用户名: 密码: 验证码:
取向尖晶石基薄膜的层状前驱体法制备及其磁学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石铁氧体薄膜材料在高密度存储、电磁波吸收、磁共振等领域有着广泛的应用前景。研发简便的薄膜制备方法,控制薄膜材料的组成、结构及形貌,进而提高薄膜的磁学性能,成为该领域研究的热点问题。本论文围绕尖晶石铁氧体薄膜材料的构筑及其磁学性能开展基础研究。针对目前该领域研究中的关键科学问题,采用层状前驱体技术,以层状双羟基复合金属氢氧化物(layered double hydroxides,简称LDHs,又叫类水滑石)薄膜为前驱体材料,经高温焙烧制得系列取向尖晶石基铁氧体薄膜材料。通过LDHs薄膜前驱体的制备参数调变及焙烧过程控制,实现了相关铁氧体薄膜材料的组成、形貌、取向的可控制备。同时,表征了溶剂蒸发组装成膜过程,探讨了LDHs薄膜的成膜驱动力及组装机制。最后,研究测试了取向尖晶石基铁氧体薄膜材料的磁学性能。研究工作可望为尖晶石基铁氧体薄膜材料在结构设计、构筑过程控制、应用性能等方面的深入进行奠定一定的实验基础。
     本论文的创新点和研究结果如下:
     首先,针对高密度磁存储领域存在的铁磁性纳米粒子“超顺磁限制”这一关键科学问题,以溶剂蒸发制备得到的(00l)取向CoFe-LDHs薄膜为前驱体,在氦气保护下利用LDHs的结构拓扑效应焙烧制备了(111)取向的系列CoFe2O4/CoO纳米复合薄膜。CoFe2O4和CoO界面间强的铁磁/反铁磁相互作用提高了CoFe2O4磁性纳米粒子的热稳定性。与相同粒径的纯相CoFe2O4粒子相比,CoFe2O4/CoO纳米复合薄膜中CoFe2O4粒子的截止温度(TB)提高了100 K以上。同时发现,该薄膜的磁各向异性导致了平行于膜面方向的交换偏置场(HE)的数值大于垂直于膜面条件下的交换偏置场。
     然后,以(00l)取向的NiFe-LDHs薄膜为前驱体,首先利用LDHs的结构拓扑效应焙烧制备了(111)取向的NiFe2O4/NiO纳米复合薄膜。然后,采用硝酸溶蚀的方法将此复合薄膜中的NiO去除,得到了多孔的(111)取向NiFe2O4薄膜。其表面粗糙程度可通过焙烧温度及酸溶蚀时间来进行调控。经过表面有机化处理后,多孔NiFe2O4薄膜显示出了良好的超疏水性能。随其表面粗糙程度的增强,薄膜与水的接触角变大。磁性及表面浸润性的可控调节使得该多孔尖晶石基铁氧体薄膜有可能在苛刻的外界环境中获得应用。
     此外,基于LDHs薄膜可控制备的重要意义,通过研究表征溶剂蒸发组装过程,探讨了LDHs薄膜的成膜驱动力及组装机制。在不同晶化温度条件下制备了LDHs纳米粒子。TEM、AFM等表征结果表明,随晶化温度升高LDHs纳米粒子的表观形貌由类球形转变为六方片状,其长厚比(aspect ratio)的增加表明LDHs纳米粒子各向异性程度加强。成膜实验显示,长厚比的大小直接影响溶剂蒸发后最终成膜的连续性及粒子(00l)晶面的取向程度。大的长厚比有利于LDHs纳米粒子间面-面相互作用的增强。在所研究的NiFe-LDHs体系中,发现长厚比大于3时能够制得连续完整的LDHs薄膜。
     本论文最后还尝试采用了涂覆技术制备LDHs薄膜前驱体,然后经过焙烧处理分别得到了MgFe2O4/MgO和NiFe2O4/NiO复合铁氧体薄膜以及纯相MgFe2O4薄膜。研究表明,上述复合铁氧体薄膜中组分均匀分布,磁性可调;而纯相MgFe2O4薄膜在室温条件下则显示出了优异的“超顺磁”性能。
Spinel ferrite films are an important class of inorganic functional materials. They have potentially been used in many fields such as high density storage, electromagnetic wave absorbing, and magnetic resonance, because of their excellent structural and physicochemical properties. In order to improve the magnetic properties of ferrite films, increasing interest has been paid to regulate the composition, structure and morphologies of ferrite films with simple preparation methods. In the present thesis, our research mainly focuses on the construction of spinel ferrite film materials and the enhancement of corresponding magnetic properties. Oriented spinel type ferrite films have been fabricated through high temperature calcinations process using layered double hydroxides (LDHs) films as precursors. With changing the preparation parameter of LDHs films precursors and controlling the high temperature calcinations process, we have realized controllable preparation of a series of ferrite film materials with different composition, morphology and orientation. Meanwhile, we have also investigated the solvent evaporation process of LDHs nanoparticles and discussed possible driving force in the LDHs film formation process. Finally, magnetic properties of oriented spinel type ferrite films have been investigated in detail. We think our research work may be regarded as some experimental basis for the further study on structural design, building process control and application performance of spinel type ferrite films.
