用户名: 密码: 验证码:
EOL产品拆卸序列规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益增加的生命终端EOL(end-of-life)产品给世界环境与资源带来前所未有的压力。围绕EOL产品的拆卸与回收技术正成为全球性的研究热点。而许多机电产品不能被很好的回收正是源于其没有得到很好的拆卸。
     本论文以生命终端机电产品为研究对象,对可拆卸性建模和多目标、多工况下的最优拆卸路径决策等问题进行了研究,具体做了以下几方面的工作:
     可拆卸性建模,即合理表达从产品到组件之间所有可行的拆卸路径。这在数学上属于NP-Complete型难题。当拆卸系统零件数稍微增加,普通建模算法便会产生组合爆炸问题。为此本文提出两种降低拆卸系统规模的方法。方法一:从零件的结构特征入手,对其重新分类,给出算法流程。提出可拆卸性建模就是确定限位结构件单元LSU间的拆卸层级关系。其他类型的零件均可作为附件压缩到限位结构件单元列表中。从而显著降低参与拆卸建模的零件数量。方法二:通过建立拆卸模块的方法来降低拆卸系统的复杂度。在具体实现上,以模糊聚类算法为理论依据,首先,利用工程上对各种形式连接强度的公式定义拆卸系统内部任意两个零件间的拆卸隶属度函数,进而生成拆卸隶属度矩阵。然后,依据定位连接件的拆卸层级关系定义修正系数,对拆卸隶属度矩阵进行全局拆卸关系修正。通过n次传递闭包运算最终生成模糊等价矩阵。以此为依据可以得到λ-截矩动态聚类图。将大型拆卸系统划分成有限的拆卸模块。这样,以限位结构件单元和拆卸模块做为基本拆卸单元可以有效解降低拆卸建模的难度。
     EOL产品的损伤程度和拆卸过程中的不确定因素等都会直接影响到最优拆卸序列的决策。因此对产品和拆卸过程信息的管理和调用,是拆卸序列规划研究的重要内容。文章首先对拆卸知识进行分类,给出各类信息的存储形式,定义信息之间的关联和调用规则。重点对几种主要影响决策算法的随机变量进行了参数化定义。这些对拆卸路径优化算法的系统化提供有力的数据保证。
     最后,建立了基于知识的拆卸Petri网模型(KBDPN)全面清晰地表达可拆卸序列的嵌套关系和相关的所有信息。KBDPN中的基础Petri网结构表达了所有几何可拆卸路径,而对非几何拓扑信息如拆卸时间、回收成本等则以参数的形式独立地作用到对应的拆卸操作(触发)或零件(库所)中。从而可以同时实现多目标、多工况下各种EOL产品拆卸系统的路径优化。
The increasing of end-of-life(EOL) produces brings unprecedented pressure to the ecological resources and environment all over the world. The technologies about disassembly and recycling are becoming research focus. Most electro-mechanical products cannot be recycled only because they cannot be disassembled well.
     Aiming at the EOL electric-mechanical product, this dissertation focuses on the research on disassembly modeling and the decision of the optimal disassembly sequence under multi-objective and multi-working- condition. The main contents are as following:
     Disassembly modeling, that is to express all disassembly sequences from the product to each component. As a NP-Complete problem, with the little quantity increasing of product’s components, combination explosion will be happen in common modeling algorithms. Two methods are proposed to solve above problem.
     Method 1: starting with the part structure, parts are reclassified and defined with the generating algorithm flows. In this means disassembly modeling is equal to finding the disassembly level relationships. And other types of part are compressed to the LSU list as its accessories, which can decrease the scale of disassembly system in modeling process greatly.
     Method 2: the quantity in disassembly system can be decreased by building the disassembly modules. In practice, based on the fuzzy clustering algorithm, at first, define the membership function of any two parts in disassembly system, using the connection strength functions in engineer. The disassembly membership matrix is then gained. Next, modify reference are defined based on the disassembly level relationship of position connection parts unit (PCU),with which the disassembly membership matrix is modified in global range. As result, the fuzzy equivalence matrix can be obtained after n-times of transitive closure operations. Judging by this, aλ-cut moment dynamic clustering graph is generated to divide disassembly system into several modules.
     The damage degree of EOL product and uncertain factors in operation can directly influence the decision of the optimal disassembly sequence. So it is important to manage and use information about the products and the disassembly process. Firstly, the knowledge are classified and be stored correspondingly. Secondly, it is also defined the relationship and the rules among these knowledge. Several kind of key random variables involved in decision algorithm are also defined. These data give a guarantee to the optimal algorithm for disassembly sequence.
