用户名: 密码: 验证码:
常压等离子体定向聚合氟碳纳米晶结构膜及性能应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维单晶聚合物纳米材料是我们追求的理想特性聚合物。如何运用简单有效的方法进行准一维单晶聚合物纳米材料的可控制备是本领域研究的重要课题。本文深入探索了常压低温等离子体定向聚合晶体成型新方法。主要研究了单晶氟碳聚合物纳米管、棒的聚合成型,重点探索等离子体中活性团簇粒子定向聚合结晶的机制,剖析了在常温、常压、无外加催化剂、无外加限域模板下快速进行聚合成型的微观过程和机理,掌握其关键控制因素,达到了对聚合物纳米管、棒的化学成分、结构、纳米晶粒尺度、结晶等的可控制备,获得具有均匀尺度及崭新特性的氟碳有机纳米管、棒。这将对发展其它一维单晶聚合物纳米结构的制备和应用具有普遍推广意义。论文主要研究内容包括以下几个方面:
     第一部分:研究了常压等离子体放电特性
     在常压等离子体定向聚合晶体过程中,等离子体的放电特性与定向聚合沉积过程密切相关,也极大的影响着纳米晶体沉积薄膜的结构特性。因此,本论文首先研究了常压等离子体放电特性;通过建立大气压下氩气中二维理论数值模型,研究了同轴圆筒状反应装置中介质阻挡放电(DBD)的放电特性,数值模拟结果揭示了等离子体中放电通道的形成与发展过程;包括电子、离子浓度和表面电荷密度随空间和时间的分布,及其与空间电场的对应关系,说明了在介质表面附近区域的场强有明显的梯度变化,这是决定定向聚合晶体过程的主导因素。
     第二部分:研究了氟碳纳米晶体结构薄膜的生长过程、影响因素及机理
     通过SEM、TEM对薄膜结构分析表明,氟碳纳米晶体结构薄膜主要由纳米管、纳米棒和纳米颗粒组成的混合体。实验中影响氟碳纳米晶体生长形态的重要工艺参数有放电功率、放电时间以及Ar和C_6F_(14)混合气体流量比R。通过调整放电参数,成功实现了氟碳单晶纳米管和单晶纳米棒的可控快速(十几秒到三分钟)制备;另外通过对XRD和TEM的结果分析,说明常压DBD等离子体聚合的氟碳纳米晶体结构薄膜结晶良好并且是由两套晶体结构组成的混合结构:一维单晶纳米棒及纳米晶体颗粒膜所属的六方晶系;一维单晶纳米管所属的密堆六方晶系。通过XPS和FTIR分析表明:放电功率是影响氟碳纳米晶体结构薄膜特性的重要因素。结合实验和模拟分析结果,提出了适合常压低温等离子体聚合碳氟纳米晶体结构薄膜的“受梯度电场限制的一维活化生长模型”。
     第三部分:研究了氟碳纳米晶体结构薄膜的热性能以及织物表面功能化。
     通过PLM和TGA研究了氟碳纳米晶体结构薄膜的熔融过程,在室温(36.7℃)下观察到棒状的氟碳晶体,而在100℃和250℃两个温度附近出现了较明显的熔融分解过程,特别是当温度达到350℃,仍可得到部分晶体的双折射存在。
     另外,利用常压等离子体Ar/C_6F_(14)快速聚合涂层功能化,赋予棉织物表面拒油拒水特性,并对整理后的织物进行一系列的性能测试,包括拒水性、拒油性、透湿性、手感柔软性等。通过对整理后的棉织物各方面性能的变化情况,讨论了常压DBD氟碳涂层对织物性能的影响。特别是获得了与商用ScotchgardTM防污保护剂涂覆的织物相当的拒水特性。
One dimensional (1D) nanomaterials have been attracting much attention recently for their tremendous potential applications in nanoscience and nanotechnology. The 1D nanomaterials in terms of nanotube, nanowire and nanobelts are widely employed in nannodevices, photoelectronic devices and sensors for their specific physical and chemical characteristics. It is accepted that the preparation and characterization of nanomaterials both are most important issues. In nanomaterials preparation, plasma technologies, especially nonthermal atmospheric-pressure plasmas, are considered to be a feasible and effective method with low-cost for forming crystal nanostructures, in which, the nanostructures are formed with process of assembling or etching by electrons, atoms, ions, excited molecules generated in plasma.
     In this thesis, a novel method of "atmospheric oriented plasma polymerizations" is developed for forming single crystalline fluorocarbon polymer nanotubes and/or nanorods, in which, an asymmetrical electrical field with gradient in plasma is used for generating and polarizing the reactive species. The results are listed briefly as following:
     PartⅠ: Characterization of plasmas discharge
     The experimental set-up applied in our study is a dielectric-barrier cylindrical reactor, the discharge characteristics in which are investigated with electrical measurements and numerical simulation. The measured waveforms of applied voltage and discharge current suggest that the discharge is a typical dielectric-barrier discharge (DBD) and is filled with filaments. Further studies on discharge characteristics are carried out with a numerical simulation of particle in cell (PIC). The dynamics and evolution of microdischarge are demonstrated by spatial-temporal distribution of electron density, ion density, surface charge density and electric field. It shows that these charged particles in discharge are all accumulated in the regime above dielectric layer surface at anode, which suggests an asymmetrical electric field with gradient around anode.