     The innovation of this thesis and results are as follows:
     First, in order to beat "superparamagnetic limit" of ferromagnetic nanoparticles in high-density storage field, cobalt-iron layered double hydroxides (CoFe-LDHs) film with (00l) orientation has been fabricated through a solvent evaporation method, and (111) oriented CoFe2O4/CoO nanocomposite film formed in a subsequent thermal treatment process in He atmosphere. The resulting product is composed of nano-sized ferromagnetic (FM) CoFe2O4 particles embedded in antiferromagnetic (AFM) CoO matrix. A topotactic transformation from the LDHs precursor film to the CoFe2O4/CoO nanocomposite film was proposed to cause an exchange coupling between the FM CoFe2O4 and AFM CoO phases in the nanocomposite, leading to an enhanced magnetic stability of the CoFe2O4. The blocking temperature of CoFe2O4 nanoparticles in CoFe2O4/CoO nanocomposite film increased more than 100 k than that for pure CoFe2O4 nanoparticles with similar size. Furthermore, the orientation of the CoFe2O4/CoO nanocomposite film is found to be attributed to the magnetic anisotropy when the magnetic field was applied on different directions.
     Then, porous oriented NiFe2O4 films have also been prepared using LDH films as precursors. The process mainly involves the formation of (00l) oriented NiFe-LDH film through solvent evaporation, subsequently topotactic transformation from (00l) oriented NiFe-LDH film to (111) oriented NiFe2O4/NiO composite films induced by high-temperature calcination, followed by selective leaching of NiO sacrificial phase from NiFe2O4/NiO composite films. The surface roughness can be tuned by altering calcined temperature or acid treatment time. With hydrophobic treatment, the as-prepared NiFe2O4 film shows stable superhydrophobicity. Furthermore, surface wettability of NiFe2O4 film can be tuned in a wide range through alteration of the surface roughness. The controllable regulations of magnetism and surface wettability make porous oriented NiFe2O4 films could potentially be used in harsh external environments.
     Besides, we discussed the possible driving force for film formation through investigating the assembly process of LDHs nanoparticles during solvent evaporation. LDHs nanoparticles were prepared at different aging temperatures conditions. TEM, AFM were used to characterize the products. With increasing the aging temperature, the morphology of LDHs nanoparticles changes from spherelike to hexagonal platelike. The increased aspect ratio can be used as a direct evidence for the enhancement of anisotropic degree of LDHs nanoparticles. The film formation results exhibit the aspect ratio of LDHs nanoparticles can greatly influence the continuity of LDHs film and orientation of (00l) crystal plane. The high aspect ratios is favor to the enhancement of Surface-to-surface interaction of LDHs nanoparticles. In NiFe-LDHs system, it is easy to obtain large continuous LDHs film when aspect ratio is greater than 3.
     Finally, we attempt to prepare LDHs films precursors by coating techniques. MgFe2O4/MgO, NiFe2O4/MgO composite films and pure MgFe2O4 film were obtained after calcinations of corresponding LDHs film precursors. The analysis results show the two phases in the composite films are uniformly interdispersed. At the same time, the magnetization of composite films can be tuned by alterating the M(Ⅱ)/Fe(Ⅲ) molar ratio of LDHS precursors. Moreover, the pure MgFe2O4 film exhibits a promising superparamagnetic behavior under room temperature condition.
引文
[1]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007
    [2]沈家骢.超分子层状结构[M].北京:科学出版社,2003:125-185
    [3]Rives V. Layered Double Hydroxides:Present and Future [M]. Nova Science Publishers:New York,2001
    [4]Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications [J]. Catal. Today.,1991,11:173-301
    [5]Evans D G, Slade R C T. Structure aspects of layered double hydroxides. Stru. Bond.,2006,119:1-87
    [6]Vaccari A. Preparation and catalytic properties of cationic and anionic clays [J], Catal Today.,1998,41:53-71
    [7]He J., Wei M., Kang Y., Evans D. G. Preparation of Layered Double Hydroxides [J]. X. Duan, Struct. Bond.,2006,119:89-119
    [8]Aramendia M A, Borau V, Jimenez C, Marinas J M, Ruiz J R, Urbano F J. Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein-Ponndorf-Verley reaction[J]. Appl. Catal. A.,2003,244:207-215
    [9]Fornasari G, Gazzano M, Matteuzzi D, Trifro F, Vaccari A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides [J]. Appl. Clay Sci.,1995,10:69-82
    [10]Yun S. K., Pinnavaia T. J. Water Content and Particle Texture of Synthetic Hydrotalcite-like Layered Double Hydroxides [J]. Chem. Mater.,1995,7:348-354
