用户名: 密码: 验证码:
带式输送机绿色设计关键技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带式输送机是当今世界最重要的散状物料运输设备,被广泛应用于煤矿、电力、港口、化工、环保、物流等行业。由于传统设计方法的限制,带式输送机存在着能源资源耗费量大、安全系数取值高、整机造价成本高、技术含量低、噪声粉尘污染等问题。本文将绿色设计技术应用于带式输送机设计领域,以环境保护为设计理念,综合考虑带式输送机产品的环境属性、资源属性、能源属性以及经济性,对带式输送机动态设计技术、虚拟样机技术以及可拆卸设计等绿色设计关键技术进行研究,对节约产品成本,降低能耗,提高产品可维护性及可靠性,减少环境污染有着重要的意义。主要研究内容和特色如下:
     1.带式输送机的动态特性取决于输送带的性质,在考虑输送带内部摩擦效应的前提下,以BERG模型为基础,提出了一种包含内部摩擦的输送带力学模型,给出了模型内部参数的确定方法,建立了计算机模型,并对其进行仿真和试验验证;利用离散单元法,推导出了基于包含内摩擦输送带力学模型的带式输送机系统动力学方程,其动态仿真结果与启动工况相一致,表明了包含内摩擦的输送带力学模型的正确性及动态设计方法的有效性。
     2.利用功率键合图方法推导出了带式输送机液压自动拉紧装置的数学模型;并以此为理论基础,采用多领域统一建模方法,建立了液压自动拉紧装置虚拟样机;进而对拉紧装置稳定性和快速性的相关因素进行了仿真研究。研究结果表明,带式输送机液压拉紧装置虚拟样机还原了物理样机的功能性,可以方便地取代昂贵的物理样机进行试验。通过改变虚拟样机的相关参数,能够对不同设计方案进行性能测试,从而完成液压拉紧装置的系统优化,达到节约能源材料,降低设计成本,提高系统稳定性和可靠性的目的。
     3.零件的可拆卸性决定了带式输送机在使用过程中的可维护性,以及系统报废后的零件重用性和材料回收性,是带式输送机绿色设计中重要的一环。以带式输送机关键部件滚筒作为研究对象进行可拆卸设计研究,针对现阶段普通整体式滚筒的缺点,提出一种可拆卸式滚筒结构,对其进行可拆卸性及工作性能评价分析,结果表明可拆卸式滚筒不仅具有良好的可拆卸性,同时还具备可靠的工作性能。
     4.以带式输送机绿色设计关键技术为基础,提出了带式输送机绿色设计方法的基本步骤,并对一带式输送机设计方案进行绿色设计开发实例研究,经过方案选型,系统动态分析,零部件虚拟设计,可拆卸设计等环节,得到改进的带式输送机绿色设计方案;绿色设计方案比原方案节约成本约8.51%;应用多层次模糊评价方法对设计方案进行绿色评价,结果表明带式输送机绿色设计方案比原方案具有更好的绿色环保性。
Belt conveyor, the most important equipment for bulk material transportation, is widely used in coal mines, power plants, ports, chemical plants, environmental plants, warehouses and other areas. Because of the limitation of traditional design method, belt conveyor has some problems, such as large consumption of energy resources, high safety factor, high cost, low-tech, serious environmental pollution, noise and vibration. The green design technology was applied to belt conveyor in this paper, with its environmental protection concept. Considering belt conveyor's attributes of environment resources, property and energy, the key technologies of belt conveyor green design, which consists of dynamic design, disassembly design and virtual design, were studied to save the cost, reduce the energy consumption, improve the reliability, alleviate environmental pollution in the conveyor's design, manufacture and use process。The main research content and the characteristics are as follows.
     1. The belt conveyer's dynamic characteristic is decided by conveyor belt's nature. Considering the conveyor belt's internal friction effect, a belt model with internal frictional element was proposed on the basis of the BERG model. And its computer model and simulation result were given, then validated by the experiment. Using discrete elements method, the system dynamic formula based on the belt model with internal friction was built and simulated. The result of dynamic simulation was consistent with the start work condition, what proved the correctness of the belt dynamic model and the feasibility of dynamic design for belt conveyor.
