用户名: 密码: 验证码:
基于GIS的气候要素空间分布研究和中国植被净第一性生产力的计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候要素不仅是人类生存和生产活动的重要环境条件,也是人类物质生产不可缺少的自然资源。在生态学、地学、资源科学和农学等多学科的研究中,气候要素数据都是重要的基础数据源。传统的气候观测基本上是小范围的观测,相当于以点形式对地球系统进行采样,虽然世界各国都建立了大量的气象站点,但是,由于成本的限制,观测采样点都是有限的。而且,受地理条件、维护条件等因素的限制,气象站点的布设很不均匀,发达地区的站点较密集,而在很多自然条件恶劣的地方,站点十分稀少甚至没有。因此,如何根据气象站点的空间分布以及不同气候要素的空间变化规律等情况得到空间化的气候要素数据是近年来生态学、资源科学和环境科学等研究的重要任务之一,也是现代生态学和全球变化科学迫切需要解决的问题之一。
     气候要素数据是一种与地理分布密切相关的空间数据,由于GIS技术对空间数据的分析功能,大大提高了气候要素空间分布模拟的精度,减少以往估算过程中计算量大、计算烦琐等缺点,使得气候要素的空间分布研究从传统的定性和半定量发展到全面的定性、定量、定位相结合的综合研究方法。目前,已成为研究气候要素空间分布的重要手段之一。我国地域辽阔、地形地貌十分复杂,地面气象站点分布密度远远低于许多发达国家,在不同空间区域的尺度上,利用GIS技术、有限的地面观测资料以及不同气候要素的空间分布规律等获得较高精度的空间化气候要素数据,可以为不同区域尺度上的生态学、地学、农学、资源与环境学科等方面的研究提供空间化的基础数据平台,为决策部门和生产部门提供重要的基础信息。
Climate factors are not only significant environmental conditions for human subsistence and production activities, but also indispensable natural resource for human material production. They are important data source to study such sciences as ecology, geography, resources and agronomy etc. Traditional meteorological stations are basically limited to small scope, which means that earth systems are sampled in the form of point. Though many meteorological stations have been established round the world, the sample points of observation are finite due to the constraint of cost. In addition, the meteorological stations are symmetrical. The stations in the developed region are dense while exiguous and even absent in the regions of hard natural conditions. Therefore, how to acquire spatial climate factors according to the spatial distribution of meteorological stations and the rule behind spatial variation of different climate factors is one of important tasks during recent years in ecology, resource science, environment science etc. That is also one of issues which are urgently needed to be solved in modern ecology and global change science.Climate variables data are the data which closely related to geographical distribution. The research methods of spatial distribution of climate factors have developed to qualitive, quantitive and postioning integrated methods from traditional qualitive and semi-quantitive methods due to the introduction of GIS analysis techniques, which greatly improve the precision of spatial distribution simulation of climate factors and diminish the disadvantages such as vast and complicated computations. GIS analysis techniques have become one of important approaches that investigate the spatial distribution of climate factors. There have a large area with complicated topography and physiognomy in China. The distribution density of meteorological stations in China is much lower than that in developed country. The data of spatial climate factors with quite high precision are acquired by taking advantage of limited observation data and spatial distribution rule of different climate variables at different spatial scales. The data can provide spatial basic data platform for ecology, earth science, agricultural science, resource science and environment science etc, important basic information for decision department and production department.Net primary productivity (NPP) plays an important role on the study of global change. NPP,
    the direct reflection of plant community productivity for a certain natural environment, is the basis of matter and energy cycle of terrestrial ecosystem. From the view of the global change research, NPP is one of the most-modeled ecological parameters, and the central carbon-related variable summarizing the interface between plant and other processes. Climate factors are very important in NPP model. With the development of the modern ecology and global change, the spatial meteorological data with high resolution are required and applied in NPP simulation. The spatial distribution of NPP for China varies highly with complicated topography and climate. Therefore, using climate data with high spatial resolution and RS data, the distribution and seasonal change of NPP in China were studied.According to three different study areas, including Xinaju County, Zhejiang Province, and China, the spatial distribution of climate variables were studied based on GIS technology. Then the NPP for China from Apr. to Dec. in 2000 were calculated. The main contents that this research has made are summarized as follow:1) Study on the spatial distribution of climate variables based on GIS technology in Xianju County.As for the research on the spatial distribution of solar radiation factors in Xianju County, we established the spatial distribution model of solar radiation factors, including direct solar radiation, diffuse solar radiation, and sunshine duration. The topographic factors of longitude, altitude, slope and aspect etc were derived from DEM with 20-meters resolution for Xianju County. With the assistant of GIS technology, we realized the spatial distribution of solar radiation factors in Xianju