     PartⅡ: Fabrication and manipulation of morphology in PTFE-like polymer nanocrystals films
     With atmospheric DBDs, the PTFE-like polymer nanocrystals films can be obtained within a short period of time ranging from a few seconds to several minutes, in which, different morphology nanocrystals in terms of nanorods, nanoparticles and nanotubes are all found by SEM. Furthermore, it is confirmed that these nanocrystals are in phase of single-crystaline by TEM and XRD results. Additionally, the dependence of nanocrystalline morphology and crystallinity on discharge parameters of discharge time duration, flow ratio of monomer to carrier gas and discharge dissipated power were investigated. The results demonstrate that the physical morphology and structures could be manipulated with the discharge conditions, especially for the oriented plasma polymerization. It suggests that this novel polymerization method offers a rapid and effective way for fabricating polymeric nanocrystallines.
     For better understanding of underpinning film growth mechanism, the procedure of nanocrystalline film synthesis is discussed, correlated to discharge characteristics. It suggests that the asymmetrical gradient electrical field plays an important role on growth of -one dimensional nanocrystals oriented plasma polymerizations, based on which, the growth model named "one dimensional activated growth model limited by gradient electrical field" is proposed for explanation of film growth mechanism.
     PartⅢ: Hydrophobic properties and thermal properties of nanocrystals films
     The result of PLM and TGA indicates that the title compound keeps stable up to temperature of 350°C. The contact angle of the water and 1-bromonaphthalene on coated cotton fabric was found to be 133°and 124°, separately. The surface morphology of the coating was examined through SEM. It was found that cotton fabric surface was tightly adhered to a thin film packed by nano-particles with diameter from 10 nm to 200 nm. This process showed potential applications in continuous coating of textiles with functional nano-particulate polymers, without changing their performance of softness.
引文
[1]刘焕彬 陈小泉 纳米科学与技术导论2006,7-9.
    [2]张立德,牟季美,纳米材料与纳米结构 第一版,北京:科学出版社,2001.
    [3]Appell D.Nanotechnology:wired the world,Nature,2002,419-553.
    [4]Xia Y N,Yang P D,Sun Y G,Wu Y Y,Mayers B,Cates B,Yin Y D,Kim F L,Yah H Q,One-dimensional nanostructures:synthesis,characterization,and applications,Advanced Materials,2003,15,353-389.
    [5]Iijima S,Helical Microtubules of Graphitie Carbon,Nature,1991,354,56-58.
    Bethune D S,Kiang C H,et al.Cobalt-catalyzed growth of carbon nanotubes with single-atomie-layer walls[J].Nature,1993,363(6430):605-607.
    [6]Iijima S,Ichihashi T,Single-shell carbon nanotubes of 1-nm diameter,Nature,1993,363,603-605.
    [7]Bethune D S,Kiang C H,De Vries M S,Gorman G,Savoy R,Vazquez J,Beyers R,Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,Nature,1993,363,605-607.
    [8]Liu C,Cong H T,Cheng H M,Zhou B L,Semi-continuous synthesis of single-walled carbon nanotubes by hydrogen arc method,Carbon,1999,37,1865-1868.
    [9]Ebbesen T W,Ajayan P M,Large-scale synthesis of carbon nanotubes,Nature,1992,358,220-222.
    [10]Birkett P R,Cheetham A J,Eggen B R,Hare J P,Kroto H W,Walton D R M,Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single-walled nanotubes of uniform diameter,Chemical Physics Letters,1997,281,111-114.
    [11]Cheng H M,Li F,Su G,Pan H Y,He L L,Sun X,Dresselhaus M S,Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,Applied Physics Letters,1998,72,3282-3284.
    [12]Fan S S,Chapline M G,Franklin N R,WTombler T,Cassell A M,Dai H J, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999,283, 512-514.
    [l3]Guo T, Nikolaev P, Thess A, Colbert D T, Smalley R E, Catalytic growth of single-walled nanotubes by laser vaporization, Chemical Physics Letters, 1995,243,49-54.
    [14] Thess A, Lee R, Nikolaev P, Hongjie D, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273,483-487.
    [15]Liu J, Dai H, Hafner J H, Colbert D T, Tans S J, Dekker C, Smalley R E, Fullerene "Crop Circles", Nature, 1997, 385-780.
    [16]Iijima S, Zhang Y, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature, Applied Physics Letters, 1999, 75, 3087-3089.
    [17]Ducati C ,Alexandrou I ,Chhowalla M et al. The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition, J Appl Phys ,2004,95 :6387.
    [18]Hofmann S ,Ducati C ,Robertson,Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition.J. Appl Phys Lett ,2003 ,83:135.
    [19]hee Han J , Yang Won2suk , Yoo Ji2beom et al .Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition, J Appl Phys ,2000,88 :7363.