     2. The virtual prototyping of hydraulic automatic take-up device of belt conveyor was built on the theoretical basis of mathematical model that deduced by the power bond graph method. Then the virtual prototyping simulation study on take-up system's stability and rapidity was finished. The research indicated that the virtual prototyping of hydraulic automatic take-up device which had the same functionality as the physical prototype can substitute for the expensive prototype to carry on the experiment conveniently. And the different design proposals were tested to optimize hydraulic automatic take-up device by changing related parameters by changing the relevant parameters to save the energy material, reduce the design cost, enhance the system stability and the reliability.
     3. The parts' disassembly determines the belt conveyor's maintainability in use process, reusability and recyclability after abandonment, which is the important part in the green design process. The drum, the key components of belt conveyor, was studied for disassembly design. In view of the ordinary integral drum's shortcomings at the present stage, a new detachable drum was proposed in this paper. And the results of its disassembling and performance evaluation show its good disassembly and reliability.
     4. Integrated the above key technologies, the basic steps of the belt conveyor green design was proposed, and a belt conveyor design was studied as an example in this paper. After the type-selection design, system dynamic analysis, parts of the virtual design, and disassembly design, the improved design proposal had saved the total cost approximately8.51%. The fuzzy analytic hierarchy process was applied to its green evaluation. As a conclusion, the green design of belt conveyor had a better environmental green degree than the original.
引文
[1]方明烨.矿山机械的绿色技术及应用[J].矿山机械,2002,(6):7-8.
    [2]D.Bartlett, A.Trifilova. Green technology and eco-innovation:Seven case-studies from a Russian manufacturing context[J]. Journal of Manufacturing Technology Management, 2010, 21(8):910-929.
    [3]刘志峰,刘光复.绿色设计[M].北京:机械工业出版社,1999.
    [4]Myer Kutz. Environmentally Consicous Mechanical Design[M]. New York: John Wiley, 2007.
    [5]P.Goggin. An appraisal of eco-labelling from a design perpective[J]. Design Studies, 1994, 15(2):459-477.
    [6]Lisa Argument, Fiona Lettice, Tracy Bhamra. Environmentally conscious design: matching industry requirements with academic research[J]. Design Studies, 1998,(19):63-80.
    [7]刘光复,刘志峰.绿色设计与绿色制造[M].北京:机械工业出版社,1999.
    [8]Myer Kutz环境意识机械设计[M].北京:人民邮电出版社,2010.
    [9]李一凤.绿色设计与制造技术的应用及发展趋势[J].装备制造,2010,(4):132-205.
    [10]U.M.Diwekar, Y.N.Shastri. Green process design, green energy, and sustainability: A systems analysis perspective[J]. Computers and Chemical Engineering, 2010, 34(9):1348-1355.
    [11]D.H.Matthews, T.R.Hawkins, Troy R, et al. The green design apprenticeship how an outreach program strengthens graduate research[J]. Journal of Industrial Ecology, 2009, 13(3):467-476.
    [12]Tulacz, J.Gary Top green design firms[J].Engineering News-Record, 2009, 263(1):6-8.
    [13]K.Kernstine, B.Boling, L.Bortner,.Designing for a green future: A unified aircraft design methodology[J].Journal of Aircraft,2010,47(5):1789-1797.
    [14]A.M.Deif. A system model for green manufacturing[J]. Journal of Cleaner Production, 2011,19(4):1553-1559.
    [15]Ge Plastics Awards. http://www.thefreelibrary.com/[EB/OL].2009-10-16
    [16]The Mazda Hr-X2 Hydrogen Concept.http://www.transeum.com/museums/the-mazda-hr-x2-hydrogen-concept.html[EB/OL].2009-12-10
    [17]日本节能在点点滴滴http://www.people.com.cn/GB/paper53/12634/1135252.Html[EB /OL].2010-3-6
    [18]Nokia. http://www.nokia.com.cn/find-products/happenings/nokiagreenbox[EB/OL].2010-6-8
    [19]Siemens. http://www.siemens.com/entry/cc/en/[EB/OL].2010-6-9
    [20]Bosch. http://www.bosch.com/content/language2/html/index.htm[EB/OL].2010-6-10
    [21]Carnegie Mellon University. http://www.ce.cmu.edu/GreenDesign/about/index.html [EB/OL].2010-6-5
    [22]Vargas Hernandez, Okudan Kremer, Schmidt L.C.et al. Development of an expert system to aid engineers in the selection of design for environment methods and tools[J]. Expert systems with applications, 2012, 39(10):9543-9553.