County.Because of the sparse distribution of meteorological stations in Xianju County, the duration of single time series of meteorological data acquisition is usually short. So those short time series of meteorological data is prolonged to study the spatial distribution of climate factors. The adjusting method of monthly average temperature and monthly precipitation series were studied. For the adjusting of monthly average temperature series, the one-variate regression method and the difference value method were used for the data collected from 8 meteorological temporal stations, and then the fitting errors produced by the two methods were analyzed using statistical methods. The results indicated that the fitting errors produce were not significantly different between the two methods and can be applied to time series adjusting of monthly average temperature in Xianju County. For the adjusting of monthly precipitation series, firstly, the time series of yearly precipitation are adjusted, and then the time series of monthly precipitation are adjusted using the relative coefficient of monthly precipitation. The fitting errors for monthly precipitation data series were calculated using statistical methods. The results indicated that the more correlative coefficient between the adjusted stations and basic station is, the less the fitting errors. The adjusting results have relation with the temporal distribution characteristics of monthly precipitation if the difference of the correlative coefficient is insignificant. Moreover, the adjusting effect that analyzed the temporal distribution characteristics of monthly precipitation were consistently better than the ones that did not analyzed the temporal distribution characteristics of monthly precipitation. As for the research on the spatial distribution of temperature and precipitation in Xianju County, we used the adjusted monthly average temperature and monthly precipitation data, and then respectively established the topography-adjusted statistical model and multiple linear regression models. With the assistant of topographic spatial data and GIS technology, we realized the spatial
    distribution of monthly average temperature and monthly precipitation in Xianju County.2) Study on the spatial distribution of climate variables based on GIS technology in Zhejiang Province.Under the circumstance of taking geographical position and topographical characteristics into consideration, geographical and topographical factors relating to the distributions of temperature and precipitation in Zhejiang Province are extracted from DEM data of Zhejiang Province. Those involve longitude, latitude, elevation, slope, aspect, distance and direction from seacoast and the ratio of area to land within given radii etc. In the same time, the statistical regression models are constructed by using mean temperature per month, mean precipitation per month over nearly 30 years and geographical and topographical factors. Finally, spatial data of mean temperature and mean precipitation in different season have been achieved. After tests with real observation data were performed, results indicate that the seasonal temperature simulation values are in accord with real data values with correlation coefficients ranged from 0.870 to 0.967. The simulation efficiency in winter is better than that in other seasons. The seasonal precipitation simulation values accord with real precipitation data values, too. The correlation coefficients are between 0.739 and 0.946. Highest precision of the simulation is spring while lowest precision of that is winter.3 ) Study on the spatial distribution of climate variables based on GIS technology in China. For calculating the net primary productivity (NPP) in 2000, we only used monthly climate data, including average temperature, average maximum and minimum temperature, precipitation, average relative humid, solar radiation, sunshine duration and wind speed, etc in 2000 in China. According to different climate factors, we built the different spatial distribution models. Through topographic data with lkm-resolution and GIS technology, the spatial data of climate factors were generated.4) Calculation of the NPP for China from Apr. to Dec. in 2000 and the analysis of result. On the basis of the spatial distribution study of monthly climate factors in 2000 in China, the NPP model (Sun, 1998) was improved. The NPP for China from Apr. to Dec. in 2000 were calculated using the improved NPP model and lkm resolution MODIS data (NDVI, PAR, LandCover). The spatial distribution and seasonal change of result was analyzed from different natural regions, climate zones, longitude zones, latitude zones, and elevation zones.
引文
[1] 陈述彭,周成虎,等.地理信息系统导论.北京:科学出版社.2000.
    [2] 陈桥驿,等.浙江省地理,杭州:浙江教育出版社,1985.
    [3] 陈晓峰,刘纪远,张增样,等.利用GIS方法建立山区温度分布模型.中国图象图形学报,1998,3(3):234-238.
    [4] 陈华,孙丹峰,段增强,等.基于DEM的山地日照时数模拟时空特点及应用——以北京西山门头沟区为例.山地学报,2002,20(5):559-563.
