用户名: 密码: 验证码:
多阶模式瑞利波频散特征与反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面波勘探是浅层横波速度结构探测的一项重要无损检测工具,它包括野外数据采集、面波频散数据提取和横波速度反演三个步骤。反演横波速度是面波勘探的最终目的,也是三个步骤中最重要的一步。它包含两部分内容:第一是正演计算,即假定速度模型计算理论频散曲线;第二是最优化算法,即通过迭代寻找与野外数据拟合最好的理论速度模型。三个步骤中每一步处理的精度如何都将影响到最终的反演精度。另外,针对目前面波反演多数是只用基阶模式的频散曲线进行反演,有的甚至仍沿用最初的半波长近似法、拐点法、渐近线法等,这些方法简单、粗糙、主观性强,用到的仅是横波速度Vs与瑞利波速度VR的近似计算关系,并非真正意义上的反演,所以解释结果误差大。而面波频散往往存在多个模式,高阶模式的瑞利波有时携带了关于介质更多的信息,特别是在低速层存在时,高频段能量几乎是高阶模式居于主导地位。因此在反演中应同时考虑基阶模式和高阶模式的频散曲线。本文从多阶模式频散曲线的正演计算及特征分析、瑞利波场有限差分数值模拟、多阶模式频散数据的反演算法及提高反演非唯一性的措施、从野外实际数据中提取多阶模式频散曲线的方法等几个方面进行了深入的探讨、分析和研究。本文的研究是在国家863计划的资助下完成的,是“十五”863计划前沿探索课题(A类)“反射地震面波提取与浅层结构探测技术”(2005AA615010)的延续,属该课题的后续研究。通过本文的研究取得如下研究成果和结论:
     1、实现了Thomson—Haskells算法,并在此基础上对频散函数进行了改进,使其适于海洋模型频散曲线的计算,得到了存在上覆液体表层情况下的多阶模式面波频散曲线。实现了瑞利波场的高阶交错网格有限差分数值模拟,并将模拟单炮记录提取的频散曲线与用频散函数计算的理论频散曲线相对照,探讨分析了瑞利波各模式的实际激发情况。
     2、对存在上覆液体层时的两层、三层以及低速夹层的固体层状介质海洋模型做了波场模拟和频散曲线的计算,分析了当上覆液体表层的厚度变化时多阶模式面波频散曲线特征,并用波场模拟结果对其进行验证。通过与没有液体表层时的完全固体介质模型相对比,研究了存在上覆液体表层时多阶模式面波频散曲线独特的形态特征,进一步引伸出在滩浅海进行地震勘探中应注意的问题。
     3、在多阶模式频散曲线反演方面,对反演参数进行了简化,通过细化分层将反演参数减少为只有一个横波速度变量,验证了细化分层方法用于频散曲线反演的可行性和有效性。与同时反演横波速度和层厚度的常规反演方法相比,细化分层方法避免了反演过程中改变分层数和层厚度等参数,大大简化了反演计算过程。这种方法既满足了反演分辨率的要求,又能使反演结果更接近真实情况。
     4、由于LM(Levenberg-Marquardt)反演方法对初始模型的依赖性较大,选择一个合理的初始模型在反演计算中起着至关重要的作用。本文将1/3(或1/2)波长深度处的横波速度Vs近似看做与瑞利波相速度VR相等,利用基阶模式的瑞利波速度(VR)—频率(f)数据对,通过公式z=Lr/3和LR=VR/f来构造初始模型p0。某一深度处的横波速度可通过三次样条插值获得。按该方法计算的初始值p0基本上在模型的真实值ptrue附近,从而避免了初始值选取的盲目性,大大节约了反演迭代时间,保证了反演程序的快速性和稳定性。
     5、实现了用LM方法和GA(Genetic Algorithm)方法进行基阶模式和多阶模式的反演,通过理论模型验证,得出GA方法的反演效果优于LM方法,但GA方法的缺点是反演耗时太长。鉴于GA方法的这一不足,本文提出了适于高阶模式反演的ULM(updated Levenberg-Marquardt)反演方案,其反演精度与GA方法相当,但反演耗时远低于GA方法。因此,在实际应用中ULM方法既保证了较高的反演精度,又不至于耗时太长,是一种较为理想的反演方法。
     6、在野外数据频散数据提取方面实现了用f-k法、f-p法和相移法提取频散曲线,并对三种方法的提取效果进行了对比分析。对目前的频散曲线提取法方法进行了改进,结合f-p法和相移法的优点提出了f-p、相移叠加法,该方法兼顾了f-p法和相移法的优点,既补充了基阶模式低频段的信息,又保证了高阶模式得到有效分辨。
     7、通过对野外实际数据的处理和二维横波速度剖面的反演并与半波长近似法反演结果进行对比分析。半波长近似法反演只利用了1阶模式的数据,且进行了半波长近似,势必会影响反演精度。另外,由于反演分层需要处理人员有丰富的经验知识,处理结果易受人为因素的影响。而本文的研究由于采用了细化分层,反演过程无需人为控制分层,减少了人为因素的影响,同时可以实现多阶模式频散数据的反演,在一定程度上提高了反演精度。
     总之,本文通过将模拟单炮记录提取的频散曲线与用频散函数计算的理论频散曲线相对照的方法,探讨分析了瑞利波的频散特征及各模式的实际激发情况,深化了人们对于面波频散特征的认识,并且对面波地震勘探、无损检测等方面的实际应用具有重要的理论价值和实际意义。同时,为在滩浅海及湖泊等表层为液体覆盖层的地区进行面波地震勘探和研究提供了一定的研究思路和理论依据。
     论文实现了多阶模式频散数据的提取和反演,并对反演参数进行了细化分层,丰富了面波反演研究的内容,使得在实际应用中真正实现多阶模式频散数据的反演成为可能,弥补了目前仅仅用基阶模式进行面波反演这一不足,提高了反演精度。并编制了相应的处理程序,实际数据处理分析表明反演程序具有一定的经济效益和实用价值。本文的研究属国家863课题“反射地震面波提取与浅层结构探测技术”研究成果的一部分,是该课题所开发软件“反射地震多道瞬态面波分析与正反演软件(SW863 V1.0)”的正演和反演部分。该软件目前已获得国家软件著作权登记(登记号:2008SR09155)。
Surface wave exploration is an important tool to detect the shallow velocity structure of S waves non-destructively, which consists of three main steps:acquisition of surface wave in the field, extraction of dispersion data and, and inversion. To invert S waves velocity is the ultimate objective of surface wave exploration, which is the most important step among the three main steps. The inversion process includes two main algorithms. One is forward modeling, in which the model profile is assumed, and the theoretical dispersion data are derived. The other is optimization algorithm. The second algorithm is an iterative numerical process to