     At last, A KBDPN (knowledge-based disassembly Petri net) model is built to express the nested relations of disassembly system with all topology information, in which the base Petri net model can express the geometrical information about disassembly system. As for the non-geometrical topology information (such as the disassembly time, recycle benefits et al.) is effected in form of references by the disassembly operation (trigger) or part (place) independently. In this way, the disassembly sequence planning of EOL products can be realized under multi-objective and multi-working-condition.
引文
[1] Anoop D., Anil M., Evaluation of disassemblability to enable design for disassembly in mass production, Industrial Ergonomics, 2003, 32(4): 265~281
    [2] The Basel Action Network (BAN), Silicon Valley Toxics Coalition (SVTC), Exporting harm: the high-tech trashing of Asia, 2002.2
    [3] Rolf W., Heidi O. K., Deepali S. K., et al, Global perspectives on e-waste, Environmental Impact Assessment Review, 2005, 25(4): 436~458
    [4]张友良,田晖,积极开展中国废家用电器回收利用,家用电器, 2000(8): 2~3
    [5]中国新闻网,缺乏回收再利用体系电子垃圾拉响环保新警报, 2006/09/06, http://finance.sina.com.cn/roll/20060906/1427908566.shtml
    [6]小熊在线,时代网站再访贵屿——中国电子垃圾村,2009/01/14 http://mb.beareyes.com.cn/2/lib/200901/14/20090114329.htm
    [7]台湾师范大学环境教育研究所,电子废弃产业与地方社会关系初探—阅读贵屿镇案例后2006/01/21, http://jimmyhub.net/files/media/e-waste_social_environment.pdf
    [8]刘学平,机电产品拆卸分析基础理论及回收评估方法的研究:[博士学位论文],安徽:合肥工业大学,2000.
    [9]刘光复,刘志峰,李刚,绿色设计与绿色制造,北京:机械工业出版社,2007.
    [10] Ishii T., Kai K., et al., Integrated recycle plant for electric home appliances- automated recognition and sorting of product types, Proceedings of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999, 263~267.
    [11] Kotera Y., Hirasawa E., Sakitani H., Integrated recycle plant for electric home appliances-automated primary disassembly for refrigerators process, Proceedings of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999, 268~272.
    [12] http://www.hnmetals.com/news3.asp?id=288,我国再生资源产业发展现状与存在问题
    [13] Gupta S. M., Taleb K. N., Scheduling disassembly, International Journal of Production and Operations Management Society,1994,32(8):1857~1866.
    [14] Moore K. E., Gungor A., Gupta S. M., Disassembly Petri net generation in the process of XOR precedence relation, 1998 IEEE International Conference on Systems, Man and Cybernetics, 1998, 13~18.
    [15] Kang J. G, Lee D. H., Xirouchakis P., et al., Parallel disassembly sequencing with sequence-dependent operation times Annals of the CIRP, 2001,50(1):343~346.
    [16]刘光复,刘学平,刘志峰等,机电产品的拆卸与回收性能分析,机械工程师, 2001(1):13~16.
    [17] Jovane F., Alting L., Armillotta A., et al., A key issue in product life cycle: disassembly, Annals of the CIRP, 1993, 42(2):651~659.
    [18] Kopacek, P., Kopacek, B., Intelligent, flexible disassembly, International Journal of Advanced Manufacturing Technology, 2006, 30(9):554~560.
    [19] Torres, F., Gil, P., Puente, S.T., et al., Automatic PC disassembly for component recovery, International Journal of Advanced Manufacturing Technology, 2004, 23(1):39~46.
    [20] Duta, L., Filip, F.G., Control and decision-making process in disassembling used electronic products, Studies in Informatics and Control, 2008, 17(1):17~26.
    [21] Jorjani, S., Leu, J., Scott, C., Model for the allocation of electronics components to reuse options, International Journal of Production Research, 2004, 42(6): 1131~1145.
    [22] Tan, A., Kumar, A., A decision making model to maximise the value of reverse logistics in the computer industry, International Journal of Logistics Systems and Management, 2008, 4(3):297~312.
    [23] Williams, J.A.S., A review of electronics demanufacturing processes, Resources, Conservation and Recycling, 2006, 47(3):195 ~208.