    [23]Low Bihong, Kishita Yusuke, Fukushige Shinichi, et al. Proposal of a methodology for constructing weighted checklist targeting environmentally conscious design[J]. Journal of the Japan society for precision engineering, 2010, 76(11):1288-1292.
    [24]Tomohiko, Sakao. Quality engineering for early stage of environmentally conscious design[J]. TQM Journal, 2009, 21(2):182-193.
    [25]Qian Xueqing, Zhang Hong Chao. Design for environment: An environmentally conscious analysis model for modular design[J]. IEEE Transactions on electronics packaging manufacturing, 2009, 32(3):164-175.
    [26]Eguia Ignacio, Lozano Sebastian, Racero Jesus. A methodological approach for designing and sequencing product families in Reconfigurable Disassembly Systems[J]. Journal of industrial engineering and management, 2011,4(3):418-435.
    [27]Nakamura Shinichiro, Yamasue Eiji. Hybrid LCA of a design for disassembly technology: Active disassembling fasteners of hydrogen storage alloys for home appliances[J]. Environmental science and technology,2010,44(12):4402-4408.
    [28]刘志峰,成焕波,李新宇等.基于电热激发的主动拆卸产品设计方法及其设计准则研究[J].中国机械工程,2011,22(19):2359-2364.
    [29]刘志峰,李新宇,赵流现等.SMP主动拆卸结构激发效果影响因素的试验研究[J].中国机械工程,2010,21(18):2243-2246.
    [30]刘志峰,李新宇,张洪潮.基于形状记忆高分了材料的产品主动拆卸设计方法研究[J].中国机械工程,2010,21(14):1683-1686.
    [31]刘志峰,胡迪,高洋等.基于贪婪算法的产品拆卸序列规划[J].中国机械工程,2011,(18):2162-2166.
    [32]刘志峰,蒋云,高洋.面向洗碗机产品的节能设计方法研究[J].合肥工业大学学报 (自然科学版),2011,34(9):1281-1285.
    [33]刘光复,孔祥明,刘志峰等.可拓评价在线路板回收方法综合性能比较中的应用[J].合肥工业大学学报(自然科学版),2008,31(1):121-125.
    [34]丁勇,孙有朝.基于规则的递归选择性拆卸序列规划方法[J].飞机设计,2011,(6):61-66.
    [35]张婧,汪文津,郑清春等.面向机电产品的拆卸分析系统研究[J].机床与液压,2011,(19):94-100.
    [36]杜翼龙.谈家具模块化拆卸设计[J].现代装饰(理论),2011,(6):6-7.
    [37]李林,谢振华,杨霄等.基于干涉矩阵的拆卸序列规划算法研究[J].舰船电子工程,2011,(7):149-150.
    [38]米小珍,甄晓阳,周韶泽.虚拟装配中拆卸序列规划算法的研究与实现[J].中国机械工程,2011,22(13):1576-1579.
    [39]邓明星,唐秋华,严运兵.面向拆卸的快速几何可行性判断方法研究[J].机械设计与研究,2011,(1):66-68.
    [40]张玲,王正肖,潘晓弘等.绿色设计中产品拆卸序列生成与评价[J].农业机械学报,2010,(12):199-204.
    [41]张林鍹,祝逸,高青风等.基于仿真试拆卸的夹具自动装配规划研究[J].系统仿真学报,2010,(11):2627-2630.
    [42]Chih-Hsing Chu, Yuan-Ping Luh, Tze-Chang Li,et al. Economical green product design based on simplified computer-aided product structure variation[J]. Computer in industry, 2009, 60:485-500.
    [43]刘志峰,夏链,刘光复.面向拆卸的产品回收设计方法研究[J].合肥工业大学学报,1997,5:7-12.
    [44]王春江,周鹏.绿色机械产品加工及回收设计[J].科技风,2011,(1):51.
    [45]钱松荣.机械产品生命周期的多目标优化设计方法[J].机械设计与制造,2010,(9):149-151.
    [46]孙兆刚,褚义景.基于全生命周期的汽车节能减排设计分析[J].武汉理工大学学报,2010,(4):141-144.
    [47]金美灵,楚纪正,郭英玲等.工程机械生命周期评价系统的设计和开发[J].机电产品开发与创新,2009,(6):74-76.