search for the theoretical model profile that produces dispersion data that most closely match the field data. The process precision of each step will affect the final inversion accuracy. On the other hand, only the fundamental mode dispersion data are used in most surface wave inversions at present. Even some old methods such as halfwavelength approximation method, inflection point method, asymptote approximation method and so on, are also used now. These simplely and roughly methods include certain subjectivities to be used. They only use the approximate relation between the S-wave velocity and the Rayleigh velocity in inversion, which are not ture inversion indeed and leade to large errors in the inversion results. However, there are several modes in the surface dispersion data. Higher mode dispersion data often possess more information about the media. Especially, when a low velocity interlayer exists in the media, higher mode dispersion data occupy the dominant energies of high frequency segments. So, fundamental mode and higher mode dispersion data should be considered in the inversion. In this dissertation, three aspects contents are studied deeply. The first is the forward modeling of multiple-mode dispersion curves and their characteristics as well as the Rayleigh wave field modeling by staggered-grid finite-difference method. The second is the inversion of multiple-mode dispersion data and some measures to improve the uniqueness of inversion. The third is the methods to extract multiple-mode dispersion curves from field data. This study was supported by the National 863 Foundation Project of China (2005AA615010), and was the follow-up study of the project of'Surface Wave Extraction of Reflection Seismics and Shallow Structure Detecting Technique'. This PhD dissertation obtains such achievements and conclusions as follows:
     1. The conventional Thomson-Haskell fast compution method is achieved successfully. It is also revised to be suitable for ocean models. The multiple-mode dispersion curves of ocean models are calculated and analyzed. And simultaneously, high-order staggered-grid finite-difference scheme is used to calculate the Rayleigh wave field. The dispersion characteristics of Rayleigh waves and how their multiple-mode can be excitated in practice are studied by comparing the theoretical dispersion curves from dispersion function with those extracted from synthetical record.
     2. Dispersion curves are calculated numberically respectively for tow-layers, three-layers and low velocity interlayer models, which are covered with a liquid layer. And their corresponding wave field are simulated at the same time. The characteristics of multiple-mode dispersion curves for models with different thickness of the overlying liquid layer are analysed thoroughly. The results got from dispersion function are also verificated by wave field simulating. The geometric characteristics of the multi-mode dispersion curves are compared to those of that without a liquid surface. And then, some problems which should be taken into consideration when seismic exploration is applied in off-shore areas were pointed out.