    [24] Thierry M., Salomon M., Van N. J., et al., Strategic issues in product recovery management, California Management Review, 1995, 37(2): 114~135.
    [25] Gungor A., Gupta S., Disassembly sequence planning in products with defective parts in product recovery, Computer and Industrial Engineering, 1998, 35(1-2): 161~164.
    [26] Boothroyd G., Poli C., Murch L.E., Automatic assembly, Manufacturing Engineering and Materials Processing, 1982, 6.
    [27]Boothroyd G., Dewhurst P., Design for assembly handbook, MA: University of Massachusetts, 1983.
    [28] Lambert A.J., Disassembly sequencing: a survey, International Journal of Production Research, 2003, 41(16):3721~3759.
    [29] Brennan L., Gupta S. M., Taleb K. N., Operations planning issues in an assembly/disassembly environment, International Journal of Operations and Production Management, 1994, 14(9):57~57.
    [30] Subramani A. K., Dwehurst P., Automatic generation of product disassembly sequences, Annals of CIRP, 1991, 40(1):115~123.
    [31] Huang Y. F., Lee C. S., Precedence knowledge in feature mating operation assembly planning, Proceedings of IEEE international Conference on Robotics and Automation, 1989, 216~221.
    [32] Wolter J. D., Chakrabarty S., Tsao J., Mating constraint languages for assembly sequence planning, Proceedings of IEEE International Conference on Robotics and Automation, 1992, 2367~2374.
    [33] Srinivasan H. Gadh R., Efficient geometric disassembly of multiple components from an assembly using wave propagation, Journal of Mechanical Design, 2000, 12(2): 179~184.
    [34] Srinivasan H. Gadh R., A Non-interfering selective disassembly sequence for components with geometric constraints, IIE Transactions, 2002, 34(4):349~361.
    [35] Sundaram S., Remmler I., Amato N. M., Didassembly sequencing using a motion planning approach, Proceedings of IEEE International Conference on Robotics and Automation, 2001, 1475~1480.
    [36] Barba G. Y., Adenso D. B., Gupta, S.M., Lot sizing in reverse MRP for scheduling disassembly, International Journal of Production Economics, 2008, 111(2):741~751.
    [37] Kim H.J., Lee D.H., Xirouchakis P., Two-phase heuristic for disassembly scheduling with multiple product types and parts commonality, International Journal of Production Research, 2006, 44(1): 195~212.
    [38] Kim H.J., Lee D.H., Xirouchakis P., et al., A branch and bound algorithm for disassembly scheduling with assembly product structure, Journal of the Operational Research Society, 2009, 60(3): 419~430.
    [39] Lambert A.J.D., Gupta S.M., Disassembly Modeling for Assembly, Maintenance, Reuse, and Recycling, CRC Press, Boca Raton, FL.
    [40] Brander, P., Forsberg R., Cyclic lot scheduling with sequence-dependent setups: a heuristic for disassembly processes, International Journal of Production Research, 2005, 43(2):295~310.
    [41] Altekin F. T., Kandiller L., Ozdemirel N. E., Profit-oriented disassembly-line balancing, International Journal of Production Research,2008, 46(10):2675~2693.
    [42] Tang Y., Zhou M.C., A systematic approach to design and operation of disassembly lines, IEEE Transactions on Automation Science and Engineering, 2006, 3(3):324~329.
    [43] Duta L., Filip F.G., Caciula I., Real time balancing of complex disassembly lines, Proceedings of the 17th IFAC World Congress on Automatic Control, 2008, 7, 913~918.
    [44] Koc A., Sabuncuoglu I., Erel E., Two exact formulations for disassembly linebalancing problems with task precedence diagram construction using an AND/OR graph, IIE Transactions, 2009, 41(10): 866~881.
    [45] Kongar E., Gupta S.M., Solving the disassembly-to-order problem using linear physical programming, International Journal of Mathematics in Operational Research, 2009, 1(40): 504~531.
    [46] Willems B., Dewulf W., Duflou J.R., Can large-scale disassembly be profitable? A linear programming approach to quantifying the turning point to make disassembly economically viable, International Journal of Production Research, 2006, 44(6):1125~1146.
    [47] Jun H.B., Cusin M., Kiritsis D., et al., A multi-objective evolutionary algorithm for EOL product recovery optimization: turbocharger case study, International Journal of Production Research, 2007, 45(18-19): 4573~4594.