    [11]Zhao Y., Li F., Zhang R., Evans D. G., Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14: 4286-4291
    [12]Abello S., Perez-Ramirez J. Tuning Nanomaterials' Characteristics by a Miniaturized In-Line Dispersion-Precipitation Method:Application to Hydrotalcite Synthesis [J]. Adv. Mater.,2006,18:2436-2439
    [13]Drezdzon M. A. Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors [J]. Inorg. Chem.,1988,27:4628-4632
    [14]Rocha J., Del Arco M., Rives V., Ulibarri M. A. Reconstruction of layered double hydroxides from calcined precursors:a powder XRD and A127 MAS NMR study [J]. J. Mater. Chem.,1999,9:2499-2503
    [15]Ogawa M., Asai S. Hydrothermal Synthesis of Layered Double Hydroxide Deoxycholate Intercalation Compounds [J]. Chem. Mater.,2000,12:3253-3255
    [16]Newman S P, Jones W, O'Connor P, Stamires D N. Synthesis of the 3R2 polytype of a hydrotalcite-like mineral[J]. J. Mater. Chem.2002,12:153-155
    [17]Adachi-Pagano M, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology [J]. J. Mater. Chem.,2003,13:1988-1993
    [18]Oh J M, Hwang S H, Choy J H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles[J]. Solid State Ionics,2002,151:285-291
    [19]杨飘萍,宿美平,杨胥微,等.尿素法合成高结晶度类水滑石[J].无机化学学报,2003,19(005):485-490
    [20]Kagunya W., Hassan Z., Jones W. Catalytic Properties of Layered Double Hydroxides and Their Calcined Derivatives [J]. Inorg. Chem.,1996,35:5970-5974
    [21]Li F., Duan X. Applications of layered double hydroxides [J]. Struct. Bond.,2006, 119:193-223
    [22]Monte R. D., Kaspar J. Towards understanding, control and application of layered double hydroxide chemistry [J]. J. Mater. Chem.,2005,15:633-648
    [23]Leroux F., Taviot-Gueho C. Fine tuning between organic and inorganic host structure:new trends in layered double hydroxide hybrid assemblies [J]. J. Mater. Chem.,2005,15:3628-3642
    [24]Evans D. G., Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Commun.,2006:485-496
    [25]Tichit D, Lutic D, Coq B, Durand R, Teissier R. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts [J]. J. Catal.,2003,219: 167-175
    [26]Roelofs J C A, Van Dillen A J, Jong K P. Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts [J]. Catal. Today, 2000,60:297-303
    [27]Reichle W T. Catalytic reactions by thermally activated synthetic anionic clay mineral [J]. J. Catal.,1985,94:547-552
    [28]Suzuki E, Nomoto Y, Okamoto M. Disproportionation of triethoxysilane over KF/ Al2O3 and heat-treated hydrotalcite [J]. Appl. Catal. A:General,1998,267:7-10
    [29]Palomares A E, Eder-Mirth G, Rep M. Alkylation of toluene over basic catalysts-key requirements for side chain alkylation [J]. J. Catal.,1998,180:56-65
    [30]Jose M F, Jose G I, Jose A M. Basic solids in the oxidation of organic compounds [J]. Catal. Today,2003,57:3-16
    [31]Climent M J, Corma A, Iborra S. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest [J]. J. Catal.,2004,221:474-482
    [32]Katsuomi T, Tetsuya S, Peng W. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg/Al hydrotalcite-like anionic clay [J]. J. Catal.,2004, 221:43-54
    [33]Dubey A, Kannan S, Velu S. Catalytic hydroxylation of phenol over CuM(Ⅱ)M(Ⅲ) ternaryhydrotalcites, where M(Ⅱ)= Ni or Co and M(Ⅲ)= Al, Cr or Fe [J]. Appl. Catal. A:Gen.,2003,238:319-326
    [34]Miyata S, Purifying agent for cooling water used in nuclear reactors, and method for purification of thecooling water[P]. EP Patent,152010.1985
    [35]Constantino V R L, Pinnavaia T J. Basic Properties of Mg2+1-xAl3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions[J]. Inorg. Chem.,1995,34:883-892
    [36]许国志,郭灿雄.PE膜中层状双羟基复合氢氧化物的红外吸收性能[J].应用化学,1999,16(003):45-48
    [37]Carr S. W., Franklin K. R., Nunn C. C., Pasternak J. J., Scott I. R. Sunscreen compounds based on UV absorber introduced into layered double hydroxides [P], US Patent.,5474762.1995
    [38]黄宝晟,李峰,张慧,矫庆泽,段雪,郝建薇.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75
    [39]Lin Y. J., Wang J. R. David G. E., Li D. Q. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin [J]. J. Phys. Chem. Solids.,2006,67:998-1001
    [40]Chai H, Lin Y J, Evans D G, Li D Q. Synthesis and UV absorption properties of 2-Naphthylamine-1,5-disulfonic acid intercalated Zn-Al layered double hydroxides[J]. Ind. Eng. Chem. Res.,2008,47:2855-2860
    [41]戴冬坡.银锌基防霉杀菌材料的制备和性能研究[D].北京:北京化工大学,2002
    [42]Khan A. I., Lei L. X., Norquist A. J., O'Hare D. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chem. Commun.,2001,2342-2343
    [43]Ogawa M., Kuroda K. Photofunctions of Intercalation Compounds [J]. Chem. Rev., 1995,95:399-438
    [44]Mousty C, Therias S, Forano C, Besse J P. Anion-exchanging clay-modified electrodes:synthetic layered double hydroxides intercalated with electroactive organic anions[J]. J. Electroanal. Chem.,1994,374:63-69