    [5] 陈国南.用迈尔密模型测算我国生物生产量的初步尝试.自然资源学报,1987,2(3):270-278.
    [6] 陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测.遥感学报,2002.6(2):129-135.
    [7] 邓自旺,倪绍祥,周晓兰,等.基于数字高程模型的环青海湖地区可能太阳直接辐射的计算.高原气象,2003,22(1):29-33.
    [8] 戴若兰,梁天刚,徐雨清,等.集雨农业降水资源评估方法的研究.兰州大学学报(自然科学版),1999,35(1):165-171.
    [9] 傅抱璞.山地气候.北京:科学出版社,1983.
    [10] 傅抱璞.关于山地气候资料的推算问题.山地气候文集.北京:气象出版社,1984,23-34.
    [11] 傅抱璞,虞静明,卢其尧.山地气候资源与开发利用.南京:南京大学出版社,1996.
    [12] 方精云,唐艳鸿,林俊达,等.全球生态学——气候变化与生态响应.北京:高等教育出版社,海德堡施普林格出版社.2000.
    [13] 冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.
    [14] F.W.T.彭宁德弗里斯,等著,朱德峰,等译.几种一年生作物生长的生态生理过程模拟.北京:中国农业科技出版社,1991.
    [15] 冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述.自然资源学报.2004,19(3):369-378.
    [16] 冯险峰.基于过程的中国陆地生态系统生产力和蒸散遥感研究,中国科学院地理科学与资源研究所博士学位论文,2004.
    [17] 范辽生,刘新安,于贵瑞,等.东北地区辐射资源栅格化信息系统的建立.资源科学,2003,(1).59-65.
    [18] 范辽生.东北地区辐射资源要素栅格化技术.沈阳农业大学硕士学位论文,2003.
    [19] 高国栋.气候学教程.北京:气象出版社,1996.
    [20] 高国栋,陆渝蓉.中国地表面辐射平衡和热量平衡,北京:科学出版社,1982.
    [21] 国家气象局北京气象中心气候资料室.中国气温降水变率图集,气象出版社,1986.
    [22] 高志强,刘纪远,曹明奎,等.土地利用和气候变化对区域净初级生产力的影响.地理学报,2004,59(4):581-591.
    [23] 侯光良,游松才.用筑后模型估算我国植被气候生产力.自然资源学报,1990,5(1):60-65.
    [24] 侯光良,李继由,张谊光。中国农业气候资源.北京:中国人民大学出版社.1993.
    [25] 何洪林,于贵瑞,牛栋.复杂地形条件下的太阳资源辐射计算方法研究.资源科学,2003,(1).78-85.
    [26] 何洪林.中国陆地区域太阳辐射要素空间化研究,中国科学院博士后研究工作报告,2004.
    [27] 贺庆棠,Baumqartner,A.中国植被的可能生产力:农业和林业的气候产量.北京林业大学学报,1986,(2):84-98.
    [28] 黄雪樵.地理信息系统支持下的坡面太阳辐射计算.地理研究,1992,11(3):80-83.
    [29] 黄杏元,马劲松,汤勤.地理信息系统概论.北京:高等教育出版,2001.
    [30] 季国良,马晓燕.邹基玲,等。张掖地区的光合有效辐射特征.高原气象,1993,12(2):141-146.
    [31] 李占清,翁笃鸣.一个计算山地可照时间的计算机模式.科学通报,1987,(17):1333-1335.
    [32] 李占清,翁笃鸣.丘陵山地总辐射的计算模式.气象学报,1988,46(4):461-468.
    [33] 李新,陈贤章,增群柱.利用数字高程模型计算复杂地形下的短波辐射平衡.冰川冻土,1996,18(增):344-353.
    [34] 李新,程国栋,陈贤章,等.任意条件下太阳辐射模型的改进.科学通报,1999,44(9):993-998.
    [35] 李新,程国栋,卢玲.空间内插方法比较.地球科学进展,2000,15(3):260-265.
    [36] 李文华.森林生物生产力的概念及其研究的基本途径.自然资源,1978,(1):71-92
    [37] 李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,2001,56(4):379-389.
    [38] 李岩,廖圣东,迟国彬,等.基于DEM的中国东部南北样带森林、农田净初级生产力时空分布特征.科学通报,2004,49(7):679-685.