    [48] Chan J. W. K., Product end-of-life options selection: grey relational analysis approach, International Journal of Production Research, 2008, 46(11): 2889~2912.
    [49] Wadhwa S., Madaan J., Chan F.T.S., Flexible decision modeling of reverse logistics system: a value adding MCDM approach for alternative selection, Robotics and Computer-Integrated Manufacturing, 2009, 25(2):460~469.
    [50] Iakovou E., Moussiopoulos N., Xanthopoulos A., et al., A methodological framework for end-of-life management of electronic products, Resources, Conservation and Recycling, 2009, 53(6):329~339.
    [51] Tsai C. K., A disassembly model for end-of-life products recycling: [doctor’s dissertation], United States: Texas Tech University, 1997.
    [52]高建刚,武英,向东等,机电产品拆卸研究综述,机械工程学报, 2004,40(7):1~9.
    [53]王俊峰,李世其,刘继红,面向绿色制造的产品选择拆卸技术研究,计算机集成制造系统,2007,13(6):1097~1102.
    [54] Desai A., Mital A., Evaluation of disassemblability to enable design for disassembly in mass production, International Journal of Industrial Ergonomics, 2003, 32(4):265~281.
    [55] Mital A., Desai A., A structured approach to new product design, development and manufacture part II: putting the product together (assembly) and disposal (disassembly), International Journal of Industrial Engineering, 2007, 14(4):23~32.
    [56] Gungor, A., Evaluation of connection types in design for disassembly (DFD) using analytic network process, Computers & Industrial Engineering , 2006, 50(1-2):35~54.
    [57] Giudice F., Kassem M., End-of-life impact reduction through analysis andredistribution of disassembly depth: a case study in electronic device redesign, Computers and Industrial Engineering, 2009, 57(3):677~690.
    [58] Kwak M.J., Hong Y.S., Cho N.W., Eco-architecture analysis for end-of-life decision making, International Journal of Production Research, 2009, 47(22):6233~6259.
    [59] Viswanathan S., Allada V., Product configuration optimization for disassembly planning: a differential approach, Omega, 2006, 34(6):599~616.
    [60] Chu C., Luh Y., Li T., et al., Economical green product design based on simplified computer-aided product structure variation, Computers in Industry, 2009, 60: 485~500.
    [61] Li J., Gonzalez M., Zhu Y., A hybrid simulation optimization method for production planning of dedicated remanufacturing, International Journal of Production Economics, 2009, 117(2):286~301.
    [62] Kim K., Song I., Kim J., et al., Supply planning model for remanufacturing system in reverse logistics environment, Computers & Industrial Engineering, 2006, 51(2):279~287.
    [63] Xanthopoulos A., Iakovou E., on the optimal design of the disassembly and recovery processes. Waste Management, 2009, 29(1):1702~1711.
    [64] Jayaraman V., Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach, International Journal of Production Research, 2006, 44(5):981~998.
    [65] Lu Q.I.N., Stuart Williams J.A., Posner M., et al., Model based analysis of capacity and service fees for electronics recyclers, Journal of Manufacturing Systems, 2006, 25(1):45~56.
    [66] Ardente F., Beccali G., Cellura M., Eco-sustainable energy and environmental strategies in design for recycling: the software‘‘ENDLESS’’, Ecological Modeling, 2003, 163(1-2):101~118.
    [67] Wright E., Azapagic A., Stevens G., et al., Improving recyclability by design: a case study of fibre optic cable, Resources, Conservation & Recycling, 2005, 44(1):37~50.
    [68] Ferrao P., Amaral J., Design for recycling in the automobile industry: new approaches and new tools, Journal of Engineering Design, 2006, 17(5):447~462.
    [69] Masanet E., Horvath A., Assessing the benefits of design for recycling for plastics in electronics: a case study of computer enclosures, Materials and Design, 2007, 28(6):1801~1811.
    [70] Houe R., Grabot B., Knowledge modeling for eco-design, Concurrent Engineering, 2007, 15(1): 7~20.
    [71] Ilgin M. L., Gupta S. M., Environmentally conscious manufacturing and productrecovery (ECMPRO): A review of the state of the art, Journal of Environmental Management, 2010, 91(3):563~591.
    [72]刘光复,刘学平,刘志峰,绿色设计的体系结构及实施策略,中国机械工程, 2000,11(9): 965~967.