    [45]Liu J. J., Li F., Evans D. G., Duan X. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor [J]. Chem. Commun.,2003:542-543
    [46]Li F., Liu J. J., Evans D. G., Duan X. Stoichiometric Synthesis of Pure MFe2O4 (M) Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors [J]. Chem. Mater.,2004,16:1597-1602
    [47]刘俊杰,李峰.由Mg—Fe (Ⅱ)—Fe (Ⅲ) LDH层状前体制备MgFe2O4尖晶石的研究[J].化学学报,2003,61(001):51-57
    [48]段雪,张法智.无机超分子材料的插层组装化学[M].北京:科学出版社,2009
    [49]Lee J. H., Rhee S. W., Jung D. Y. Solvothermal Ion Exchange of Aliphatic Dicarboxylates into the Gallery Space of Layered Double Hydroxides Immobilized on Si Substrates[J]. Chem. Mater.,2004,16:3774-3779
    [50]Liu Z. P., Ma R. Z., Osada M., Iyi N., Ebina Y., Takada K., Sasaki T. Synthesis, Anion Exchange, and Delamination of Co-A1 Layered Double Hydroxide:Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies [J]. J. Am. Chem. Soc.,2006,128:4872-4880
    [51]Chen H, Zhang F, Fu S, Duan X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Adv. Mater.,2006,18:3089-3093
    [52]Wang L.Y., Li C., Liu M., Evans D. G., Duan X. Large continuous, transparent and oriented self-supporting films of layered double hydroxides with tunable chemical composition [J]. Chem. Commun.,2007:123-125
    [53]He J. X., Yamashita S., Jones W., Yamagishi A. Templating Effects of Stearate Monolayer on Formation of Mg-Al-Hydrotalcite[J]. Langmuir,2002,18:1580-1586
    [54]Zhang F Z, Sun M, Xu S L, Zhao L L, Zhang B W. Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection[J]. Chem. Eng. J:,2008,141:362-367
    [55]Chen H Y, Zhang F Z, Chen T, Xu S L, Evans D G, Duan X. Comparision of the evolution and growth processes of films of M/Al layered double hydroxides with M=Ni or Zn[J]. Chem. Eng. Sci.,2009,64:2617-2622
    [56]Gardner E., Huntoon K. M., Pinnavaia T. J. Direct Synthesis of Alkoxide Intercalated Derivatives of Hydrotalcite-like Layered Double Hydroxides: Precursors for the Formation of Colloidal Layered Double Hydroxide Suspensions and Transparent Thin Films [J]. Adv. Mater.,2001,13:1263
    [57]Gursky J. A., Blough S. D., Luna C., Gomez C., Luevano A. N., Gardner E. A. Particle-Particle Interactions between Layered Double Hydroxide Nanoparticles [J]. J. Am. Chem. Soc.,2006,128:8376-8377
    [58]Xu Z P, Stevenson G, Lu C Q, Lu G Q. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions[J]. J. Phys. Chem. B.,2006, 110,16923-16929
    [59]陈虹芸,徐赛龙,陈旭,张法智,Evans D G,段雪.层状双羟基复合金属氧化物薄膜的研究进展[J].中国科学,2008,38(8):659-667
    [60]Zhang F. Z., Zhao L. L., Chen H. Y., Xu S. L., Evans D. G., Duan X. Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum [J]. Angew. Chem. Int. Ed.,2008,47:2466-2469
    [61]Chen X, Fu C, Wang Y, Yang W S, Evans D G. Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets[J]. Biosens. Bioelectron.,2008,3:356-361
    [62]Lu Z, Zhang F Z, Lei X D, Yang L, Xu S L, Duan X. In situ growth of layered double hydroxide films on anodic aluminum oxide/aluminum and its catalytic feature in aldol condensation of acetone[J]. Chem. Eng. Sci.,2009,16:4055-4062
    [63]Liu X L, Wei M, Evans D G, Duan X. Structured chiral adsorbent formed by cyclodextrin modified layered solid film[J]. Chem. Eng. Sci.,2009,9:2226-2233
    [64]Yang L, Yin L, Zhang Y C, Lu Y L, Li F. Facile preparation of magnesium ferrite film via a single-source precursor route[J]. Chem. Lett.,2007,36:1462-1463
    [65]周志刚铁氧体磁性材料[M].北京:科学出版社,1981
    [66]尹有祥,孙岩石.铁的氧化物和铁氧体磁性材料[J].磁性材料及器件,2001,32(5):56-61
    [67]Liu C., Zou B. S., Rondinone A. J., Wang Z. J. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings [J]. J. Am. Chem. Soc.,2000,122: 6263~6267
    [68]近角聪信.磁性体手册(中)[M].北京:冶金出版社,1984
    [69]马如璋.功能材料学概论[M].北京:冶金工业出版社,1999
    [70]Wang L, Li F S. Mdssbauer study of nanocrystalline Ni-Zn ferrite[J]. J. Magn. Magn. Mater.,2001,223:233-237
    [71]Bowen C R, Derby B. Self-propagating High Temperature Synthesis of Ceramic Transactions[J]. British Ceramic Transactions,1997,96:25-27
    [72]丁子文,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐通报,1993.21:443-450
    [73]Poddar, Srikanth H, Morrison S A. Inter-particle interactions and magnetism in manganese-zinc ferrite nanoparticles[J]. J. Magn. Magn. Mater.,2005,288: 443-451
    [74]陈志君.铁氧体材料研究进展[J]Ceramics Scicence & Art,2003,3:31-35
    [75]李东风,贾振斌,魏雨.尖晶石型软磁铁氧体纳米材料的制备研究进展[J].电子元件与材料,2003,22(6):37-40
    [76]刁春丽,娄广辉.铁氧体磁性材料的研究现状与展望[J].山东陶瓷,2006,1:18-21
    [77]Hamdeh H H, Xia Z, Foehrweiser R, McCormick B J, Willey R J, Busca G. Mossbauer spectrometry study of magnesioferrite particles [J]. J. Appl. Phys.,1994, 76(2):1135-1140
    [78]关小蓉,张剑光,朱春城,郝晓东,周善东.锰锌、镍锌铁氧体的研究现状及最新进展[J].材料导报,2006,20:109-112