    [39] 李志林,朱庆.数字高程模型.武汉:武汉大学出版社,2001.
    [40] 李正泉,于贵瑞,刘新安,等.东北地区降水与湿度气候资料的橱格化技术.资源科学,2003,25(1):72-77
    [41] 李正泉.中国降水、湿度等气候要素栅格化技术研究.沈阳农业大学硕士学位论文,2003.
    [42] 刘世荣,郭泉水,王兵.气候变化对中国森林生产力的影响.Ⅰ.中国森林现实生产力的特征及地理分部格局.林业科学研究,1993,6(6):633-642.
    [43] 刘世荣,郭泉水,王兵.气候变化对中国森林生产力的影响.Ⅱ.中国森林第一性生产力的模拟.林业科学研究,1994,7(4):425-430.
    [44] 刘明亮.中国土地利用土地覆盖变化与陆地生态系统植被碳库和生产力研究,博士论文,中国科学院遥感应用技术研究所.2001.
    [45] 林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值,地理学报,2002,57(1):47-56.
    [46] 林永标,申卫军,彭少麟,等.南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究.植物生态学报,2003,27(5):690-699.
    [47] 林之光,张家诚.中国的气候,西安:陕西人民出版社,1985.
    [48] 卢其尧.山区年月平均气温推算方法的研究.地理学报,1988,45(3):213-222.
    [49] 卢其尧,傅抱璞,虞静明.山区农业气候资源空间分布的推算方法及小地形的气候效应.中国农业气象,1990,9(2):27-32.
    [50] 吕建华,季劲钧.青藏高原大气—植被相互作用的模拟试验Ⅱ.植被叶面积指数和净初级生产力.大气科学,2002,26(2).255-262.
    [51] 罗汉民,阎秉耀,吴诗敦.气候学,北京:气象出版社,1986.
    [52] 廖顺宝,李泽辉,游松财.气温数据栅格化的方法及其比较.资源科学,2003,25(6):83-88.
    [53] 潘愉德,Melillo,J.M.,Kicklighter,D.W.,等.大气CO_2升高及气候变化对中国陆地生态系统结构与功能的制约和影响.植物生态学报,2001,25(2).175-189.
    [54] 潘守文.小气候考察的理论基础及其应用.北京:气象出版社,1989.
    [55] 朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608.
    [56] 朴世龙,方精云.1982-1999年青藏高原植被净第一性生产力及其时空变化.自然资源学报,2002,17(3):373-380.
    [57] 尚宗波,杨琼,等.利用中国气候信息系统研究年降水量空间分布规律.生态学报,2001,21(25):689-694.
    [58] 沈国权.考虑宏观地形的小网格温度场分析方法及应用.气象,1984,(6):22-27.
    [59] 史舟,王人潮,吴宏海.基于GIS的山区年均温分布模拟与制图.山地研究,1997,15(4):264-268.
    [60] 孙睿,朱启疆.植被净第一性生产力模型及中国净第一性生产力的分析.北京师范大学学报(自然科学版),1998,34(增刊):132-137.
    [61] 孙睿,朱启疆.陆地植被净第一性生产力的研究.应用生态学报.1999,10(6):757-760.
    [62] 孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化.地理学报,2000,55(1):36-45.
    [63] 孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究.遥感学报,2001,5(4):300-305.
    [64] 孙建国,赵军,甄计国,等.基于DTM的黄土丘陵沟壑区太阳辐射值计算模型及应用研究.测绘工程,2003,(1).28-30.
    [65] 孙金铸.中国地理,北京:高等教育出版社,1988.
    [66] 盛承禹,等.中国气候总论,北京:科学出版社,1986.
    [67] 陶波,李克让,邵雪梅,等.中国陆地净初级生产力时空特征模拟.地理学报,2003,58(3):372-380.
    [68] 陶波.中国气候带区划图.(内部交流资料)
    [69] 屠其璞,翁笃鸣.气候资料超短序列订正方法讨论.南京气象学报,1978,(1):59-67.
    [70] 屠其璞.平均气温短序列订正方法的讨论.南京气象学报,1979,(2):193-200.
    [71] 翁笃鸣.大寨大队沟、梁、坡地的小气候分析.南京气象学报.1978,(1):68-80.
    [72] 翁笃鸣,陈万隆,沈觉成,等.小气候和农田小气候.北京:农业出版社,1981.