     3. In the inversion of multiple-mode dispersion curves, a subdividing layering method to invert the dispersion curves of surface wave is put forward. After subdivision, there remains just only the shear velocity to be inverted in the inversion process. The inversion results obtained from subdividing layering method approach closely to the actual model, which shows that the subdividing layering method is feasible and effective in dispersion curves inversion. Comparing with the conventional inversion method in which the shear velocity and the layer thickness are inverted simultaneously, the subdividing layering method avoids changing the layer numbers and the thickness of each layer, which simplifies the inversion process greatly. This method can not only satisfy the requirement of inversion resolution, but also make the inversion result close to the actual situation.
     4. Because the inversion result of Levenberg-Marquardt method depend on initial model greatly, it is very important to select a rational in the inversion. The S-wave velocity Vs in the depth of 1/3 (or 1/2) times of the Rayleigh wavelength is considered to be equal to the phase velocity VR. An initial model p0 is constructed using the Rayleigh wave velocity (VR) and frequency (f) data pairs from fundamental mode by the formulae of z=LR/3 and LR=vR/f. Cubic spline interpolation is used to calculate S-wave velocity Vs at specified depth. An initial model p0 calculated by this method is close to the true model ptrue, which avoid selecting initial model blindly, save iteration time greatly, and ensure the inversion process running fastly and steadily.
     5. Levenberg-Marquardt (LM) method and Genetic Algorithm (GA) are used in fundamental and multiple-mode inversion. Theoretical model testing proved that GA obtained a better result than LM. But GA is much expensively in time consumption. Considering this disadvantage of GA, this dissertation put forward an updated scheme of Levenberg-Marquardt method (ULM), whose accuracy is comparatively with GA. But the time consumption of ULM is far bellow GA. In practical application, ULM can not only ensure high accuracy for inversion, but also cost small time. So, ULM is an ideal inversion method.
     6. In the aspect of extraction of multiple-mode dispersion curves from field data, f-k method,f-p methods and phase-shift method are used. The extraction result of these three methods are studied and analyzed. This PhD dissertation update the present extracting method of dispersion curves by combining the advantage of f-p method with that of phase-shift method together, and then get a f-p & phase shift-stacking method. This method possesses both the advantage of f-p method and phase shift method, which not only renew the information of fundamental mode, but also remain higher modes to have a good resolution.
     7. The field actual data are processed to obtain dispersion data which are used to invert 2D S-wave profile. And the results are compared with those obtained by half-wavelenth approximation methods in which just one mode of dispersion data is used in the inversion. At the same time, half-wavelength approximation is also used in the inversion. These will certainly affect the accuracy of inversion. On the other hand, the procedure of layering and inversion request abundant experience for the processer. That is to say, the inversion results of half-wavelenth approximation methods are easy to be affected by personal factors. However, this study adopts the subdividing layering method, which need not user to control the inversion. At the same tme, the program can also invert multiple-mode dispersion data. So, it improves the accuracy of inversion in certain degree.
     In a word, this PhD dissertation study the dispersion characteristics of Rayleigh waves and how their multiple-mode can be excitated in practice by comparing the theoretical dispersion curves from dispersion function with those extracted from synthetical record. The study results deepen people's understanding on dispersion characteristics of surface waves. They also have important theoretical and practical value in the aspects of surface wave exploration and non-destructive testing. At the same time, this study may provide some thought and theoretical bases for surface wave exploration in liquid-covered areas.
     The dissertation accomplished the extraction and inversion of multiple-mode dispersion curves, and simplified the inversion parameters into one variable by subdividing layering method. All this studies not only enrich the inversion study of surface wave, but also make it possible to use multiple-mode dispersion data to invert the S-wave velocity in practice.it make up the deficiency of present inversion which only use fundamental dispersion curves, and improve the accuracy of inversion. Corresponding processing programs have been written in this study. The actual data processing results shows that the programs are in possession of great economic benefits and useful value. This study is one part of the National 863 Foundation project of'Surface Wave Extraction of Reflection Seismics and Shallow Structure Detecting Technique'. One production of the project is the software of'Reflection Seismics Multi Channel Analysis of Surface Waves and Forward Modeling and Inversion(SW863 V1.0)', where the forward modeling and inversion parts are the main work of this dissertation. At present, this software has obtain the software copyright registration of China(registration number:2008SR09155).
