
    [97]刘男杰,方之楚.转子-轴承系统对具有转动分量的地震激励的瞬态响应.上海 交通大学学报,2002,36(3):363-366.
    [98]陈拥军,祝长生.地震激励下基于LMI的转子系统振动主动控制.浙江大学学 报(工学版),2008,42(4):656-660.
    [99]Fujun Wang,Xiaoqin Li,Jiamei Ma,et al.Experimental Investigation of Characteristic Frequency in Unsteady Hydraulic Behaviour of a Large Hydraulic Turbine.Journal of Hydrodynamics,Ser.B,2009,21(1):12-19.
    [100]李德忠,冯正翔,丁仁山,等.二滩水电厂各机组运行稳定性综合分析.水电能源科学,2007,25(4):79-84.
    [101]韩国明,张信志,刘保国.大型水轮发电机组振动稳定性分析与设计准则.中国机械工程,2002,13(8):634-636.
    [102]姚大坤,邹经湘,赵树山.刚度对三峡水轮发电机组轴系稳定性的影响.电站系统工程,2005,21(3):51-53.
    [103]杨晓明,马震岳.水轮发电机组轴系统稳定性分析及抗振设计.水电能源科学,2005,23(4):70-72.
    [104]孙建平,杨为民,郑莉媛.天生桥一级水电厂机组稳定性分析.水力发电学报,2008,27(6):163-167.
    [105]王海,李启章,郑莉媛.水轮发电机转子动平衡方法及应用研究.大电机技术,2002,(2):12-16.
    [106]王四季,廖明夫.转子现场动平衡技术研究.机械科学与技术,2005,24(12):1510-1514.
    [107]刘保生,姚大坤,胡建文.动平衡消除水轮发电机振动故障.大电机技术,2005, (3): 5-8.
    [108]邱家俊,段文会.水轮发电机转子轴向位移与轴向电磁力.机械强度,2003, 25(3):285-289.
    [109]徐进友,刘建平,宋轶民,等.考虑电磁激励的水轮发电机组扭转振动分析.天津大学学报,2008,41(12):1411-1416.
    [110]姚大坤,邹经湘,黄文虎,等.水轮发电机转子偏心引起的非线性电磁振动.应用力学学报,2006,23(3):334-337.
    [111]郑小波,罗兴琦,邬海军.轴流式叶片的流固耦合振动特性分析.西安理工大学学报,2005,21(4):342-346.
    [112]党小建,梁武科,廖伟丽.水力机组流固耦合的数学模型.机械强度,2005,27(6):864-866.
    [113]谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究.大电机技术,2001,(6):47-52.
    [114]肖若富,韦彩新,韩凤琴,等.液固耦合对水轮机固定导叶振频振型的影响.华中科技大学学报,2001,29(4):85-52.
    [115]桂中华,唐澍,潘罗平.混流式水轮机尾水管非定常流动模拟及不规则压力脉 动预测.中国水利水电科学研究院学报,2006,4(1):68-73.
    [116]吴玉林,吴晓晶,刘树红.水轮机内部涡流与尾水管压力脉动相关性分析.水力发电学报,2007,26(5):122-127.
    [117]孙建平,付建平,薛福文.三峡水电厂左岸ALSTOM机组尾水管压力脉动分 析.大电机技术,2006,(2):42-45.
    [118]汪宝罗,郑源,屈波.大型混流式水轮机组尾水管压力脉动模型试验研究.水力发电,2008,34(3):83-87.
    [119]韩凤琴,陈林刚,桂中华.基于小波包提取尾水管水压脉动特征的研究.水电能源科学,2005,23(1):31-33.
    [120]王者昌,陈怀宁.水轮机叶片裂纹的产生及对策.大电机技术,2003,(6): 51-57.
    [121]覃大清,刘光宁,陶星明.混流式水轮机转轮叶片裂纹问题.大电机技术,2005,(4):39-44.
    [122]杜焕章,田力.三峡电站水轮机转轮裂纹缺陷处理工艺初探.水电站机电技术, 2008,31(5):10-11.
    [123]Xavier Escaler,Eduard Egusquiza,Mohamed Farhat,et al.Detection of cavitation in hydraulic turbines.Mechanical Systems and Signal Processing,2006,20(4):983-1007.
    [124]A.Baldassarre,M.De Lucia,P.Nesi.Real-time detection of cavitation for hydraulic turbomachines.Real-Time Imaging,1998,4:403-416.
    [125]占梁梁,张勇传,周建中,等.轴流转桨式水轮机空化振动监测的试验研究.水 力发电学报,2008,27(5):142-146.
    [126]廖伟丽,刘胜柱,张乐福.轴流转桨式水轮机轮缘间隙空蚀的试验研究.水力发电学报,2005,24(4):67-72.
    [127]张俊华,张伟,蒲中奇,等.轴流转桨式水轮机空化程度声信号辨识研究.中国电机工程学报,2006,26(8):72-76.
    [128]陈进.机械设备振动监测与故障诊断.上海:上海交通大学出版社,1999.
    [129]唐拥军,潘罗平.水电机组故障诊断系统信号预处理.中国水利水电科学研究院学报,2005,3(3):173-178.
    [130]赵道利,梁武科,罗兴锜,等.水电机组振动信号的子带能量特征提取方法研究.水力发电学报,2004,23(6):116-119.
    [131]刘忠,周建中,张勇传,等.基于水电机组复合特征提取的RBFNN故障诊断.电力系统自动化,2007,31(11):87-91.
    [132]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用.中国电机工程学报,2002,22(3):43-47.
    [133]刘晓波,黄其柏.基于动态核聚类分析的水轮机组故障模式识别.华中科技大 学学报(自然科学版),2005,33(9):47-52.