    [20]Ikuno T,Katayama M.Kamada K et al . Influence of Plasma State on the Structural Property of Vertically Oriented Carbon Nanotubes Grown by RF Plasma-Enhanced Chemical Vapor Deposition, Jpn J Appl Phys ,2003 ,42:6717.
    [21]Lee J H ,Heo J N ,Yi W K et al Growth of carbon nanotubes on the chemically synthesized nickel nanoparticles . Physica B ,2002 ,323-321.
    [22]Teo K B K,Chhowalla M, Amaratunga G A J, Milne W I, Hasko D G, Pirio G, Legagneux P, Wyczisk F, Pribat D, Uniform patterned growth of carbon nanotubes without surface carbon, Applied Physics Letters, 2001,79, 1534-1536.
    [23]Wei B Q, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan P M, "Organized assembly of carbon nanotubes", Nature, 2002,416,495-496.
    [24]Feldman Y, Wasserman E, Srolovitz D J, Tenne R,"High-rate, gas-phase growth of MOS_2 nested inorganic fullerenes and nanotubes, Science, 1995, 267,222-225.
    [25]Hacohen Y R, Grunbaum E, Tenne R, Sloan J, Hutchison J L, Cage structures and nanotubes of NiCl_2, Nature, 1998,395,336-337.
    [26]Dai Z R, Cole J L, Stout J D, Wang Z L, Tin Oxide nanowirs, nanoribbons,and nanotubes, Journal of Physical Chemistry B, 2002,106, 1274-1279.
    [27]Wang Z L, Gao R P P, Gole J L, Stout J D, Silica nanotubes and nanofibers arrrays, Advanced Materials, 2000,12,1938-1940.
    [28]Sung S L, Tsai S H, Tseng C H, Chiang F K, Liu X W, Shih H C, Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition, Applied Physics Letters, 1999,74,197-199.
    [29]Sharma S, Sunkara M. Direct synthesis of Gallium Oxide tubes, nanowires and nanopaintbrushes, Journal of American Chemistry Society, 2002, 124, 12288-12293.
    [30]Xu A W, Fang Y P, You L P, Liu H Q, A simple method to synthesize Dy(OH)_3 and Dy_2O_3 nanotubes, Journal of American Chemistry Society, 2003, 125, 1494-1495.
    [31]Li W Z, Xie S S, Qian L X, Chang B H, Zou B S, Zhou W Y, Zhao R A, Wang G, Large-Scale synthesis of aligned carbon nanotubes, Science, 1996, 274, 1701-1703.
    [32]Murakami H,Hirakawa M,Tanaka C,Yamakawa H,Field emission fromweli-aligned,paterned,carbon nanotube emitters,Applied Physics Letters,2000,76,1776-1778.
    [33]Sander J,Alwin R M,Dekker C,Room-temperature transistor based on a single carbon nanotube,Nature,1998,393,49-51.
    [34]Morales A M,Lieber C M,A laser ablation method for the synthesis of crystalline semiconductor nanowires,Science,1998,279,208-211.
    [35]Gao X.Y,Gao T,Zhang L D,Solution-solid growth of(x-monoclinic selenium nanowires at room temperature,Journal of Materials Chemistry,2003,3,6-8.
    [36]Duan X F,Lieber C M,Laser-assisted catalytic growth of single crystal GaN nanowires,Journal of American Chemistry Society,2000,122,188-189.
    [37]Park G S,Choi W B,Kim J M,Choi Y C,Lee Y H,Lim C B,Structural investigation of gallium oxide(β-Ga_2O_3) nanowires grown by arc-discharge,Journal of Crystal Growth,2000,220,494-500.
    [38]Routkevitch D,Bigioni T,Moskovits M,Xu J M,Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates,Journal of Physical Chemistry B,1996,100,14037-14047.
    [39]Jiang X,Xie Y,Lu J,Zhu L Y,He W,Qian Y F,Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation,Cheistry of Materials,2001,13,213-1218.
    [40]Pan Z W,Dai Z R,Wang Z L,Nanobelts of semieonducting oxides,Science,2001,291,1947-1949.
    [41]张菁,冯祥芬,谢涵坤,等.脉冲射频等离子体聚合沉积乙烯基乙酸.物理学报,2003,52:1707.
    [42]朱峰,张菁,VanOoijWJ.棉织物的等离子体聚合涂层及其拒水性研究.东华大学学报,2002,28(4):22.
    [43]S.R Coulson,I SWoodward,J P S Badyall Ultralow surface energy plasma polymer films,Cheml Mater,2000,12:1031-1038.
    [44]Jing Zhang,William Van Ooij,Paul France,et all Investigation of deposition rate and structure of pulse dc plasma polymersl Thin Solid Films,2001,390:123-129.
    [45]郭颖,周荣铭,张菁,常温常压等离子体氟碳纳米颗粒膜表征,东华大学学报(自然科学版),Vol.31,No.2 Apr.2005.
    [46]E.L.托马斯 主编,施良和,沈静姝等译,材料科学与技术丛书(第12卷),聚合物的结构与性能,科学出版社,1999,537.