引文
[1]Steeples, D. W. and Miller, R. D. Avoiding pitfalls in shallow seismic reflection surveys[J]. Geophysics,1998,63(4):1213-1224
    [2]Xia, J., Miller, R. D., Park, C. B., Wightman, E., and Nigbor, R. A pitfall in shallow shear-wave refraction surveying[J]. Journal of Applied Geophysics,1999a,51 (1):1-9
    [3]Stokoe II, K. H., Wright, S. G.., Bay, J. A., and Roesset, J. M. Characterization of geotechnical sites by SASW method[A]. Proceedings of ⅫⅠICSMFE Meeting[C], New Delhi, International Science Publisher, New York,1994,15-24
    [4]Matthews, M. C., Hope, V. S., and Clayton, C. R. I.. The use of surface waves in the determination of ground stiffness profiles [J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering,1996,119(2):84-95
    [5]Park, C. B., Miller, R. D., and Xia, J. Multichannel analysis of surface waves[J]. Geophysics,1999,64(3):800-808
    [6]Xia, J., Miller, R. D., Park, C. B., and Tian, G. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics,2003,52:45-57
    [7]Haskell, M. A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America,1953,43(1):17-34
    [8]Knopoff, L. A matrix method for elastic wave propagation[J]. Bulletin of the Seismological Society of America,1964,54:431-438
    [9]Schwab, F. A., and Knopoff, L. Surface-wave dispersion computations [J]. Methods in Computational Physics,1970,60:431-438
    [10]Schwab, F. A., and Knopoff, L. Fast surface wave and free mode computations[J]. Bulletin of the Seismological Society of America,1972,11:87-180
    [11]Dunkin, J. W. Computation of modal solutions in layered elastic media at high frequencies [J]. Bulletin of the Seismological Society of America,1965,55:335-358
    [12]Watson, T. H. A note on fast computation of Rayleigh wave dispersion in multilayered half-space [J]. Bulletin of the Seismological Society of America,1970,60:161-166
    [13]Abo-Zena A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal of the Royal Astronomical Society,1979,58:91-105
    [14]Tokimatsu, K., and Tamura, S. Discussion:Effect of multiple modes on Rayleigh wave dispersion characteristics[J]. Journal of Geotechnical Engineering,1994,120(2),466-470
    [15]Dobrin, M. H., Dispersion in seismic surface wares[J]. Geophysics,1951,16:63-80
    [16]Gabriels, P., Snieder, R., and Nolet, G, In situ measurement of shear wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophys. Prosp.,1987,35:187-196
    [17]McMechan, G. A., and Yedlin, M. J., Analysis of dispersive waves by wave-field transformation[J]. Geophysics,1981,46:869-874
    [18]Nolet, G, and Panza, G F., Array analysis of seismic surface waves:Limits and possibilities[J]. Pure Appl. Geophysics,1976,114:775-790
    [19]Park, C. B., Miller, R. D., Xia, J. Imaging dispersion curves of surface waves on multi-channel record[J]. SEG Expanded Abstract,1998,1377-1380
    [20]Miller, R., Xia, J., Park, C., Ivanov, J., and Williams. E. Seismic techniques to delineate dissolution features in the upper 1000 ft at a power plant site[A].69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts[C].1999a,492-495
    [21]Miller, R., Xia, J., Park, C., Ivanov, J., and Williams. E. Multi-channel analysis of surface waves to map bedrock[J]. The Leading Edge,1999b,18(12):1392-1396
    [22]李幼铭,束沛镒.层状介质中地震面波频散函数和体波广义反射系数的计算[J].地球物理学报,1982,25(2):130-139.
    [23]牛滨华,何继善.半空间垂向非均匀复杂介质面波频散方程[J].物探与化探,1996,(5):335-344
    [24]张碧星,喻明,熊伟等.层状介质中的声波场及面波研究[J].声学学报,1997,22(3):230-241
    [25]赵东,钟和,谭海平.点源激发瑞雷波的半空间波场[J].物探与化探,1999,23(2):128-132
    [26]卓乐芳.固体—液体层分界面处的PSV型面波[J].西安工程学院学报,1999,21(3):71-73
    [27]凡友华,肖柏勋,刘家琦.计算层状介质中轴对称柱面瑞利面波频散函数的δ矩阵法[J].物探与化探,2001,25(2):109-116
    [28]凡友华,肖柏勋,刘家琦.层状介质中轴对称柱面瑞利面波频散函数的计算[J].地震工程与工程振动,2001,21(3):1-5
    [29]Shuang, X. Zhang., Lung, S. Chan., Jianghai, Xia. Anisotropy induced dispersion behaviors of Rayleigh waves[A], SEG International Exposition and 72nd Annual Meeting[C],2002
    [30]鲁来玉.分层介质半空间瑞利波模式分析和介质参数反演[D].北京:中国科学院声学研究所,2004
    [31]鲁来玉.近地表面波的散射研究[R].北京:中国地震局地球物理研究所,2007.