    [79]都有为.磁性材料进展[J].物理学报,2000,6:323-332
    [80]Meisen U, Eiling A, Temperature dependence of magnetic properties and site occupation of various barium-ferrites[J]. IEEE Trans. Magn.,1990,26:21-23
    [81]蒋仁培,魏克珠.微波铁氧体理论与技术[M].北京:科学出版社,1984,240-260
    [82]李俊,冷观武,彭虎.旋磁铁氧体材料的微波烧结及其在环行器中的应用研究[J].磁性材料及器件,2006,5:47-49
    [83]Pardavi-Horvath M., Microwave applications of soft ferrites[J]. J. Magn. Magn. Mater.,2000,215:171-183
    [84]陈亚杰,狄国庆.尖晶石型铁氧体薄膜的研究现状[J].磁性材料及器件,1999,30:2
    [85]聂小亮,兰中文,孙科,余忠.NiZn铁氧体薄膜制备技术的研究进展[J].材料导报,2007,21:81-88
    [86]Gu B X. Magnetic properties and magneto-optical effect of Co0.5Fe2.5O4 nanostructured films[J]. Appl. Phys. Lett.,2003,82:3707-3709
    [87]Tanaka T, Kurisu H, Matsuura M. Fabrication of ultrathin Ni-Zn ferrite films using electron cyclotron resonance sputtering method [J]. J. Appl. Phys.,2006,99: 1-3
    [88]张超,吴卫东,程新路,杨向东,徐华,谢军.脉冲激光气相沉积法制备钴纳米薄膜实验研究[J].强激光与粒子束,2004,4:449-452
    [89]Munetoshi S, Akther H, Tomoji K. High temperature cluster glass state and photomagnetism in Zn-and Ti-substituted NiFe2O4 films[J]. J. Appl. Phys.,2005, 97:083541
    [90]Hai T H. Spinel ferrite thin-.lm synthesis by spin-spray ferrite plating[J]. Physical Chemistry B,2003,327:194-197,195
    [91]Kitamoto Y, Zhang F, Abe M, Naoe M. Increase in perpendicular coercivity of Co-Ni ferrite plated films by Zn ferrite underlayers[J]. J. Appl. Phys.,2000,87 6878-6880
    [92]Do J G, DUQUE S. An Alternative Method to P repare CoFe2O4 Films[J]. phys. Stat.sol(b),2000.220:413
    [93]王九经,郁黎明,曹世勋NiZn铁氧体薄膜的显微结构和低温磁性质[J].功能材料,2005,12:1855
    [94]邓平,翁家宝,郑雪琳,乔涛.软化学法制备纳米铁氧体的研究进展[J].化学工 业与工程技术,2009,3:20-23-
    [95]Yu S H, Yoshimura M. Ferrite/metal composites fabricated by soft solution processing [J]. Adv. Fun. Mater.,2002,12:9-15
    [96]冯则坤,何华辉.尖晶石型铁氧体薄膜的化学镀技术及其应用[J].材料保护,1999,12:1-3
    [97]Harris V G, Chen Z H, Chen Y J, Yoon S. Ba-hexaferrite films for next generation microwave devices [J]. J. Appl. Phys.,2006,99:08M9111-08M9116
    [98]凌翠翠,陆海鹏,崔晶晶.微波频段用高磁导率铁氧体薄膜研究进展[J].磁性:材料及器件,2006,1:10-13
    [99]Jeong U, Teng X W, Wang Y, Yang H, Xia Y N. Superparamagnetic colloids: controlled synthesis and nich applications[J]. Adv. Mater.,2007,19:33-60
    [100]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2008
    [101]Hsieh C T, Liu J Q, Lue J T. Magnetic force microscopy studies of domain walls in nickel and cobalt films[J]. Appl. Surf. Sci,2005,252:1899-1909
    [102]Yang T, Hirohata A, Kimura T, Otani A. Spin-transfer-induced magnetic domain formation[J]. J. Appl. Phys.,2006,100:0739061-0739064
    [103]Xuan S H, Wang Y X, Yu J C, Leung K C. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles[J]. Chem. Mater.,200921:5079-5087
    [104]Ge J P, Hu Y X, Zhang T R, Yin Y D. Superparamagnetic composite colloids with anisotropic structures[J]. J. Am. chem. Soc.,2007,29:8974-8975
    [105 Berkowitz A E, Takano K. Exchange anisotropy [J]. J. Magn. Magn. Mater.,1999, 200:552-570
    [106]Nogues J, Sort J, Langlais V. Exchange bias in nanostructures[J]. Phys. Rep,2005, 422:65-117
    [107]Nogues J. Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix [J]. Int. J. Nanotechnol.,2005,2:23-42
    [108]Darling S B, Bader S D. A materials chemistry perspective on nanomagnetism[J]. J Mater. Chem.,2005,15:4189-4195
    [109]Kodama R H. Magnetic nanoparticles[J]. J. Magn. Magn. Mater.,1999,200: 359-372
    [110]Martin J I, Nogues J, Liu K, Vicent J L, Schuller I K. Ordered magnetic nanostructures:fabrication and properties [J]. J. Magn. Magn. Mater.,2003,256: 449-501
    [111]Sousa M H, Tourinho F A. New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures [J]. J. Phys. Chem. B.,2001,105: 1168-1175
    [112]Sugimoto M. The past, present, and future of ferrites [J]. J. Am Ceram. Soc.,1999, 82:269-280
    [113]Corr S A, Rakovich Y P, Gunko Y K. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications [J]. Nanoscale. Res. Lett.,2008,3: 87-104
    [114]Hodes G. When small is different:some recent adcances in concepts and applications of nanoscale phenomena [J]. Adv. Mater.,2007,19:639-655
    [115]Data storage technology assessment-2002 projections through 2010[R]. Washton: National technology alliance,2003
    [116]The future of data storage technologies[R]. Maryland:International technology research institute,1999
    [117]Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Glvord D, Nogues J. Beating the superparamagnetic limit with exchange bias[J].Nature.,2003,423:850-853
    [118]Weller D, Moser A. Thermal effect limits in ultrahigh-density magnetic recording [J]. IEEE Trans. Magn.,1999,35:4423-4437
    [119]Cho H S, Kim H J. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering [J]. App. Phys. Lett.,1995, 66:1282-1284