    [48]陈鹏,刘志峰,刘光复.产品全生命周期节能设计关键技术分析[J].农业机械学报,2008,(11):113-116.
    [49]张志伟.模糊多属性决策方法在绿色材料选择中的应用[J].现代制造工程,2011,(12):35-39.
    [50]安晓宁.绿色设计的机械产品材料选择相关问题探讨[J].机械研究与应用,2011,(4):129-130.
    [51]欧阳波仪,刘海渔.基于绿色制造的齿轮材料选择方法研究[J].机械研究与应用,2010,(5):19-22.
    [52]刘金林,曾凡明,吴家明等.舰船动力装置虚拟设计与仿真系统的研究与开发[J].武汉理工大学学报(交通科学与工程版),2009,33(1):149-152.
    [53]翟江,周华.海水淡化轴向柱塞泵的虚拟样机技术研究[J].华中科技大学学报(自然科学版),2012,40(3):108-112.
    [54]岳双杰,范秀敏,马彦军等.圆锥破碎机虚拟样机参数化建模与仿真分析[J].中国机械工程,2011,22(22):2712-2716.
    [55]张雷,郭卫,刘志峰.模块化设计中相似性评价的应用[J].合肥工业大学学报(自然科学版),2011,34(1):13-17.
    [56]王玲,殷国富,徐雷.机床夹具可重构模块化设计方法研究[J].四川大学学报(工程科学版),2010,42(3):246-252.
    [57]肖艳秋,薛庆,王爱民等.基于协同优化的动态模块化设计方法研究[J].北京理工大学学报,2008,28(12):1060-1064.
    [58]李瑞涛.面向并行工程的虚拟样机设计方法研究[J].微型机与应用,2011,30(21):72-74.
    [59]吴淑芳,王乔,黄飞等.基于并行工程的桥式起重机参数化设计研究[J].制造业自动化,2011,33(16):110-113.
    [60]尹国强,工世杰.基于并行工程的机电伺服系统概念设计方法[J].机械工程与自动化,2011,(3):208-210.
    [61]刘春,薛皓,陈铮.基于NX主模型的模具并行设计在PDM中的实现[J].信息与电子工程,2011,9(6):782-785.
    [62]陈敏,汤晓安,戴金海等.基于PDM Enablers的飞行器并行设计文档管理扩展模型研究[J].系统仿真学报,2008,20(13):3463-3476.
    [63]K.Masui, T.Sakao. Applying quality function deployment to environmentally conscious design[J]. The international journal of quality & reliability management, 2003,20(1):90-106.
    [64]J.G.Bralla. Design for manufacturability handbook[M]. New York: McGraw-Hill, 1999.
    [65]F.Beichelt. A generalized block-replacement policy[J]. IEEE Transactions on reliability, 1981,(30):171-172.
    [66]K.Otto, K.Wood. Product design:techniques in reverse engineering and new product design[M]. NJ: Prentice Hall,2001.
    [67]张雷,刘光复.面向绿色设计的产品优化配置方法[J].农业机械学报,2008,39(9):122-128.
    [68]何庆,成小英.绿色维修的关键技术[J].煤矿机电,2006,(2):27-32.
    [69]何庆.煤矿机械绿色维修的研究[J].煤炭学报,2003,(2):2]4-218.
    [70]何庆,朱涛.虚拟维修及其在矿山设备中的应用[J].金属矿山,2006,(11):84-85.
    [71]代应,蒋长兵.汽车逆向物流系统绿色度评价研究[J].计算机工程与应用,2009,(35):220-229.
    [72]程黎.绿色制造中机床设备选择的模糊评价[J].机械应用与研究,2009,(6):40-49.
    [73]李碧英.绿色船舶及其评价指标体系研究[J].中国造船,2008,(10):27-35.
    [74]陈明,李艳娟.机械产品设计方案绿色度的评价研究[J].辽宁工学院学报,2005,(1):60-62.
    [75]吴翰林.机电产品“绿色度”的测度方法研究[J].武汉理工大学学报,2009,(9):80-83.
    [76]王永靖,刘飞.汽车制造企业绿色制造模式评价研究[J].中国机械工程,2008,(24):2934-2943.
    [77]应保胜,易建钢.绿色产品的设计评价方法研究[J].机床与液压,2004,(3):39-41.
    [78]陈建,赵燕伟.基于转换桥方法的产品绿色设计冲突消解[J].机械工程学报,2010,(9):132-141.