    [73] 翁笃鸣,等.中国亚热带东部山区坡面太阳能资源和净辐射图集,北京:气象出版社,1988.
    [74] 翁笃鸣,罗哲贤.山区地形气候.北京:气象出版社,1990.
    [75] 翁笃鸣.中国辐射气候研究。北京:气象出版社,1997.
    [76] 王绍武.气候系统引论,北京:气象出版社,1994.
    [77] 王炳忠,等.我国太阳能资源及其计算,太阳能学报,1980,1(1),1-9.
    [78] 王潇宇,邱新法,曾燕.起伏地形下我国太阳直接辐射的分布式模拟.南京气象学院学报,2005,28(3):296-301.
    [79] 许绍祖.大气物理学基础.北京:气象出版社,1993.
    [80] 徐德应,郭泉水,阎洪,等.气候变化对中国森林的影响研究.北京:中国科学技术出版社.1997.
    [81] 徐青.地形三维可视化技术.北京:测绘出版社.2000.
    [82] 肖乾广,陈维英.用NOAA气象卫星的AVHRR遥感资料估算中国的第一性生产力.植物学报,1996,38(1):45-52.
    [83] 肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应.植物学报,1996,38(1):45-52.
    [84] 仙居县气象站气候区划组,仙居县农业气候资源与区划,1986.
    [85] 席守诚,等.中国地理环境与自然资源,北京:中国科学技术出版社,1992.
    [86] 杨昕,汤国安,王雷.基于DEM的山地总辐射模型及实现.地理与地理信息科学,2004,20(5):41-44.
    [87] 雍万里.中国自然地理,上海:上海教育出版社,1985.
    [88] 于贵瑞,何洪林,刘新安,等.中国陆地生态系统空间化图集——气候要素分卷,北京:气象出版社,2004.
    [89] 于贵瑞,何洪林,刘新安,等.中国陆地生态信息空间化研究(Ⅰ)——气象/气候信息的空间化途径.自然资源学报,2004,19(4):537-544.
    [90] 张宪洲.我国自然植被净第一性生产力的估算与分布.自然资源,1993,(1):15-21.
    [91] 张新时,杨奠安,倪文革.植被的PE(可能蒸散)指标与植被.气候分类(三)几种主要方法与PEP程序介绍.植物生态学与地植物学学报,1993,17(2):97-109.
    [92] 张娜,于贵瑞,于振良,等.基于3S的自然植被光能利用率的时空分布特征的模拟.植物生态学报,2003,27(3).325-336.
    [93] 张娜,于贵瑞,赵士洞,等.基于遥感和地面数据的景观尺度生态系统生产力的模拟.应用生态学报,2003,14(5):643-652.
    [94] 张娜,于贵瑞,于振良,等.基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析.应用生态学报,2003,14(5):659-664.
    [95] 张运林,秦伯强.太湖地区光合有效辐射(PAR)的基本特征及其气候学计算,太阳能学报,2002,23(1):118-123.
    [96] 张家诚.中国气候,上海:上海科学技术出版社1985.
    [97] 张培坤,郭力民,等.浙江气候及其应用,北京:气象出版社,1999.
    [98] 张洪亮,倪绍祥,邓自旺,等.基于DEM的山区气温空间模拟方法.山地学报,2002,20(3):360-364.
    [99] 赵松桥,等.现代自然地理.北京:科学出版社.1988.
    [100] 赵济,陈传康.中国地理,北京:高等教育出版社,1999.
    [101] 周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193-200.
    [102] 周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报,1996,20(1):11-19.
    [103] 周允华,项月琴,单福芝.光合有效辐射(PAR)的气候学研究.气象学报,1984,42(4):387-397.
    [104] 周允华.光合有效辐射的测量,农田作物环境实验研究.北京:气象出版社,1990,3-14
    [105] 周允华,项月琴,栾禄凯.光合有效量子通量密度的气候学计算.气象学报,1996,54(4):447-454.
    [106] 周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算.地理学报,2004,59(1):74-79.
    [107] 朱志辉.太阳辐射时空分布的多因子计算,地理学报,1982,37(1),27-34.
    [108] 朱志辉.等可照时间与等日照方位.中国科学(B辑),1987(12):1340-1347.
    [109] 朱志辉.自然植被净第一性生产力估算模型.科学通报,1993,38(15):1422-1426.