    [120]Artus M, Ammar S, Sicard L, Piquemal J Y, Erbst H F, Vaulay M J, Fievet F, Richard V. Synthesis and magnetic properties of ferrimagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix [J]. Chem. Mater., 2008,20:4861-4872
    [121]Tian Z M, Yuan S L, Liu L, Yin S Y, Jia L C, Li P, Huo S X, Li J Q. Exchange bias training effect in NiFe2O4/NiO nanocomposites[J]. J. Phys. D:Appl. Phys.,2009, 42:035008-035011
    [122]Tian Z M, Yuan S L, Yin S Y, Liu L, He J H,. Duan H N, Li P, Wang C H, Exchange bias effect in a granular system of NiFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix[J]. Appl. Phys. Lett.,2008,93:222505-222507
    [123]Arco M D, Malet P, Trujillano R, Rives V. Synthesis and characterization of hydrotalcites containing Ni(Ⅱ)and Fe(Ⅲ) and their calcination products[J]. Chem. Mater.,1999,3:624-633
    [124]Bellotto M, Rebours B, Clause O, Lynch J. Hydrotalcite decomposition mechanism: a clue to the structure and reactivity of spinel-like mixed oxides[J]. J.Phys Chem, 1999,100:8535-8542
    [125]Sideris P J, Nielsen U G, Gan Z H, Grey C P, Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy [J]. Science,2008,321: 113-117
    [126]Arco M del, Trujillano R, Rive V, Cobalt-iron hydroxycarbonates and their evolution to mixed oxides with spinel structure[J]. J. Mater. Chem.,1998,8: 761-767.
    [127]Radha A V, Thomas G S, Kamath P V, Shivakumara C. Suppression of spinel formation to induce reversible thermal behavior in the layered double hydroxides of Co with Al, Fe, Ga, and In[J].. J. Phys. Chem. B.,2007,111:3384-3390
    [128]Markov L, Petrov K, Lyubchova A. Topotaxy, nucleation and growthSolid[J]. State Ionics.,1990,43:143-170
    [129]Li C, Wang L Y, Evans D G, Duan X. Large oriented mesoporous self-supporting Ni-Al oxide films derived from layered double hydroxides precursors[J]. J. Mater. Chem.,2008,18:2666-2672
    [130]Millange F, Walton R I, O'Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J. Mater. Chem.,2000,7:1713-1720
    [131]Salazar G, Sort J, Surinach S, Baro M D, Nogues J. Synthesis and size-dependent exchange bias in inverted core-shell MnO|Mn3O4 nanoparticles[J]. J. Am. Chem. Soc.,2007,129:9102-9108
    [132]Liu C, Zou B S, Rondinone A J, Zhang Z J. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings[J]. J. Am. Chem. Soc.,2000,122:6263-6267
    [133]Song Q, Zhang Z J. Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals[J]. J. Phys. Chem. B,2006,110:11205-11209
    [134]Tian Z M, Yuan S L, Liu L, Yin S Y, Jia L C, Duan H N, Li P, Wang C H, Li J Q. Synthesis and exchange bias effect of CuFe2O4/NiO nanocomposites[J].Smart. Mater. Struct.,2009,18:0150181-0150184
    [135]Park C D, Magana D, Stigman A E. High-quality Fe and y-Fe2O3 magnetic thin film from an epoxide-catalyzed sol-gel process[J]. Chem. Mater.,2007,19:677-682
    [136]Jensen P J. Magnetic recording medium with improved temporal stability[J]. Appl. Phys. Lett.,2001,78:2190-2192
    [137]Toro A, Berenguer R, Quijada C, Montilla F, Morallon E, Vazquez J L. Preparation and characterization of copper-doped cobalt oxide electrodes[J]. J. Phys. Chem. B., 2006,110:24021-24029
    [138]王丽,周庆国,孙建荣,王海波,李发伸CoFe2O4铁氧体纳米颗粒的结构与磁性[J].磁性材料及器件,2006,1:23-25
    [139]Kamble R B, Mathe V L, Nanacrystalline nickel ferrite thick film as an efficient gas sensor at room temperature[J]. Sensor. Actuat. B.,2008,131:205-209
    [140]Schloemann E. Advances in ferrite microwave materials and devices[J]. J. Magn. Magn. Mater.,2000,209:15-20
    [141]Yin J H, Ding J, Liu B H, Miao X S, Chen J S. Nanocrystalline Co-ferrite films with high perpendicular coercivity[J]. Appl. Phys. Lett.,2006,88:1625021-1625024
    [142]Ramana C V, Zaghib K, Julien C M. Highly oriented growth of pulsed-laser deposited LiNi0.8Co0.2O2 films for application in microbatteries[J]. Chem. Mater., 2006,18:1397-1400
    [143]Wang M S, Kin E J, Hahn S H, Park C, Koo K. Controlled crystal growth and crystallite orientation in ZnO films/nanorods prepared by chemical bath deposition effect of solvent[J]. Crystal Growth & Design,2008,2:501-506
    [144]Yang Y, Gao Q. Growth of highly oriented CuI/β-cyclodextrin hybrid composite film[J]. Langmuir,2005,21:6866-6871
    [145]Zhou J F, Zhou M F, Caruso R. A. Agarose Template for the Fabrication of Macroporous Metal Oxide Structures [J]. Langmuir,2006,22:3332-3336
    [146]Schattka J H, Wong E H M, Antoniettia M., Caruso R. A. Sol-gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films [J]. J. Mater. Chem.,2006,16:1414-1420
    [147]Breulmann M., Davis S A., Mann S, HentzeH, Antonietti M. Polymer-Gel Templating of Porous Inorganic Macro-Structures Using Nanoparticle Building Blocks [J]. Adv. Mater.,2000,12:502-507.