    [79]孙付春,吴斌.机械CAD软件中的绿色设计理念的研究[J].制造技术与机床,2009,(12):29-30.
    [80]王丽,刘训涛.矿山运输与提升设备[M].哈尔滨:哈尔滨地图出版社,2006.
    [81]陈维健,齐秀丽.矿山运输与提升设备[M].徐州:中国矿业大学业出版社,2007.
    [82]李光布.带式输送机动力学及设计[M].北京:机械工业出版社,1998.
    [83]孙可文.带式输送机的传动理论与设计计算[M].北京:煤炭工业出版社,1991.
    [84]蒋卫良,韩东劲.我国煤矿带式输送机现状与发展趋势[J].煤矿机电,2008,(1):1-7.
    [85]C. Vorwerk, F. Krause, M. Dilefeld. Simulation and animation of belt conveyor transfers with continuum Methods[R]. MAN TAKRAF Co., Inc,2010.
    [86]E.Hell. Conveyor belt cleaning - Basic methods, integration and economy[J]. Bulk Solids Handling, 2011,31(2):90-93.
    [87]R.Wirtz. Noise emission from belt conveyor systems and stockyard equipment for handling bulk materials - Preliminary calculations and noise reduction measures[J]. Cement International,2011,9(4):42-57.
    [88]N.Becker. Belt conveyor drive control how to ensure sustainabliliy and energy efficiency[J]. Bulk Solids Handling, 2011,31(2):96-97.
    [89]E.A. Viren, Mark A. Alspaugh. Increasing belt conveyor Reliability through virtual prototyping[R]. Overland Conveyor Co., Inc.,2010.
    [90]Amos Ullmann, Abraham Dayan. Exhaust volume model for dust emission control of belt conveyor[J]. Powder Technology, 1998,(96):139-147.
    [91]Krystyna Czaplicka. Eco-design of non-metallic layer composites with respect to conveyor belts[J].Materials and Design, 2003,(24):111-120.
    [92]S.K. Chaulya, M.K.Chakraborty, R. S. Singh. Air Pollution Modelling for a Proposed Limestone Quarry[J]. Water Air & Soil Pollution,2001,(126):171-191.
    [93]李光布,李儒琼.基于几何非线性大型带式输送机动力学仿真[J].中国机械工程,2007,(1):23-26.
    [94]李永华,毛君.带式输送机动态设计的自动建模与仿真[J].重庆工学院学报,2003,17(2):1-5.
    [95]侯友大.带式输送机动态特性及控制策略研究[D].徐州:中国矿业大学,2001.
    [96]宋伟刚,邓永胜.带式输送机动力学及其计算机仿真研究[J].机械工程学报,2003,23(9):133-138.
    [97]李玉瑾.带式输送机的动态特性分析与软起动设计[J].煤炭学报,2002,27(3):294-299.
    [98]张媛,包继华.带式输送机动态分析连续模型[J].山东矿业学院学报,1999,18(1):35-39.
    [99]张媛,周满山.带式输送机动态分析连续模型振动解法及计算机仿真[J].力学与实践,1999,21(4):42-46.
    [100]马云东,贾艳惠.带式输送机输煤系统转载点粉尘控制技术研究[M].北京:煤炭工业出版社,2008.
    [101]许志洋.基于虚拟样机的带式输送机的设计研究[D].淮南:安徽理工大学,2007.
    [102]尚欣.基于虚拟样机的带式输送机动态特性研究[D].西安:西安科技大学,2004.
    [103]Functionbay. http://www.functionbay.com.cn/[EB/OL].2010-7-13
    [104]Kun Hu, Yong-Cun Guo. Virtual prototyping of belt conveyor based on Recurdyn[J]. Applied Mechanics and Materials, 2009, 16(19):776-780.
    [105]Kun Hu, Yong-Cun Guo, Peng-Yu Wang. Simulation methods for conveyor belt based on virtual prototyping[C]. MACE2010. Wuhan China, 2010.
    [106]郭瑞峰,杨振乾.长距离大型带式输送机动态多目标模糊优化设计[J].辽宁工程技术大学学报,2003,22(3):1-4.
    [107]陈永衡,张雪雁.带式输送机动态特性优化设计与计算机仿真[J].金属矿山,2007,28(8):403-404.