    [134]洪治,李国宏,蔡维由,等.基于小波包分析的水轮发电机组振动的故障诊断. 武汉大学学报(工学版),2002,35(1):65-68.
    [135]彭文季,罗兴锜.基于小波包分析和支持向量机的水电机组振动故障诊断研究. 中国电机工程学报,2006,26(24):164-168.
    [136]杨晓萍,南海鹏,张江滨.信息融合技术在水轮发电机组故障诊断中的应用.水 发电学报,2004,23(6):111-115.
    [137]赵道利,马薇,罗兴锜,等.水电机组振动故障的信息融合诊断与仿真研究.中 国电机工程学报,2005,25(20):137-142.
    [138]贺建军,赵蕊.基于信息融合技术的大型水轮发电机故障诊断.中南大学学报(自然科学版),2007,38(2):333-338.
    [139]彭文季,郭鹏程,罗兴锜.基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断研究.水力发电学报,2007,26(6):137-142.
    [140]刘立峰,李郁侠,王伟.基于遗传神经网络和证据理论融合的水电机组振动故障诊断研究.水力发电学报,2008,27(5):163-167.
    [141]李郁侠,刘立峰,陈继尧.基于神经网络和证据理论融合的水电机组振动故障诊断研究.西北农林科技大学学报(自然科学版),2005,33(10):115-119.
    [142]安学利,周建中,刘力,等.基于熵权理论和信息融合技术的水电机组振动故障诊断.电力系统自动化,2008,32(20):78-82.
    [143]彭文季,罗兴锜,赵道利.基于频谱法与径向基函数网络的水电机组振动故障诊断.中国电机工程学报,2006,26(9):155-158.
    [144]贾嵘,白亮,罗兴锜.基于神经网络的水轮发电机组振动故障诊断专家系统.水力发电学报,2004,23(6):120-123.
    [145]梁武科,彭文季,罗兴锜,等.水电机组振动故障诊断的人工神经网络选择研究.仪器仪表学报,2006,27(12):1711-1714.
    [146]彭文季,罗兴锜.基于粗糙集和支持向量机的水电机组振动故障诊断.电工技 术学报,2006,21(10):117-122.
    [147]梁武科,赵道利,王荣荣,等.水电机组振动故障的粗糙集-神经网络诊断方 法.西北农林科技大学学报(自然科学版),2007,35(7):223-226.
    [148]王海军,练继建,杨敏,等.混流式水轮机轴向动荷载识别.振动与冲击,2007, 26(4): 123-125.
    [149]李人丰,李小平,钱晓,等.混流式水轮机转轮倒置安装轴向水推力的计算.水 力发电,2001,(5):50-52.
    [150]邱家俊,段文会.水轮发电机转子轴向位移与轴向电磁力.机械强度,2003, 25(3):285-289.
    [151]崔叔存.汽轮机级的结构设计与轴向推力计算.发电设备,2003,(2):45-51.
    [152]蔡国樑.汽轮发电机轴承轴向振动超标的原因与综合治理.节能技术,2004, 22(4): 61-62.
    [153]杨晓明,马震岳,黄军义.导轴承与推力轴承耦合作用下水电机组的横向振动 研究.水力发电学报,2007,26(6):132-136
    [154]姚大坤,邹经湘,胡建文,等.综合治理消除水轮发电机组振动故障.中国电 力,2006,39(10):77-79.
    [155]覃大清,刘光宁,陶星明.混流式水轮机转轮叶片裂纹问题.大电机技术,2005,(4): 39-44.
    [156]张思青,沈东,王晓萍,等.水力机组轴向振动机理分析研究.水利水电科技 进展,2004,24(1):40-43.
    [157]张立翔,何士华.混流式水轮机叶片流激振动机理的数学描述.水动力学研究 与进展:A辑,2004,19(5):585-592.
    [158]王立刚,曹登庆,胡超,等.叶片振动对转子-轴承系统动力学行为的影响.哈 尔滨工程大学学报,2007,28(3):320-324.
    [159]姚泽,黄青松.动平衡方法处理水电机组振动故障实例.水电自动化与大坝监 测,2007,31(1):61-63.
    [160]王千,张恩博.长甸2号水轮发电机组振动原因分析.东北电力技术,2007,(8): 17-19.
    [161]蒋菊平.水轮机和发电机振动及主轴摆动的原因及对策.东方电机,1998,(4): 20-30.
    [162]甘肃省电力工业局合编.水轮发电机组运行技术.北京:中国电力出版社, 1996.
    [163]高建铭,林洪义,杨永萼.水轮机及叶片泵结构.北京:清华大学出版社,1992.
    [164]袁惠群,李东,周硕等.涡摆耦合悬臂双盘碰摩转子的稳定性分析.振动与冲 击,2008,27(7):109-112.
    [165]王海.水轮发电机组状态监测、诊断及综合试验分析系统研究:[博士学位论文].华中科技大学:华中科技大学图书馆,2001.
    [166]董毓新.水轮发电机组振动.大连:大连理工大学出版社,1989.
    [167]彭文季.水电机组振动故障的智能诊断方法研究:[博士学位论文].西安理工大学:西安理工大学图书馆,2007,6.
    [168]邓聚龙.灰色预测与决策.武汉:华中理工大学出版社,1986.
    [169]靳春梅,樊灵,邱阳,等.灰色理论在旋转机械故障诊断与预报中的应用.应用力学学报,2000,17(3):74-79.
    [170]曾德良,崔泽朋,田亮,等.基于灰色关联和D-S组合规则的磨煤机故障诊断.动力工程,2007,27(2):207-210.
    [171]李国良,付强,孙勇,等.基于熵权的灰色关联分析模型及其应用.水资源与水工程学报,2006,17(6):15-18.
    [172]邱菀华.管理决策与应用熵学.北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700