    [73]刘光复,刘志峰.绿色产品及其评价系统框架[J].机械设计与研究,1997(4):12-14.
    [74] Ong N. S., Wong Y. C., Automatic subassembly detection from a product model for disassembly sequence generation, The International Journal of Advanced Manufacturing Technology, 1999, 15(6):425~431.
    [75] Lee S. G., Lye S. W., Khoo M. K., A multi-objective methodology for evaluating product end-of-life options and disassembly, The International Journal of Advanced Manufacturing Technology, 2001, 18(2):148~156.
    [76] Aras N., Verter V., Boyaci, T., Coordination and priority decisions in hybrid manufacturing/remanufacturing systems, Production & Operations Management 2006, 15(4):528~543.
    [77] Takahashi K., Morikawa K., Myreshka T. D., et al., Inventory control for a MARKOVIAN remanufacturing system with stochastic decomposition process, International Journal of Production Economics, 2007, 108(1-2):416~425.
    [78] Kopacek P., Kopacek B., Intelligent, flexible disassembly, International Journal of Advanced Manufacturing Technology, 2006, 30(5-6):554~560.
    [79] Kim, H.J., Chiotellis S., Seliger G., Dynamic process planning control of hybrid disassembly systems, International Journal of Advanced Manufacturing Technology, 2009, 40(9-10):1016~1023.
    [80] Duta, L., Filip, F.G., Control and decision-making process in disassembling used electronic products, Studies in Informatics and Control, 2008, 17(1):17~26.
    [81]于立新,WTO与中国机电产品进出口,北京:经济管理出版社,2003.
    [82]陈振峰,吴莹,汪寿阳,中国机电产品进出口统计分析,国际技术经济研究,2005, 8(3):42~48.
    [83] Europa—website of European Union, Waste Electrical and Electronic Equipment, http://ec.europa.eu/environment/waste/weee_index.htm, [2006-06-03]
    [84]徐滨士,刘世参,李仁涵等,废旧机电产品资源化的基本途径及发展前景研究,中国表面工程,2004,17(2):1~7.
    [85] Zussman E., Planning of disassembly system, Assembly Automation, 1995, 15(4):20~23
    [86] Lee Y. Q., Automated sequence generation and selection for mechanical assembly and part replacement: [Master Thesis], USA: the Pennsylvania State University, 1993.
    [87] Takeyama H., Sekiguchi H., Kojima T., et al., Study on automatic determination of assembly sequence, CIRP Annals, 1983, 32(1):371~374.
    [88] Zhang H. C., Kuo T. C., A graph-based approach to disassembly model for end–of–life product recycling, Proceedings of IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1996, 247~254.
    [89] Otto K., Wood K., Product design-technical in reverse engineering and new product development, London: Prentice Hall, 2001.
    [90] Kreng V. B., Lee T. P., Modular product design with grouping genetic algorithm -a case study, Computer & Industry Engineering, 2004, 46: 443~460.
    [91] Jose A., Tollenaere M., Modular and platform for product family design: Literature analysis, Journal of Intelligent Manufacturing, 2005, 16(3): 371~390.
    [92]江吉彬,刘志峰,刘光复,基于工程语义信息的拆卸序列规划算法研究,计算机集成制造系统,2006,12(4):625~629.
    [93]高建刚,段广洪,汪劲松,产品拆卸回收性评估中的拆卸与或图建模方法,机械工程学报,2002,38(12):26~31.
    [94] Lee K., Gadh R., Destructive disassembly to support virtual prototyping, IEEE Transactions, 1998, 30(10): 959~972.
    [95] Gu P., Yan X., CAD-directed automatic assembly sequence planning, International Journal of Production Research, 1995, 33(11):3069~3100.
    [96] Kuo T. C., Zhang, H. C., Huang, S. H., Disassembly analysis for electromechanical products: a graph-based heuristic approach, International Journal of Production Research, 2000, 38(5):993~1007.
    [97] Tseng H. W., Chang T. S., Yang Y. C., A connector-based approach to modular formulation problem for mechanical products, International Journal of Advanced Manufacturing Technology, 2004, 24(3-4):161~171.
    [98] Hwai E. T., Chien C. C., Jia D. L., Modular design to support green life-cycle engineering, Expert System with Applications, 2008, 34(4):2524~2537.
    [99] Mikkola J. H., Gassmann O., Managing modularity of product architecture: Toward an integrated theory, IEEE Transactions on Engineering Management, 2003, 50(2):204~218.