    [108]黄松元,郝维新.输送带粘弹力学特性的研究[J].连续输送技术,1991,(1):8-18.
    [109]Lodewijks G. Two decades dynamics of belt conveyor systems[J]. Bulk Solids Handing, 2002,22(2):124-132.
    [110]T.W. Z r Viscoelastic properties of conveyor belts-modeling of vibration phenomena in belt conveyors during starting and stopping[J]. Bulk Solids Handling, 1986, 6(3):553-559.
    [111]Harrison A. Belt vibration and its influence on conveyor reliability[J]. Bulk Solids Handling, 1994, 14(4):723-727.
    [112]Lodewijks G. On the application of beam elements in finite element models of belt conveyors:part I[J]. Bulk Solids Handling, 1994,14(4):729-737.
    [113]Hou You-Fu, Meng Qing-Rui. Dynamic characteristics of conveyor belts[J]. Journal of China University of Mining & Technology,2008,18(4):630-633.
    [114]史铁钧,吴德峰.高分子流变学基础[M].北京:化学工业出版社,2009.
    [115]郭大智,任瑞波.层状粘弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [116]L.K.Nordell, Z. P. Ciozda. Transient belt stresses during starting and stopping: Elastic response simulation in long conveyor belts[J]. Bulk solids handing, 1984, 4(1):99-104.
    [117]张健.汽车悬架橡胶衬套半经验参数化模型的研究[D].上海:同济大学,2008.
    [118]M.Berg. A model for rubber springs in the dynamic analysis of rail vehicles[J]. Proceedings of the Institution of Mechanical Engineers, 1997,211(2):95-108.
    [119]M.Berg. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, (30):197-212.
    [120]于增亮,张立军,罗鹰.一种新的橡胶衬套半经验动力学模型[J].汽车技术,2010,(8):6-11.
    [121]韩刚.带式输送机输送带弹性模量的测试[J].起重运输机械,1998,(3):31-33.
    [122]宋伟刚.通用带式输送机设计[M].北京:机械工业出版社,2006.
    [123]赵奎.有限元简明教程[M].北京:冶金工业出版社,2009.
    [124]Li Guangbu, Ye Ruyu, Li Ruqiong. Study on Conveyor AMESim Model and Motors'Starting Interval[J]. Key Engineering Materials, 2010, 450:43-46.
    [125]Li Guangbu, Li Dazhi, Li Ruqiong. Simulation and Analysis During Conveyor Stop Process Based on AMESim[J]. Advanced Materials Research,2009,97:500-573.
    [126]施康AMESim在带式输送机停机过程设计中的应用[J].起重运输机械,2010,(5):91-92.
    [127]Harrison a, Roberts a W. Technical requirements for operating conveyor belts at high speed[J]. Bulk Solids Handling, 1984, 4(1):99-104.
    [128]L. K.Nordell. The channer 20km overlandA flagship of modern belt conveyor technology[J]. Bulk Solids Handling, 1991,11(4):781-792.
    [129]胡坤,王鹏或,郭永存.带式输送机驱动装置虚拟样机研究[J].煤矿机械,2011,(1):77-78.
    [130]胡坤,程刚,王鹏或.轻型带式输送机V带驱动装置虚拟样机研究[J].煤炭技术,2010,(10):14-15.
    [131]李炳文,万丽荣,柴光远.矿山机械[M].徐州:中国矿业大学出版社,2010.
    [132]王刚,杨莺,刘少军.虚拟样机技术在工程机械领域的应用[J].工程机械,2003,(8):11-13.
    [133]Lothar Teske. Virtual vehicle development process at GM[C].1st Hyper works technology conference..Berlin Germany, 2007.
    [134]Lms. http://www.lmsintl.com/Boeing-uses-LMS-SYSNOISE-to-predict-acoustics-of-aircraft-cabins[EB/OL].2011-5-8
    [135]Caterpillar-China. http://china.cat.com/cda/layout?m=60188&x=15[EB/OL].2008-6-5
    [136]刘肖键,蒲亚鹏.带式输送机拉紧装置的模型研究[J].煤,1998,7(3):21-24.
    [137]周立彬.大型带式输送机拉紧装置的动态分析及优化设计[D].阜新:辽宁工程技术大学,2003.
    [138]侯友夫,黄民,张永忠.带式输送机动态特性及控制技术[M].北京:煤炭工业出版社,2004.