    [32]杨天春.瑞利波“之”字形频散与道路结构频散曲线的正演研究[D].长沙:中南大学,2004.
    [33]Xu, Y., Xia, J., Miller, R. D. Finite-difference modeling of high frequency Rayleigh waves[A]. Technical Program with Biographies, SEG,75th Annual Meeting, Houston, TX[C].2005,1057-1060.
    [34]Bohlen, T., Saenger, E. H. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves[J]. Geophysics,2006,71(4):T109-T115.
    [35]Xia, J., Nyquist, J. E., Xu, Y, et. al. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction. Journal of Applied Geophysics[J].2007,62(3):244-253.
    [36]周竹生,刘喜亮,熊孝雨.弹性介质中瑞雷面波有限差分法正演模拟[J].地球物理学报,2007,50(2):567-573
    [37]熊章强,张大洲,秦臻,等.瑞雷面波数值模拟中的边界条件及模拟实例分析[J].中南大学学报(自然科学版),2008,39(4):824-830.
    [38]裴江云,吴永刚,刘英杰.近地表低速带反演[J].长春地质学院学报,1994,24(3):317-320.
    [39]石耀霖,金文.面波频散反演地球内部构造的遗传算法[J].地球物理学报,1995,38(2):189-198.
    [40]Yamanaka, H., Ishida, H. Application of genetic algorithms to an inversion of surface wave dispersion data[J]. Bulletin of the Seismological Society of America,1996,86: 436-444.
    [41]肖柏勋.高模式瑞利面波及其正反演研究[D].中南大学,2000
    [42]Xia, J., Miller, R., Park, C., et. al. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,1999b,64(3):691-700.
    [43]Aki, K., and Richards, P. G. Quantitative seismology[M]. W. H. Freeman and Co,1980
    [44]Stoke, K. H., and Nazarian, S. Use of Rayleigh waves in liquefaction studies, in Woods, R. D., Ed., Measurement and use of shear wave velocity for evaluating dynamic soil properties[J]. Am. Soc. Civ. Eng,1985,1-17
    [45]Xia, J., Miller, R., Park, C., et. al. Evaluation of the MASW technique in unconsolidated sediment[A].69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts[C]. 1999c,437-440
    [46]刘江平,侯卫生,许顺芳.相邻道瑞雷波法及在防渗墙强度检测中的应用[J].人民长江,2003,34(2):34-36
    [47]Song, X. H., Gu, H. M., Liu, J. P. Occam's inversion of high-frequency Rayleigh wave dispersion curves for shallow engineering applications [A]. Geophysical Solutions for Environment and Engineering:Proceedings of the 2nd ICEEG, Wuhan, China[C]. Science Press USA Inc.,2006,1:124-130.
    [48]鲁来玉,张碧星,汪承灏.基于瑞利波高阶模式反演的实验研究[J].地球物理学报,2006,49(4):1082-1091
    [49]Dal, Moro, G, Pipan, M., Gabrielli, P. Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation[J]. Journal of Applied Geophysics,2007,61(1):39-55.
    [50]Al-Hunaidi, M. O. Insight of the SASW nondestructive testing method [J]. Can. J. Civ. Eng.1993,24:940-950.
    [51]Yosep, E. S. Improving the uniqueness of shear wave velocity profiles derived from the inversion of multiple-mode surface wave dispersion data[D]. Kentucky University,2006.
    [52]朱介寿等编著.地震学中的计算方法[M].北京:地震出版社,1988
    [53]Richart, D. W. Screening of surface waves in soils[D]. Michigan University,1968.
    [54]王春燕.高阶交错网格有限差分地震波场计算[D].成都:成都理工大学,2007.
    [55]Madariaga, R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America,1976,66(3):639-666.
    [56]黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟[J].地球物理学报,2009,52(1):176-186.
    [57]Berenger, J. P. A perfectly matched layer for the absorption of electromagnetic waves[J]. J. Comput. Phys.,1994,114:185-200.
    [58]Collino, F., Tsogka, C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics,2001, 66:294-307.
    [59]张碧星,鲁来玉.层状半空间中导波的传播[J].声学学报,2002,27(4):295-304.