    [100] Fujita K., Yosshida H., Product variety optimization simultaneously designing module combination and module attributes, Concurrent Engineering: Research and Applications, 2004, 12(2):105~118.
    [101] Qian X., Zhang H. C., Design for environment: An environmental analysis model for the modular design of products, In IEEE international symposium on electronics and the environment, 2003:114~119.
    [102] Tanaka M., Iwama K. Watanabe T., A method of generating assembly plans by assembly matrices, Proceedings of ASME Japan/USA Symposium on FlexibleAutomation, 1996, 2, 803~806.
    [103] Dini G., Falli F., Santochi M., A disassembly planning software system for the optimization of recycling processes, Production Planning and Control, 2001, 12(1):2~12.
    [104] Oshea B., Kaebernick H., Grewal S. S., Using a cluster graph representation of products for application in the disassembly planning process, Concurrent Engineering, 2000, 8(3):158~170.
    [105] Touzanne F., Henrioud J. M., Perrard C., Method of disassembly sequence generation for recycling system design, Proceedings of 4th IEEE International Symposium on Assembly and Task Planning, 2001:458~463.
    [106]刘学平,刘光复,拆卸路径决策时的装配体判别分析,中国机械工程,2003, 6(3):505~508.
    [107] Zeid I., Gupta S.M., Bardasz T., A case-based reasoning approach to planning for disassembly, Journal of Intelligent Manufacturing, 1997, 8(2):97~106.
    [108] Veerakamolmal P., Gupta S.M., A case-based reasoning approach for automating disassembly process planning, Journal of Intelligent Manufacturing, 2002, 13(1):47~60.
    [109] Pan L., Zeid I., A knowledge base for indexing and retrieving disassembly plans, Journal of Intelligent Manufacturing, 2001, 12(1):77~94.
    [110] Zha X. F., Lim S. Y., Fok S. C., Integrated knowledge-based assembly sequence planning, International Journal of Advanced Manufacturing Technology, 1998, 14(1): 50~64.
    [111] Jun Y., Liu J., Ning R., et al., Assembly process modeling for virtual assembly process planning, International Journal of Computer, Integrated Manufacturing, 2005, 18(6): 442~451.
    [112] Sinanoglu C., Borklu H. R., An assembly sequence-planning system for mechanical parts using neural network, Assembly Automation, 2005, 25(1): 38~52.
    [113]石胜友,莫蓉,杨海成等,面向网格服务的标准件库系统集成,计算机辅助设计与图形学学报, 2006,18(4):551~555.
    [114]钱玲玲,李建军,王义林等,标准件库管理系统中的知识重用技术研究,中国机械工程,2006,17(S1):315~318.
    [115]李原,彭培林,邵毅等,基CATIA的标准件库设计与实现,计算机辅助设计与图形学学报, 2005,17(8):1873~187.
    [116]田立中,付宜利,马玉林等,装配序列规划中拆卸方向的确定,计算机辅助设计与图形学学报, 2001, 13(12):1110~1113.
    [117]李辉,凸多边形可移动性的最优判别算法,中国科学(A辑), 1987, 17 (12) :1301~1308.
    [118] Tetsuya U., Toshiaki O., Mario T., Collision Detection in Motion Simulation, Computer & Graphics , 1993, 7(2) : 285 ~ 293.
    [119]蒋丹东,刘光复,可拆卸设计的系统构成,合肥工业大学学报,1999,22(4):12~16.
    [120]余斌,刘继红,舒慧林,基于定性立体模型的产品可装配/拆卸性分析,计算机辅助设计与图形学学报,2002,14(1):87~92.
    [121] Eng T. H., Ling Z. K., Olson W., et al., Feature-based assembly modeling and sequence generation, Computers& Industrial Engineering, 1999, 36(1):18~33.
    [122] Woo T. C., Dutta D., Automatic disassembly and total ordering in three dimensions, Journal of Engineering for Industry, 1991, 113(2):207~213.
    [123] Zahed S., David W. R., A virtual prototyping approach to product disassembly reasoning, Computer-Aided Design, 1997, 29(12):847~860.
    [124]董天阳,智能装配规划中的若干关键技术研究:[博士学位论文],浙江:浙江大学,2005.
    [125] Zussman E., Zhou M. C., A methodology for modeling and adaptive planning of disassembly processes, IEEE Transactions on Robotics and Automation, 1999, 15(1):190~194.