    [139]孙海阳.带式输送机自动张紧装置的动态分析及其仿真[D].太原:太原理工大学,2005.
    [140]张东升,毛君,张礼才.带式输送机液压自动拉紧装置控制系统[J].辽宁工程技术大学学报,2008,27(5):751-753.
    [141]申雪荣.带式输送机拉紧装置控制系统的研究[D].西安:西安科技大学,2010.
    [142]郑相周,唐国元.机械系统虚拟样机技术[M].北京:高等教育出版社,2010.
    [143]潘亚东.键合图概论-一种系统动力学方法[M].重庆:重庆大学出版社,1990.
    [144]Remi Saisset, Guillaume Fontes, Christophe Turpin, et al. Bond Graph model of a PEM fuel cell[J]. Journal of Power Sources,2006,156(1):100-107.
    [145]S.C. Sati, A.S. Kanaskar, S.R. Kajale ,et al. Modeling, simulation and analysis of aircraft arresting system using bond graph approach [J]. Simulation Modelling Practice and Theory,2011,(19):936-958.
    [146]C.H. Lo, Y.K. Wong, A.B.Rad. Bond graph based Bayesian network for fault diagnosis[J]. Applied Soft Computing, 2011,(11):1208-1221.
    [147]键合图http://baike.baidu.com/view/583442.htm[EB/OL].2011-8-24
    [148]宋冬然.基于键合图理论的双级矩阵变换器励磁双馈风力发电系统的建模研究[M].长沙:中南大学,2009.
    [149]王中双.键合图理论及其在系统动力学中的应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
    [150]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [151]北京起重运输机械研究所.DTⅡ(A)型带式输送机设计手册[M].北京:冶金工业出版社,2003.
    [152]工益群,高殿荣.液压工程师技术手册[M].北京:化学工业出版社,2010.
    [153]许贤良,王传礼.液压传动[M].北京:国防工业出版社,2006.
    [154]刘志峰,刘光复.产品的可拆卸性及其设计方法[J].机械设计与研究,1997,(1):25-27.
    [155]徐鸿翔.面向拆卸与回收设计关键技术的研究[D].南京:南京理工大学,2001.
    [156]高建刚,段广洪,汪劲松.产品拆卸回收性评估中的拆卸与或图建模方法[J].机械工程学报,2002,(38):26-31.
    [157]潘晓勇.三维环境下产品拆卸分析及关键技术研究[D].合肥:合肥工业大学,2003.
    [158]刘学平.机电产品拆卸分析基础理论及回收评估方法的研究[D].合肥:合肥工业大学,2000.
    [159]高建刚,武英,向东等.机电产品拆卸研究综述[J].机械工程学报,2004,40(7):1-7.
    [160]楼锡银.基于可拆卸性的机械产品设计方法研究[J].机械制造,2009,47(533):28-29.
    [161]张秀芬,张树有,伊国栋.产品可拆卸结构单元图谱构建与演化[J].机械工程学报, 2011,47(3):95-102.
    [162]曾晓红,郝喜海,许卫红.基于定性立体模型的包装机械可装配/拆卸性分析[J].包装工程,2005,26(6):54-57.
    [163]曾北昌.面向家电产品的拆卸与回收设计技术研究[D].苏州:苏州大学,2010.
    [164]周喜梅.面向三维设计的产品拆卸序列分析及关键技术研究[D].天津:天津理工大学,2009.
    [165]刘志峰,张少亭,宋守许等.报废汽车拆卸回收的经济性分析[J].合肥工业大学学报(自然科学版),2009,32(3):347-350.
    [166]张振文.带式输送机输送带安全系数的确定[J].煤炭工程,2007,(10):28-30.
    [167]楼锡银.机电产品绿色设计技术与评价[M].杭州:浙江大学出版社,2010.
    [168]孙华丽,王冀强.绿色设计与其模糊评价方法研究[J].机械科学与技术,2003,22(5):699-704.
    [169]王跃进,孟宪颐.绿色产品多级模糊评价方法的研究[J].中国机械工程,2000,11(9):1016-1019.
    [170]张青山,邹华等.制造业绿色产品评价体系[M].北京:电子工业出版社,2009.
    [171]刘乃维,郑清春,郭津津.基于AHP的可拆卸性评价研究[J].天津理工大学学报,2009,25(1):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700