    [148]Toberer E S, Joshi A, Seshadri R. Template-free routes to macroporous monoliths of nickel and iron oxides:toward porous metals and conformally coated pore wall [J]. Chem. Mater.,2005,17:2142-2147
    [149]Toberer E S, Seshadri R. Template-free routes to porous inorganic materials[J]. Chem. Commun.,2006:3159-316
    [150]Roach P, Shirtcliffe N J, Newton M I. Progess in superhydrophobic surface development[J]. Soft. Matter.,20048,4:224-240
    [151]Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. Superhydrophobic surfaces:from structural control to functional application[J]. J. Mater. Chem.,2008,18:621-633
    [152]Feng X J, Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Adv. Mater,2006,18:3063-3078
    [153]郭志光,刘维民.仿生超疏谁性表面的研究进展[J].化学进展,2006,6:721-726
    [154]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,12:1258-1264
    [155]Hong X, Gao X F, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet[J]. J. Am. Chem. Soc.,2007,129:1478-1479
    [156]Li Y B, Zheng M J, Ma J, Zhong M, Shen W Z. Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force[J]. Inorg. Chem.,2008,47:3140-3143
    [157]Ma R Z, Liu Z P, Takada K, lyi N, Bando Y, Sasaki T. Synthesis and exfoliation of Co2+-Co3+ layered double hydroxdes:an innovative topochemical approach[J]. J. Am. Chem. Soc.,2007,129:5257-5263
    [158]Meng W Q, Li F, Evans D G, Duan X. Preparation and intercalation chemistry of magnesium-iron(Ⅲ) layered double hyrdorxides containing exchangeable interlayer chloride and nitrate ions[J]. Mater. Res. Bull.,2004,39:1185-1193
    [159]Han M, Vestal C R, Zhang Z J. Quantum coupling and magnetic properties of CoCrxFe2-xO4 spinel ferrite nanoparticles synthesized with reverse micelle method[J]. J. Phys. Chem. B.,2004,108:582-587
    [160]Vestal C R, Zhang Z J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core[J]. Nano. Lett.,2003, 12:1739-1743
    [161]Rondinone A J, Samia A C S, Zhang Z J. Superparamagnetic relaxtion and magnetic anisotropy energy distribution in cobalt spinel ferrite nanocrystallites[J]. J. Phys. Chem. B.,1999,103:6876-6880
    [162]Song Q, Zhang Z J. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals[J]. J. Am. Chem. Soc.,2004,126:6164-6168
    [163]Luo H M, Wang D H, He J B, Lu Y F. Magnetic cobalt nanowire thin films[J]. J. Phys. Chem. B.,2005,109:1919-1922
    [164]Terzzoli M C, Duhalde S, Jacobo S, Steren L, Moina C. High perpendicular coercive field of CoFe2O4 thin films deposited by PLD[J]. J. Alloy. Compd.,2004, 369:209-212
    [165]Zhang H Y, Gu B X, Zhai H R, Lu M, Miao Y Z, Zhang S Y, Huang H B. Anisotropy and faraday effect in Co spinel ferrite films[J]. J. Appl. Phys.,1994,75:7099-7101
    [166]Zou L, Xiang X, Fan J, Li F. Single-source precursor to complex metal oxide monolith with tunable microstructures and properties:the case of Mg-containing materials[J]. Chem. Mater.,2007,19:6518-6527
    [167 Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature,2001, 414:33-34
    [168]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007
    [169]Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature,2004,432:36
    [170]Jin M H, Feng X J, Feng L, Sun T L, Zhai J, Li T J, Jiang L. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Adv. Mater.,2005, 17:1977-1981
    [171]Boscher N D, Carnalt C J, Parkin I P. Atmospheric pressure chemical vapor deposition of Wse2 thin films on glass-highly hydrophobic sticky surfaces[J]. J. Mater. Chem.,2006,16:122-127
    [172]徐南平.无机膜的发展现状与展望[J].化工进展,2000,19:5-9
    [173]Burggraaf A J, Cot L F. Fundamentals of inorganic membrance science and technology[J]. Membrane. Sci. Tech.,1996,4:111-116
    [174]Tennison S. Current hudles in the commercial development of inorganic membrance reactors[J]. Membrane Technology,2000,128:4-9
    [175]Li C, Wang L Y, Evans D G, Duan X. Thermal evolution and luminescence properties of Zn-Al layered double hydroxides containing europium(Ⅲ) complexes of ethylenediaminetetraacetate and nitrilotriacetate[J]. Ind. Eng. Chem. Res.,2009, 48:2162-2668