    [60]凡友华.考虑高阶模的Rayleigh波勘探应用研究[R].北京大学博士后研究工作报告,2003
    [61]陈蔚天,陈晓非.水平层状海洋—地球模型中地震面波振型解[J].中国科学(D辑),2001,31(9):712-718
    [62]邵广周,李庆春,梁志强.液体表层层状介质导波频散曲线研究[J].地球物理学报,2007,50(2):915-920
    [63]杜世通.地震波动力学[M].北京:石油大学出版社,1996
    [64]Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M. Engineering optimization:Methods and applications[M]John Wiley & Sons, New York,1983
    [65]Chong, E. K. P. and Zak, S. H.. An introduction to optimization[M]. John Wiley & Sons, New York,2001
    [66]Park, C. B., Miller, R. D., Miura, H. Optimum field parameters of an MASW survey. http://www.terraip.co.ip/OptimumFieldParametersMASWPark.pdf,2002
    [67]张碧星,兰从庆,喻明,等.分层介质中面波的能量分布[J].声学学报,1998,23(2):97-106
    [68]杨学林,吴世明.考虑高阶模态时SASW法的反演[J].浙江大学学报,1996,30(2):149-156
    [69]Park, C. B., Miller, R. D., Xia, J. Higher mode observation by the MASW method[J]. SEG Expanded Abstract,1999,524-527.
    [70]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1999
    [71]石琳珂,孙铭心,王广国等.地球物理遗传反演方法[M].北京:地震出版社,1999
    [72]Stoffa, P. L., Sen, M. K. Nonlinear multiparameter optimization using genetic algorithms Inversion of plane-wave seismograms[J]. Geophysics,1991,6(11):1794-1810
    [73]Sen, M. K., Stoffa, P. L. Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion[J]. Geophys J. Int,1992,108:281-292
    [74]赵东,王光杰,王兴泰等.用遗传算法进行瑞雷波反演[J].物探与化探,1995,19(3):178-185
    [75]张碧星,肖柏勋,杨文杰等.瑞雷波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567
    [76]杨成林.瑞雷波勘探[M].北京:地质出版社,1993
    [77]朱光明,李庆春,胡建平.数字信号分析与处理[M].西安:陕西人民教育出版社,2003
    [78]刘康和.面波探测新技术综述[J].电力勘测,1997,14:1-2
    [79]张碧星,鲁来玉,鲍光淑.瑞雷波勘探中“之”字型频散曲线研究[J].地球物理学报,2002,45(2):263-273
    [80]张碧星,喻明,熊伟等.多层介质地层中有低速层出现时的陷模研究[J].中国有色金属学报,1998,8(2):340-346
    [81]杨天春,何继善,吕绍林等.三层层状介质中瑞雷波的频散曲线特征[J].物探与化探,2004,28(1):41-45
    [82]杨天春,何继善,吕绍林等.三层层状介质中的多导波模式及其频散和位移特征[J].物探化探计算技术,2004,26(1):20-26
    [83]杨天春,易伟建,何继善等.瑞雷波勘探中频散曲线的正演计算[J].工程地球物理,2004,1(6):469-473
    [84]陈祥,孙进忠,刘景儒.瑞雷波“之”字型速度—深度曲线的成因[J].地球物理学进展,2004,19(4):860-863
    [85]肖柏勋,刘明贵,肖文治.一种新型的工程岩体探测震源—超磁致伸缩声波发射器[J].地学前缘,1996,3(1-2):198-202.
    [86]肖柏勋,凡友华,刘家琦.我国瑞利面波勘探方法研究现状分析[J].工程地球物理学进展,2000,(7):17-24
    [87]牛滨华,何继善.半空间非水平层状介质瑞利面波的频散方程[J].物探与化探,1996,(5):345-350
    [88]牛滨华,何继善.半空间准二维双向非均匀介质面波频散方程(摘要)[J].中南矿冶学院学报,1994,25(A05):25-28
    [89]牛滨华,何继善.半空间多层各向异性介质的面波频散方程[J].中南工业大学学报,1995,26(2):162-166
    [90]祁生文,孙进忠,何华.瑞雷波勘探的研究现状及展望[J].地球物理学进展,2002,17(4):630-635
    [91]王兴泰,赵东.瑞雷波勘探:应用、现状和问题[J].世界地质,1995,14(2):87-90.
    [92]刘康和.面波勘探新技术综述[J].电力勘测,1997,14(2):61-64.
    [93]李庆春,邵广周,刘金兰等.瑞利面波勘探的过去,现在和未来[J].地球科学与环境学报,2006,28(3):74-77
    [94]刘云祯,王振东.瞬态面波法的数据采集处理及其应用实例[J].物探与化探,1996,20(1):2-3
    [95]孙党生,李国占等.基于时频分析的瑞雷波相速度提取及其应用[J].勘察科学技术,2003,(3):58-60
    [96]华伟砚,孙宝喜,徐妍.瞬态面波法的技术和应用[J].黑龙江水利科技,2002,(4):106-107.