    [47]J.H.Sch(o|¨)n,Ch.Kloc,A.Dodabalapur,and B.Batlogg,An Organic Solid State Injection Laser,Science,2000,289:599-601.
    [48]Sumit Mazumdar,POLYMER PHYSICS:Prospects for the Polymer Nanoengineer,Science,2000,288:630-631.
    [49]Liu W,Wu Z,Reheker D H,Structure And Morphology Of Poly(Meta-Phenylene Isophthalamide) Nanofibers Produced By Electrospinning,Polymer Preprints,2000,41:1193-1194.
    [50]M.Steinhart,J.H.Wendorff,A.Greiner,R.B.Wehrspohn,K.Nielsch,J.Schilling,J.Choi,and U.G(o|¨)sele,Polymer Nanotubes by Wetting of Ordered Porous Templates,Science,2002,296:1997.
    [51]Fu MX,Zhu YF,Tan RQ,Shi GQ,Aligned Polythiophene Micro-And-Nanotubules,ADV MATER 2001,13(24):1874-876.
    [52]Wagner R S.Ellis W C Vapor-Iiquid-solid mechanjsm of single crystal growth[J]App / Phys.Lett.1964.4(3):89-90.
    [53]A.M.Morales,C.M.Lieber.A laser ablation method for the synthesis of crystalline semiconductor nanowires,Science,1998,279:208-211.
    [54]Y.C.Kong,D.P.Yu,B.zhang,W.Fang,S.O.Feng.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,Appl.Phys.Lett,2001,78:407-409.
    [55]Y.L.u,I.A.Kinioch,A.H.windle.Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis,Science,2004,304: 276-278.
    [56]T. Xie, G. S. Wu? B. Y. Geng, et al. A simple route to large scale synthesis of crystalline αSi3N4 nanowires ,Appl. Phys. A, 2005, 80:1057-1059.
    [57]M. Yasawa,M. Koguehi, A. Muto, K. Hiruma. Semiconductor nanowhiskers, Adv. Mater, 1993.5:577-580.
    [58]Wu Y, Yang P, Direct observation of vapor-liquid-solid nanowire growth, Journal of American Chemistry Society, 2001,123, 3165-3166.
    [59]Yu, LW; Alet, PJ; Picardi, G, et al,Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO_2 substrates, NANOTECHNOLOGY, 2008,19,48.
    [60]Joshi, RK; Yoshimura, M; Tanaka, K, et al,Synthesis of vertically aligned Pd2Si nanowires in microwave plasma enhanced chemical vapor deposition system J, OURNAL OF PHYSICAL CHEMISTRY C 2008,112,36 13901-13904
    [61]Y . Xia , P . et al . One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, JJ. Adv. Mater, 2003, 15: 353-389.
    
    [62]Z. W. Pan, Z. R. Dai, Z. L. Wang,Nanobelts of Semiconducting Oxides, Science, 2001, 291: 1947-1949.
    [63]Dai Z R, Pan Z W, Wang Z L, Novel nanostructures of functional oxides synthesizedby thermal evaporation, Advanced Functional Materials, 2003, 13, 9-24.
    [64]Y. wu, B. Messer, P. Yang. Superconducting MgB_2 Nanowires ,Adv. Mater, 2001, 13: 1487-1489.
    
    [65]彭新生.中国科学院固体物理研究所博士学位论文, 2003.
    
    [66]B. Geng, G. Meng, L. zhIlg, G. Wang, x. Peng. CdSe-Filled silica nanotubes ,Chem. Commun, 2003, 2572-2573.
    [67]Z. Jiang, T. Xie, B. Y. Geng, et al. Synthesis of core-shell nanowires of FeCoNi alloy core with silicon oxide layers ,Inorg. Chem. Commun, 2004,7,812-814.
    [68]Yan H F,Xing Y J,Hang Q L,Yu D.P,Wang Y P,Xu J,Xi Z H,Feng S Q,Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism,Chemical Physics Letters,2000,323,224-228.
    [69]T.J.Trentler,K.M.Hicknmn,S.C.Goel,et al.Solution-Liquid-Solid Growth of Crystalline Ⅲ-Ⅴ Semiconductors:An Analogy to Vapor-Liquid-Solid Growth[J].Science,1995,270,1791-1794.
    [70]Xia YN,Yang P D,Sun Y G,Wu Y Y,Mayers B,Cates B,Yin Y D,Kim F L,Yan H Q,One-dimensional nanostruetures:synthesis,characterization,and applications,Advanced Materials,2003,15,353-389.
    [71]Wu C G,Bein T,Conduction polyaniline filaments in a mesoporous channel host,Science,1994,264,1757-1759.
    [72]C.R.Martln.Nanomateriais-a membrane-based synthetic approach.Science,1994 266:1961-1966.
    [73]徐学基、诸定昌,气体放电物理,复旦大学出版社,1995,309
    [74]张芝涛 大气压窄间隙DBD等离子体源与应用基础研究 博士毕业论文23.
    [75]Liu D P,et al.Plasma-assisted CVD of hydrogenated diamond-like carbon films by low-pressure dielectric barrier discharge.J.Phys.D:Appl.Phys.,2001,34:1651-1656.