    [126]潘晓勇,三维环境下产品拆卸分析及关键技术研究:[博士学位论文],安徽:合肥工业大学, 2005.
    [127] Kuo T., Zhang H. C., Disassembly analysis for electromechanical products: a graph-based heuristic approach, International Journal of Production Research, 2000, 38(5):993~1007.
    [128]倪俊芳,蔡建国,面向产品回收的拆卸序列规划,机械设计,2001(2):12~14.
    [129] Mello L. S., Sanderson A. C., A correct and complete algorithm for the generation of mechanical assembly sequences, IEEE Transaction on Robotics and Automation, 1991, 7(2):228~240.
    [130] Taleb K. N., Gupa S. M. and Brennan L., Disassembly of complex product structures with parts and materials commonality, Production Planning and Control, 1997, 8(3):255~269.
    [131] Ko H., Lee, Automatic assembling procedure generation form mating conditions, Computer Aided Design, 1987, 19(1):3~10.
    [132] Johnson M. R., Wang M. H., Planning product disassembly for material recovery opportunities, International Journal of Production Research, 33(11): 3119~3142.
    [133] Moore K. E., Gungor A., Gupta, S.M., A Petri net approach to disassembly process planning, Computers & Industrial Engineering, 1998, 35(1-2):165~168.
    [134] Gao M., Zhou M.C., Tang Y., Intelligent decision making in disassemblyprocess based on fuzzy reasoning Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(5):2029~2034.
    [135] Grochowski D.E., Tang Y., A machine learning approach for optimal disassembly planning, International Journal of Computer Integrated Manufacturing, 2009, 22(4):374~383.
    [136] Lambert A.J.D., Optimal disassembly of complex products, International Journal of Production Research, 1997, 35(9):2509~2524.
    [137] Lambert A.J.D., Gupta S.M., Demand-driven disassembly optimization for electronic products, Journal of Electronics Manufacturing, 2002, 11(2):121~135.
    [138] Lambert A.J.D., Exact methods in optimum disassembly sequence search for problems subject to sequence dependent costs, Omega, 2006, 34(6):538~549.
    [139] Gungor A., Gupta S.M., Disassembly sequence plan generation using a branch-and-bound algorithm, International Journal of Production Research 2001, 39(3):481~509.
    [140] Seo K.K., Park J.H., Jang D.S., Optimal disassembly sequence using genetic algorithms considering economic and environmental aspects, The International Journal of Advanced Manufacturing Technology, 2001, 18(5):371~380.
    [141] Duta L., Filip F.G., Popescu C., Evolutionary programming in disassembly decision making, International Journal of Computers, Communications &Control, 2008, 3(5):282~286.
    [142] Hui W., Dong X., Guang H. D., A genetic algorithm for product disassembly sequence planning, Neurocomputing, 2008, 71(13-15):2720~2726.
    [143] Tripathi M., Agrawal S., Pandey M.K., et al., Real world disassembly modeling and sequencing problem: optimization by algorithm of self-guided ants (ASGA), Robotics and Computer-Integrated Manufacturing, 2009, 25(3):483~496.
    [144] Adenso D. B., Garcia G. S., Gupta S.M., A path-relining approach for a bi-criteria disassembly sequencing problem, Computers & Operations Research, 2008, 35(12):3989~3997.
    [145] Lambert A.J.D., Gupta S.M., Methods for optimum and near optimum disassembly sequencing, International Journal of Production Research, 2008, 46(1):2845~2865.
    [146] Srinivasan H., Gadh R., A geometric algorithm for single selective disassembly using the wave propagation abstraction, Comput Aided Design, 1998, 30(8): 603~613.
    [147] Tang Y., Zhou M., Gao M., Fuzzy-Petri-net based disassembly planning considering human factors, IEEE Transactions on Systems, Man and Cybernetics, 2006,36(4):718~726.
    [148] Touzanne F., Perrard C., Representation of disassembly processes in order to allow time evaluation of their performances, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning, Proto, Portugal, 1999:135~140.
    [149]袁忠义, Petri网原理与应用,北京:电子工业出版社, 2005.
    [150]肖词源,工程模糊系统,北京:科学出版社, 2005.
    [151]谭建荣,冯毅雄,设计知识建模、演化与应用,北京:国防工业出版社, 2007.
    [152]李荣,基于知识的装配序列规划关键技术研究:[博士学位论文],哈尔滨:哈尔滨工业大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700