    [97]刘康和,魏树满.瞬态面波勘探及应用[J].水利水电工程设计,2001,20(2):31-33
    [98]马恒,葛少成等.瞬态瑞雷波勘探及其相速度求法的探讨[J].煤炭科学技术,2000,28(7):46-49
    [99]徐贵来.地震瑞利面波测深应注意的问题[J].铀矿地质,2003,19(1):42-47.
    [100]辛小春.面波新技术在工程地质勘察场地评价中的应用[J].工程技术,2003,(1):25-26
    [101]宋先海.瑞雷波频散曲线的正反演研究[D].中国地质大学硕士学位论文,2001.
    [102]郑月军,黄忠贤,刘福田等.中国东部海域地壳-上地幔瑞雷波速度结构研究[J].地球物理学报,2000,43(4):480-488
    [103]曹小林,洪学海,曹俊兴.面波波形反演中的模拟退火法[J].成都理工学院学报,2000,27(3):296-301
    [104]戚敬华,李萍.利用τ-p变换技术实现多波波场分离[J].煤田地质与勘探,1998,26(5):54-57
    [105]李庆春,邵广周,李斌.弹性波数值模拟的混合边界与频散抑制[J].煤田地质与勘探,2005,33(4):73-77.
    [106]李红谊,刘福田,孙若昧等.中国大陆东部及海域地壳-上地幔结构研究[J].地震学报,2001,23(5):471-479
    [107]胥颐,刘福田,刘建华等.中国大陆西北造山带及其毗邻盆地的地震层析成像[J].中国科学,2000,30(2):113-123
    [108]Michael, Roth., Klaus, Holliger.用遗传算法联合反演高分辨率数据里的面波和导波[J].国外油气勘探,1999,11:752
    [109]曾校丰,钱荣毅,邓新生,等.油气反射波地震勘探记录中面波信息的提取[J].物探与化探,2001,25(6):443-446
    [110]胡龙胜,王家林,吴健生.遗传算法在地球物理中的应用进展[J].地球物理学进展,2002,17(4):598-604.
    [111]陈淑诊,刘怀林.基于τ-p变换的频散曲线及其算法实现[J].武汉大学学报,2000,46(1):123-126
    [112]Bixing Zhang, M. Yu, C.Q. Lan et al. Elastic Wave and excitation mechanism of surface waves in multilayered media[J]. J. Acoust. Soc. Am.,1996,100(6):3527-3538.
    [113]Xiaofei Chen. A Systematic And Efficient Method Of Computing Normal Modes For Multilayered Half-Space [J]. Geophysical Journal(1993) Novermber Vol.115:2.
    [114]Xiaofei Chen. Seismogram Synthesis in Multilayered Half-Space[J]. Earthquake Research in China,1999,13(2).
    [115]Jianghai Xia, Richard, D. Miller and Choon, B.Park. Advantages of calculating shear-wave velocity from surface waves with higher modes[J]. SEG 2002 Expanded Abstracts.
    [116]Park, C. B., Miller, R. D., Xia, J. Multi-channel analysis of surface waves using Vibroseis (MASW V) [J]. SEG Expanded Abstract,1996,68-71
    [117]Park, C. B., Miller, R. D., Xia, J. Imaging dispersion curves of surface waves on multi-channel record[J]. SEG Expanded Abstract,1998,1377-1380.
    [118]Xia, J. H., Miller, R. D., Park, C. B., Hunter, J. A., et al. Comparing shear-wave velocity profiles inverted from multi-channel surface wave with borehole measurements [J]. Soil Dynamics and Earthquake Engineering,2002,22:181-190.
    [119]Xia, J. H., Miller, R. D., Park, C. B., Tian, G Determining Q of near-surface materials from Rayleigh waves[J]. J. of Applied Geophysics,2002,51:121-129.
    [120]G. T, Schuster, J. Yu, Sheng and J. Richett. Interferometric/daylight seismic imaging[J]. Geophys J.Int.,2004,157:838-852.