    [110] 祝昌汉.再论总辐射的气候学计算方法(一),南京气象学院学报,1982,(1),15-24.
    [111] 祝昌汉.再论总辐射的气候学计算方法(二),南京气象学院学报,1982,(2),196-206.
    [112] 曾燕,邱新法,缪启龙,等.起伏地形下我国可照时间的空间分布.自然科学进展,2003,13(5):545-548.
    [113] 曾燕,邱新法,刘昌明,等.起伏地形下黄河流域太阳直接辐射分布式模拟.地理学报,2005 60(4):680-688.
    [114] 曾燕,邱新法,刘绍民.起伏地形下天文辐射分布式估算模型.地球物理学报,2005,48(5):1028-1033.
    [115] 曾昭璇.中国的地形,广州:广东科技出版社,1985.
    [116] 郑度,等.中国的青藏高原,北京:科学出版社,1985.
    [117] 中国科学院植物研究所,中华人民共和国植被图,北京:地图出版社,1982.
    [118] 中国科学院南京土壤研究所,中国土壤图集,北京:地图出版社,1986.
    [119] 浙江省气象局编.浙江的气候,杭州:浙江科学技术出版社,1980.
    [120] Agnew, M. D., Palutikof, J. P., GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Clim. Res., 2000, 14: 115-127.
    [121] Ashraf, M., Loftis, J. C., Hubbard, K. G., Application of geostatistics to evaluate partial weather station networks. Agric. For Meteorol., 1997, 84: 225-271.
    [122] Benzi, R., Deidda, R., Marrocu, M., Characterization of temperature and precipitation fields over Sardinia with principal component analysis and singular spectrum analysis, lnt. J. Climatol., 1997, 17(11): 1231-1262.
    [123] Bigg, G. R., Kriging and intraregional rainfall variability in England. International Journal of Climatology, 1991, 11,663-675.
    [124] Blennow, K., Modelling minimum air temperature in partially and clear felled forests. Agricultural and Forest Meteorology, 1998, 91: 223-235.
    [125] Blennow, K., Persson, P., Modelling local-scale frost variations using mobile temperature measurements with a GIS. Agricultural and Forest Meteorology, 1998, 89:59-71.
    [126] Bocquet, G., Method of Study and Cartography of the Potential Sunny Periods in Mountainous Areas. Journal of Climatology, 1984, 1(4): 587-596.
    [127] Bolstad, P. V., Swift, L., et al. Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agricultural and Forest Meteorology, 1998, 91, 161-176.
    [128] Bryan, B. A. and Adams, J. M. Quantitative and qualitative assessment of the accuracy of neurointerpolated annual mean precipitation and temperature surfaces for China. In Cartography, 2001,30(2): 1-14.
    [129] Cao MingKui. Tao Bo, Li Ke, et al. Interarnnual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998. Acta Botanica Sinica, 2003, 45(5): 552-560.
    [130] Chessa, P. A., Delitala, A. M., Objective analysis of daily extreme temperatures of Sardinia (Italy) using distance from sea as independent variable, Int. J. Climatol., 1997, 17(13): 1467-1485.
    [131] Chong, D. L. S., Mougin, E., and Gastellu-etchegorry, J. P., Relating the global vegetation index to net primary productivity and actual evapotranspiration over Africa. Int. J. Remote Sensing, 1993, 14(8): 1517-1546.
    [132] Chuvieco, E., and Salas, J., Mapping the spatial distribution of forest fire danger using GIS, International Journal of Geographical Information Systems, 1996, 10(3): 333-345.
    [133] Collins, F. C., Bolstad, P. V., A comparison of spatial interpolation techniques in temperature estimation, In: Proceedings of the Third International Environmental Modeling. Santa Fe, New Mexico, 1996.
    [134] Daly, C., Neilson, R. P., and Phillips, D. L., A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 1994, 33: 140—158,
    [135] Dodson, R., Marks, D., Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res., 1997, 8(1): 1-20.
    [136] Dozier, J., Qutcalt, S. I., An approach to energy balance simulation over rugged terrain. Geograph. Anal., 1979, 11: 65-85.
    [137] Dozier, J., Frew, J., Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transaction on Geoscience and Remote Sensing, 1990, 28(5): 963-969.