    [76]Schmidt S K,et al.Thin films deposition from hexamethyldisiloxane and hexame-thyldisilazane under dielectric-barrier discharge(DBD) conditions.Plasmas and Polymers,2000,5(3/4):173-190.
    [77]Wang C Q,He X N.Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface.Appl.Surf.Sci.,2006,253(2):926-929.
    [78]Thyen R,Hopfner K,Kiake N.Cleaning of silicon and steel surfaces using dielectric barrier discharges.Plasmas and Polymers,2000,5(2):91-102.
    [79]Lee Y H,Yeom G Y.Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure.Japanese J.of Appl.Phys. part 1-Regular Papers Short Notes&Review Papers,2005,44(2):1076-1080.
    [80]Scott S J,Figgures C C,Dixon D G.Dielectic barrier discharge processing of aerospace materials.Plasma Soures Science&Technology,2004,13(3):461-465.
    [81]Shi X M,Yuan Y K,Sun Y Z,et al.Experimental research of inactivation effect of low-temperature plasma on bacteria.Plasma Science&Technology,2006,8(S):569-572.
    [82]Ono R,Oda T.Ozone production process in pulsed positive dielectric barrier discharge.J.Phys.D:Appl.Phys.,2007,40(1):176-182.
    [83]Kozlov K V,Michel P and Wagne H E.Synthesis of organic compounds from mixtures of methane with carbon dioxide in dielectric-barrier discharges at atmospheric pressure.Plasma and polymers,2000,5(3-4):129-150
    [84]Rosocha L A,Kim Y,Anderson G K,et al.Decomposition of ethane in atmospheric-pressure dielectric barrier discharge:experiments.IEEE Transactions on Plasma Science,2006,34(6):2526-2531.
    [85]Bogdanov E A,Kudryavtsev A A.2D Simulations of short-pulsed dielectric barrier discharge xenon excimer lamp.Contributions to Plasma Physics,2006,46(10):807-816.
    [86]Choi K C,Shin N H,Lee K S,et al.Study of vaious coplanar gaps discharges in ac plasma display panel.IEEE Transations on Plasma Science,2006:34(2),385-389.
    [87]徐世友,张溪文,韩高荣,介质阻挡放电常压化学气相沉积技术及其在薄膜制备中的应用,材料导报,2003年9月第17卷第9期.
    [88]Thyen R,et al.Plasma-enhanced chemical-vapour-deposition of thin films by corona discharge at atmospheric pressure.Surface and Coatings Technology,1997,97:426-434.
    [89]Sonnenfeld,et al.Deposition process based on or ganosilicon precursors in dielectric barrier discharges at atmospheric pressure-a comparison.Plasmas and Polymers,2001 6(4):237-266.
    [90]Schmidt-5zalowski K,et ai.Plasmas and Polymers,2000,5(3/4):173
    [91]Liu D P,et al.Deposition of diamond-like carbon films by barrier discharge plasma with 1.4 and 20 kHz power sources.Thin Solid Film,2002,414:163-169.
    [92]Liu D P,et al.Surface Roughness of various diamond-like carbon films.Plasma Science&Technology,2006,8(6):701-708.
    [93]施建雅,刘哗,神奇的防水、防油、防污纺织纳米技术.呼和浩特科技,2004(3):31
    [94]谢光银,张辉,沈兰萍等.纺织品的功能整理及功能整理剂.四川纺织科技,2003(2):54-57
    [95]杨琪芬,钱国洪.蚕丝/棉交织(复合)织物拒水拒油多功能整理技术.染整技术,2001,23(1):5-8
    [96]Lau K K S,Caulfield J A,Gleason K K.,Structure And Morphology Of Fluorocarbon Films Grown By Hot Filament Chemical Vapor Deposition,Chem.of Mater.2000,12,3032-3037.
    [97]Giuseppe Bregliozzi,Antonella Milella,Imad Ahmed,Fabio Palumbo,Pietro Favia,Riccardo D'Agostino,And Henry Haefke,Microtribological Investigations On Fluorocarbon Thin Films Deposited In Continuous And Modulated C_2F_4 RF Glow Discharges,16th International Symposium Of Plasma Chemistry,Italy,June,2003.
    [98]Lau KKS,Labelle CB,Gleason K K,The History and Future of Fluorocarbon CVD Low k Dielectric Thin Films.J.Dielectrics,1999,1,51-68.
    [99]吴大诚,杜仲良,高绪珊,纳米纤维,化学工业出版社,北京,2003,
    [1]徐学基 诸定昌,气体放电物理,复旦大学出版社,1996,17.
    [2]迈克尔.A.力伯曼,等离子体放电原理与材料处理,科学出版社,2007,461.
    [3]Rosenthal L A,Davis D,A.Electrical characterization of a corona discharge for surface treatment,IEEE Transactions on Industry applications,1975,IA-1I(3):328-335.
    [4]Barmikas R.A commentary on partial discharge measurement and detection,IEEE Trans Dielect Elect Insulation,1987,DEI-22:629-653.