    [121]Kristen, B. Determination of near-surface variability using Rayleigh waves[D]. University of Alberta,2000
    [122]M. Catalina Orozco. Inversion method for spectral analysis of surface waves(SASW)[D]. Georgia Institute of Technology,2003
    [123]Kauffman, R. D., Xia, J., Benson, R. C., et. al. Evaluation of MASW data acquired with a hydrophone streamer in a shallow marine environment[J]. Journal of Environmental and Engineering GeoPhysics,2005,10:87-98
    [124]Lai, C. G. and Rix, G. J. Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization[D]. Georgia Institate of Technology, 1998
    [125]Lin, C. P. Assessment of soil liquefaction potential using MASW method[A]. Progress in Environmental and Engineering Geophysics:Proceedings of the International Conference on Environmental and Engineering Geophysics[C]. ICEG 2004,197-203
    [126]Thitimakom, T., Anderson, N. L., Stephenson, R., et. al.,2-D shear-wave velocity profile along test segment of interstate 1-70, St. Louis, Missouri[J]. Geotechnical Special Publication, n130-142, Geo-Frontiers 2005,2159-2167
    [127]Yuan, D. and Nazarian, S. Automated surface wave method:Inversion technique[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,119(7),1112-1126
    [128]梁志强.层状介质中多阶模式面波频散曲线研究[D].长安大学硕士学位论文,2006
    [129]崔建文.一种改进的全局优化算法及其在面波频散曲线反演中的应用.地球物理学报,2004,47(3):521-527
    [130]何世聪.瑞雷波频散曲线提取方法的研究[D].中国地质大学(北京)硕士学位论文,2005
    [131]刘明贵.瞬态与稳态瑞利波法频散曲线等价性研究[J].岩土力学,2003,24(4):500-504
    [132]吴律.τ-p变换及应用[M].北京:石油工业出版社,1993
    [133]何耀锋,陈蔚天,陈晓非.利用广义反射—透射系数方法求解含低速层水平层状 介质模型中面波频散曲线问题[J].地球物理学报,2006,49(4):1074-1081
    [134]李晶.面波在地震波场中的特性及其应用研究[D].成都理工大学,2006
    [135]姚姚.地球物理反演基本理论与应用方法[M].中国地质大学出版社,2002
    [136]王家映.地球物理反演理论[M].高等教育出版社,2002
    [137]杨文采.地球物理反演的理论和方法[M].地质出版社,1997
    [138]Turesson, A. A comparison of methods for the analysis of compressional, shear, and surface wave seismic data, and determination of the shear modulus [J]. Journal of Applied Geophysics,2007,61:83-91
    [139]Xia, J., Xu, Y, Miller, R. D., et. al. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh wave phase velocity [J]. Surveys in Geophysics, 2006,27(1):1-17
    [140]Xu, C., Butt, S. D. Evaluation of MASW techniques to image steeply dipping cavities in laterally inhomogeneous terrain[J]. Journal of Applied Geophysics,2006,59:106-116
    [141]Song, X. H., Gu, H. M. Utilization of multimode surface wave dispersion for characterizing roadbed structure[J]. Journal of Applied Geophysics,2007,63(2):59-67
    [142]Tokeshi, J. C., Karkee, M. B., Sugimura, Y. Reliability of Rayleigh wave dispersion curve obtained from f-k spectral analysis of microtremor array measurement[J]. Soil Dynamics and Earthquake Engineering,2006,26:163-174
    [143]Xia, J., Xu, Y, Miller, R. D. Generating image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics,2007,164(5): 941-956
    [144]Luo, Y. H., Xu, Y X., and Liu, Q. S. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform[J]. The Leading Edge,2008, 27(11):1536-1542
    [145]Calderon-Macias, C., Luke, B. Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions [J]. Geophysics,2007,72(1):U1-U10.
    [146]Richa, C. A., Brian, B., and Clifford, H. T. Parameter estimation and inverse problems[M]. Elsevier Academic Press,2005
    [147]Claudio, S., and Giorgio, C. Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content[J]. Geophysics,2007,72(4):J17-J29
    [148]Peter, G, Karim, G. S., Philippe, R., et. al. Green's functions extraction and surface-wave tomography from microseisms in southern California[J]. Geophysics,2006, 71(4):S123-S131
    [149]Pei, D. H., John, N. L., and Satish, K. P. Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves[J]. Geophysics, 2007,72(5):R77-R85
    [150]David, H., and Andrew, C. Seismic surface waves in a suburban environment:Active and passive interferometric methods[J]. The Leading Edge,2008,27(2):210-218
    [151]Boriszlav, N. Stacking of surface waves[J]. Geophysics,2007,72(2):V51-V58
    [152]Park, C. B., Miller, R. D., Xia, J., et. al. Underwater MASW to evaluate stiffness of water-bottom sediments[J]. The Leading Edge,2005,24(7):724-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700