    [176]Tao Q, Zhang Y M, Zhang X, Yuan P, He H P. Synthesis and characterization of layered double hydroxydes with a high aspect ratio[J]. J. Solid State Chem.,2006, 179:708-715
    [177]Mourad M C D, Devid E J, Schooneveld M, Vonk C, Lekkerkerker H. Formation of nematic liquid crystals of sterically stabillized layered double hydroxide platelets [J]. J. Phys. Chem. B.,2008,112:10142-10152
    [178]Hu G., O'Hare D. Unique layered double hydroxides morphologies using reverse microemulsion synthesis [J]. J. Am. Chem. Soc,2005,127:17808-17813
    [179]Kong X H, Liu X B, He Y D, Zhang D S, Wang X F, Li Y D. Hydrothermal synthesis of β-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties [J]. Mater. Chem. Physi.,2007,106:375-378
    [180]Hashimoto S, Zhang S W, Lee W E, Yamaguchi A. Synthesis of magnesium aluminate spinel platelets from alpha-alumina platelet and magnesium sulfate precursors[J]. J. Am. Ceram. Soc.,2003,86:1959-1961
    [181]Xu J, Zhang W X, Yang Z H, Ding S X, Zeng C Y, Chen L L, Wang Q, Yang S H. Large-scale synthesis of long crystalline Cu2-xSe nanowire bundles by water-evaporatio-induced self assembly and their application in gas sensing[J]. Adv Funct Mater.,2009,19:1759-1766
    [182]Wang X, Li Y D. Monodisperse nanocrystals:general synthesis, assembly, and their applications[J]. Chem. Comm.,2007,2901-2910
    [183]Xu R, Xie T, Zhao Y G, Li Y D. Single-crystal metal nanoplates:cobalt, nickel, copper, and silver[J]. Cryst. Growth & Design.,2007,9:1904-1911
    [184]Lei X D, Yang L, Zhang F Z, Duan X. A novel gas-liquid contacting route for the synthesis of layered double hydroxides by decomposition of ammomium carbonate[J]. Chem. Eng. Sci.,2006,61:2730-2733
    [185]王连英,张英超,王祎鹏,尹平.一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法[P].中国专利,20071122132.1.2007-09-21
    [186]Schwenzer B, Roth K M, Gomm J R, Murr M, Morse D E. Kinetically controlled wapor-diffusion synthesis of novel nanostructure metal hydroxide and phosphate films using no organic reagents[J]. J. Mater. Chem.,2006,16:401-407
    [187]Kisailus D, Schwenzer B, Gomm J, Weaver J C,. Morse D E. Kinetically conttrolled catalytic formation of zinc oxide thin films at low temperature [J]. J. Am Chem. Soc,2006,128:10276-10280
    [188]Khan A I, O'Hare D. Intercalation chemistry of layered double hydroxide:recent developments and applications [J]. J. Mater. Chem.,2002,12:3191-3198
    [189]Rives V, Ulibarri M A. Layered double hydroxides intercalated with metal coordination compounds ans oxometalates[J]. Coordin. Chem. Rev.,1999,181: 61-120
    [190]Beaudet P, De Roy M E, Besse J P. Intercalation of noble metal complexes in LDHs compounds[J]. J. Solid. State. Chem,.2004,177:2691-2698
    [191]Zhang Y C, Wang L Y, Wu G Q, Chang A, Evans D G. Hydrothermal synthesis of Mg/Al layered double hydroxides intercalated with a [Zn(NTA)]- complex [J]. J. Phys Chem. Solid,2008,69:1095-1097
    [192]Leest R E, Roozeboom F. Nickel-zinc ferrite films by rapid thermal processing of sol-gel precursors[J]. Appl. Surf. Sci.,2002,187:68-74
    [193]Cheng F X, Peng Z Y, Xu Z G, Liao C S, Yan C H. The sol-gel preparation and AFM study of spinel CoFe204 thin film[J]. Thin Solid Film,1999,339:109-113
    [194]Xu Z P, Stevenson G S, Lu C Q, Lu G Q, Bartlett P F, Gray P P. Stable suspension of layered double hydroxide nanoparticles in aqueous solution[J]. J. Am. Chem. Soc., 2006,128:36-37
    [195]Ferreira O P, Alves O L, Gouveia D X, Fiho A, Paiva J, Filho J M. Thermal decomposition and structural reconstruction effect on Mg-Fe-based hydrotalcite compounds[J]. J. Solid. State. Chem.,2004,177:3058-3069
    [196]Li F, Yang Q Z, Evans D G, Duan X. Synthesis of magnetic nanocomposite MgO/MgFe2O4 from Mg-Fe layered double hydroxides precursors[J]. J. Mater. Sci., 2005,40:1917-1922
    [197]Yamamoto Y, Tanaka H, Kawai T. Appearance of magnetic blocking temperature in zinc magnesium ferrite thin films [J]. J. Magn. Magn. Mater.,2003,261:263-268
    [198]Mooney K E, Nelson J A, Wagner M J. Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction [J]. Chem. Mater.,2004,16: 3155-3161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700