    [5]Kuzumoto M,Tabata Y,Yoshizawa K,Yagi S.High density ozone generation by discharge under extremely short gap length around 100um,IIEE Japan,1996,116-A(2):121-126.
    [6]Feng R,Castle G S P.Automated system for power measurement in the silent discharge,IEEE Transactions on industry applications.1998,34(3):563-570.
    [7]朱诚身,聚合物结构与分析,科学出版社,2004,31.
    [8]刘世宏,王当憨,潘承璜,《X射线光电子能谱分析》.
    [9]商成杰,功能纺织品,中国纺织出版社,2006,326.
    [10]郑水林,粉体表面改性,中国建材工业出版社,1995.
    [1]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996:309-335.
    [2]孙岩洲,高压技术,2002,Vol.28,No.11,43.
    [3]董丽芳,毛志国,冉俊霞,氩气介质阻挡放电不同放电模式的电学特性研究,物理学报,2005,54:3268-3272.
    [4]Wagenaars E,Brandenburg R,Brok W J M etc.,Experimental and modeling investigations of a dielectric barrier discharge in low-pressure argon,J.Phys.D:Appl.Phys.,2006,39:700-711.
    [5]Otsuka S,Tochikubo F,Uchida S,NumericaiSimulation of high-frequency driven dielectric barrier microdischarge with coplanar electrode configuration in Ar,Japanese Journal of Applied Physics,2006,45:7881-7887.
    [6]邵福球,等离子体粒子模拟,科学出版社,2002,2:7-11.
    [7]Braun D,Kuchler U,Pietsch G J,et al.Microdischarges in air-fed ozoniers.J.Phys.D:Appl.Phys.1991,24(4):564-572.
    [8]Meunier J,Belenguer P,Boeuf J P,et al.Numerical-Model of an AC Plasma Display Panel Cell in Neon-Xenon Mixtures.J Appl Phys.1995,78(2):731-745.
    [9]Kogeischatz U,Eliasson B,Egli W,et al.From ozone generators to flat television screens:history and future potential of dielectric-barrier discharges.Pure Appl Chem.1997,71(10):1819-1828.
    [10]Boeuf J P,Pitchford L C.Calculated characteristics of an ac plasma display panel cell.IEEE T Plasma Sci.1996,24(1):95-96.
    [11]Falkenstein Z,Coogan J J.Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures.J Phys D Appl Phys.1997,30(5):817-825.
    [12]Xu X D,Kushner M J.Ion composition of expanding microdischarges in dielectric barrier discharges.J Appl Phys.1998,83(12):7522-7532.
    [13]Xu X D,Kushner M J.Multiple microdischarge dynamics in dielectric barrier discharges.J Appl Phys.1998,84(8):4153-4160.
    [14]Li J,Dhali S K.Simulation of microdischarges in a dielectric-barrier discharge.J Appl Phys.1997,82(9):4205-4210.
    [15]Kulikovsky A A.Positive streamer between parallel plate electrodes in atmospheric pressure air.J Phys D Appl Phys.1997,30(3):441-450.
    [16]Babaeva N Y,Naidis G V.Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air.J Phys D Appl Phys.1996,29(9):2423-2431.
    [17]Steinle G,Neundorf D,Hiller W,et al.Two-dimensional simulation of filaments in barrier discharges.J Phys D Appl Phys.1999,32(12):1350-1356.
    [18]张远涛,王德真,王艳辉,et al.大气压介质阻挡丝状放电时空演化数值模拟,物理学报.2005,54(10):4808-4815.
    [19]张远涛,Theoretical Study on the Spatio-temporal Dynamic Behavior of Barrier Discharge at Atmospheric Pressure,博士.大连理工大学,2006.
    [20]Verboncoeur J P,Particle simulation of plasmas:review and advances,Plasma Phys.and Control.Fusion,2005,47:A231-260
    [2l]丁可,等离子体应用技术的数值模拟研究-PDP及其他等离子体辅助技术的数值模拟,复旦大学博士毕业论文,2006.
    [22]何涛,丁可,张菁,郭颖,圆筒状DBD放电特性模拟研究,核聚变与等离子体物理,2008,02.
    [23]Boris J P,Relativistic plasma simulation-optimization of a hybrid code,Proc.4~(th) Conf.on Numerical Simulation of Plasmas,Washington,1970:3-67.
    [24]张芝涛,大气压窄间隙DBD等离子体源与应用基础研究,东北大学理学院,2003.21-23.
    [1]Yasuda H,et al.Plasma polymerization investigated by the comparison of hydrocarbons and perfluorocarbons,J Polym Sci Polym Chem Ed.1978,16:743.
    [2]高晓莉,盛京,等离子体聚合及研究进展,精细石油化工,1999,4,7.
    [3]Thompson L F,etai.The plasma polymerization of vinyl monomers.I.The design,construction,and operation of an inductively coupled plasma generator and preliminary studies with nine monomers,JApplPolymerSci,1972,16,3217-2341.
    [4]赵化侨,等离子体化学与工艺,中国科技大学出版社,1993,255.
    [5]Inagaki N,et al.Plasma polymerization of copper phthalocyanines and application of the plasma polymer films to NO_2 gas sensor device,J Appl Polym Sci,1995,55:1451-1464.
    [6]Vinogradov I P,A,Lunk A,Deposition of fluorocarbonpolymer films in a dielectric barrier d is Dinkelmann charge(DBD),Surface and Coatings Technology,2003,174-175:511.
    [7]X.Wang,H.R.Harris,K.Bouidin,H.Temkin,S.Gangopadhyay,M.D.Strathman M.West,Structural properties of fluorinated amorphous carbon films,J.Appl.Phys.2000,87,621.
    [8]W.K.Fishes,and J.C.Corelli,Effect of ionizing radiation on the chemical composition,crystalline content and structure,and flow properties of polytetrafluoroethylene J.Polym.Sci.,Polym.Chem.1981,19,2465-2493.
    [9]L.Martinu,H.Biederman,and J.Nedbal,Dielectric properties of fluorocarbon and chlorofluorocarbon films plasma polymerized in an R.F.glow discharge,Thin Solid Films,1986,136,11-19.
    [10]K.S.Shen,Y.N.Chang,J.L.Her,and J.Y.Lai,Proc.of the 8th international Symposium on Plasma Chemistry,ISPC-8,Tokio,1987,1340.
    [11]Igor Vinogradov,Achim Lunk Spectroscopic Diagnostics of DBD in Ar/Fluorocarbon Mixtures - Correlation between Plasma Parameters and Properties of Deposited Polymer Films,Plasma Process.Polym.2005,2,201-208.
    [12]Garrison M D,Luginbuhl R,OverneyR M.etc.,Glow discharge plasma deposited hexafluoropropylene films:surface chemistry and interracial materials properties,Thin Solid Films,1999,13,352.
    [13]叶超,宁兆元,程珊华等,微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究,物理学报,2001,50(4):786.
    [14]Kenneth K.S.Lau,Jeffrey A.Caulfield,and Karen K.Gleason,Structure and Morphology of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition,Chem.Mater.2000,12,3032-3037.
    [15]Kenneth K.S.Lau and Karen K.Gieason,Thermal Annealing of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition,J.Phys.Chem.B,2001,105,2303-2307.
    [16]N.Takada,K.Shibagaki,K.Sasaki,K.Kadota,and K.-I.Oyama,Analysis of the molecular structure of fluorocarbon deposits produced by C4F8 and C4F8-H2 plasmas,J.Vac.Sci.Technoi.A,2001,19,689.
    [17]辛煜,不同CHF_3/CH_4流量比下沉积a-C:F:H薄膜键结构的红外分析,物理学报,2001(12),2492-2496.
    [18]Xin Y,Gan Z Q,Lu X H,Ning Z Y and Cheng S H,Structural evolution of a-C:F:H film prepared by microwave ECR CVD,Surf.Coatings Technol.2002,149,89.
    [19]Inayoshi M,Ito M,Hori M etc.,Surface reaction of CF_2 radicals for fluorocarbon film formation in SiO_2/Si selective etching process,J.Vae.Sci.Technol.A,1998,16(1):233.
    [20]Limb S J,Lau K K S,Edeil D J etc.,Molecular design of fluoro-carbon film architecture by pulsed plasma enhanced and pyrolytic chemical vapor deposition,Plasmas and Polymers,1999,4(1):21.
    [21]P.Favia,G.Cicala,A.Mileila,F.Palumbo,P.Rossini,R.d'Agostino,Deposition of super-hydrophobic fluorocarbon coating in modulated RF glow discharge,Surf.Coat.Technol.2003,609,169-170.
    [22]G.Cieala,A.Milella,F.Palumbo,P.Favia,R.d'Agostino,Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses,Diamond Relat.Mater.2003,12,2020.
    [23]A.Milella,F.Palumbo,P.Favia,G.Cicala,R.d'Agostino,Continuous and Modulated Deposition of Fluorocarbon Films from c-C_4F_8 Plasmas,Plasma Process.Polym.2004,1,164-170.
    [24]R.Chen,V.Gorelik,M.S.Silverstein,Plasma polymerization of hexafluoropropylene:Film deposition and structure,J.Appl.Polym.Sci.1995,56,615.
    [25]N.Cioffi,I.Losito,L.Torsi,I.Farella,A.Valentini,L.Sabbatini,P.G.Zambonin,T.Bleve-Zacheo,Chem.Mater.2002,14,804.
    [26]Weber A,Pockelmann R,Klages C P,Electrical and optical propert-ies of amor-phous fluorocarbon films prepared by plasma polymerization of perfluoro-1,3-dimethylcyclohexane,J.Vac.Sci.TechnoI.A,1998,16(4),2120.
    [27]Yang H,Tweet D J,Ma Y etc.,Deposition of highly crosslinked fluorinated amorphous carbon film and structural evolution during thermal annealing,Appl.Phys.Lett.,1998,73(11),1514.
    [28]邓存,刘怡春,结构化学基础,高等教育出版社,1995,243,374.
    [29]赵玉芬,赵国辉,元素有机化学,清华大学出版社,1998,263.
    [30]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,国防工业出版社,1992,181.
    [31]朱诚身,聚合物结构与分析,科学出版社,2004,436.
    [1] M.A.Saleh and R.I.Mohamed Charge disproportionation in the organic conductor, a-(BEDT-TTF)2I3, J.Phys.Chem.Solids, 2002,62,393.
    [2] Hess.D.W, Plasma-Surface Interactions in Plasma-Enhanced Chemical Vapor Deposition. Ann Rev Mater Sci, 1986,16,163.
    [3] R.d'Agostino, F.Cramarossa, V.Colapico and R.d'Ettole, Plasma-Surface Interactions in Plasma-Enhanced Chemical Vapor Deposition. J.Appl.Phys,1983, 54,1284.
    [4] R.d'Agostino, F.Cramaossa and F.llluzzi, Mechanisms of deposition and etching of thin films of plasma-polymerized fluorinated monomers in radio frequency discharges fed with C_2F_6-H_2 and C_2F_6-O_2 mixtures. J.Appl.Phys, 1987,61,2754.
    
    [5] Yasuda.H, et al. A. C. S. Polymer Preprint, 1978,19,491.
    [6] Berndt J, Hong S, Kovacevic E, Stefanovic I, Winter, Dust particle formation in low pressure Ar/CH_4 and Ar/C_2H_2 discharges used for thin film deposition, J.Vacuum,2003,71,377.
    [7] Takahashi K, Tachibana K. Solid particle production in fluorocarbon plasmas. I. Correlation with polymer film deposition, J Vac Sci Technol A,2001,19, 2055.
    [8] Boufendi L, Plain A, Blondeau JP, Bouchoule A, Laure C,Toogood M. Measurements of particle size kinetics from nanometer to micrometer scale in a low-pressure argon-silane radio-frequency discharge Appl Phys Lett. 1992,60,169.
    [9] Boufendi L, Herman J, Bouchoule A, Dubreuil B. Study of initial dust formation in an Ar-SiH4 discharge by laser induced particle explosive evaporation J Appl Phys. 1994,76,148.
    [10]Hollenstein C. The physics and chemistry of dusty plasmas Plasma Phys Control Fusion,2000,42,93.
    [11]K.Ostrikov,Colloquium:Reactive plasmas as a versatile nanofabrication tool,REVIEWS OF MODERN PHYSICS,77,4,2005.
    [12]Fiorenza.Fanelli,Riccardo d'Agostino,Francesco Fracassi Atmospheric Pressure PE-CVD of Fluorocarbon Thin Films by Means of Glow Dielectric Barrier Discharges Plasma Process.Polym.2007,4,797-805.
    [13]R.W.B.Pearse,A.G.Gaydon,The Identification of Molecular Spectra,4th edition,Chapman and Hall,London,1976.
    [14]D.S.King,P.K.Schenck,J.C.Stephenson,Spectroscopy and photophysies of the CF2(?)~1B_1-(?)~1A_i system J.Molec.Spectrosc.1979,78,1.
    [15]J.Bretagne,F.Epaillard,A.Ricard,Excited states of CF4 plasma for polymerization of TMPTA monomer J.Polym.Sci.A:Polym.Chem.1992,30,323.
    [16]P.Venkateswarlu,On the Emission Bands of CCl Phys.Rev.1950,77,676.
    [17]Igor Vinogradov,Achim Lunk,Spectroscopic Diagnostics of DBD in Ar/Fluorocarbon Mixtures-Correlation between Plasma Parameters and Properties of Deposited Polymer Films,Plasma Process.Polym.2005,2,201-208.
    [18]迈克尔.A.力伯曼,等离子体放电原理与材料处理,科学出版社,2007,461.
    [19]Hwang,N.M.,and D.Y.Kim,Charged clusters in thin film growth,2004,Int.Mater.Rev.49,171.
    [20]Viadimirov,S.V.,and K.Ostrikov,Dynamic self-organization phenomena in complex ionized gas systems:new paradigms and technological aspects 2004,Phys.Rep.393,175.
    [1]江雷,冯琳,仿生智能纳米界面材料,化学工业出版社,2007。
    [2]Feng L,Li HS,Li Y,et al.Super-hydrophobic surfaces:from natural to artificial.Adv Mater,2002,14,1857-1860.
    [3]Li HJ,Wang XB,Song YL,et al.Supeamphiphobic aligned carbon nanotube films.Angew Chem Int Ed,2001,40,1743-1746.
    [4]Zheng Y,Oao XF,Jiang L.Directional adhesion of superhydrophobic butterfly wings.Soft Matter,2007,3,178-182.
    [5]Gao XF,Jiang L.Biophysics:water-repellent legs of water striders.Natture,2004,432,36.
    [6]Jin M,Feng X,Feng L,et al.superhydrophobic aligned polystyrene nanotube films with high adhesive force.Adv Mater,2005,17,1977-1981.
    [7]李媛嫒.有机氟防水防油剂结构对性能的影响.[硕士学位论文],天津工业大学,2004.
    [8]余序芬,纺织材料实验技术.北京:中国纺织出版社,2004。
    [9]于伟东 储才元,纺织物理,东华大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700