    [138] Dubayah, R., Dozier, J., Davis, W. F., Topographic distribution of clear sky radiation over the Konza Prairie, Kansas. Water Resources Research, 1990, 26(4): 679-690.
    [139] Dubayah, R., Rich, P. M., Topographic solar radiation models for GIS, Int. J. Geographical Information Systems, 1995, 9:405-419.
    [140] Duffle, J. A., and Beckman, W. A., Solar Engineering of Thermal Processes, John Wiley & Sons, New York, 1991.
    [141] Eischeid, J. K., Baker, F. B., Karl, T. R., Diaz, H.F., The quality control of long term climatological data using objective data analysis. J. Appl. Meteorol., 1995, 34: 2787-2795.
    [142] FAO-Food and Agriculture Organization. Relationship between crop production with water resources. Rome: FAO-Food and Agriculture Organization Press, 1979.
    [143] FAO-Food and Agriculture Organization of the United Nations. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Rome: FAO-Food and Agriculture Organization, 1998.
    [144] Gao Zhiqiang, Liu Jiyuan, Cao Mingkui, et al. Impacts of land use and climate change on regional net primary productivity. Journal of Geographical Sciences, 2004, 14(3): 349-358.
    [145] Gates, D.M., Biophysical Ecology, Springer-Verlag, New York, 1980.
    [146] Gong Peng, Xu Ming, Chen Jin, et al. A preliminary study on the carbon dynamics of china's terrestrial ecosystems in the past 20 years. Earth Science Frontiers, 2002, 9(1): 55-61.
    [147] Goodale, C.L., Aber, J.D., Ollinger, S.V., Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim. Res., 1998, 10:35-49.
    [148] Hammond, T., Yarie, J., Spatial prediction of climatic state factor regions in Alaska. Ecoscience, 1996, 3(4): 490-501.
    [149] Hargy, V.T., Objectively mapping accumulated temperature for Ireland. Int. J. Climatol., 1997, 17(9): 909-927.
    [150] Hashmi, M,A,, Carcia, L.A., Spatial and temporal errors in estimating regional evapotranspiration. Journal of Irrigation and Drainages Engineering, 1998, 124(2): 108-114.
    [151] Heiman, M., Keeling, C.D., A three - dimensional model of atmospheric CO_2 transport based on observed winds: 2. Model description and simulated tracer experiments, in Climate Variability in the Pacific and the Western Americas (D. H. Peterson, Ed.). American Geophysical Union, 1989, 237-275.
    [152] Hetrick, W.A., Rich, P.M., Barnes, F.J., et al. GIS-based solar radiation flux models. Ameriican Society for Photogrammetry and Remote Sensing Technical Papers, GIS Photogrammetry and Modelling, 1993, 3: 132-143.
    [153] Holdaway, M. R., Spatial modelling and interpolation of monthly temperature using kriging. Clim. Res., 1996, 6: 215-225.
    [154] Hudson, G., Wackernagel, H., Mapping temperature using kriging with external drift: theory and an example from Scotland. Int. J. Climatol., 1994, 14: 77-91.
    [155] Hulme, M., Conway, D., Jones, P.D., Jiang, T., Barrow, E.M., Turney, C, Construction of a 1961-1990 European climatology for climate change modelling and impact applications. Int. J. Climatol., 1995, 15: 1333-1363.
    [156] Hunt, E.R., Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int. J. Remote Sensing, 1994, 15: 1725-1730.
    [157] Hutchinson, M.F., Interpolating mean rainfall thin plate smoothing splines. International Geographical Information System, 1995, 9(4): 385-403.
    [158] Jill, M., Kevin, J., Using ArcGIS Spatial Analyst. CA USA, Redlands, 2001, 136-148.
    [159] Kevin, J., Jay, M.H., Konstantin, K., et al. Using ArcGIS Geostatistical Analyst. CA USA, Redlands, 2001, 116-162.
    [160] Koike, K., Matsuda, S., and Gu, B. Evaluation of interpolation accuracy application to temperature distribution analysis. Mathematical Geology, 2001, 33(4), 421-447.
    [161] Kreith, F., and Kreider, J.F., Principles of Solar Engineering, McGrawHill, New York, 1978.
    [162] Kumar, L., Skidmore, A.K., Knowles, E., Modeling topographic variation in solar radiation in a GIS environment. International Journal of Geographic Information Science, 1997, 11(5): 475-497.
    [163] Kurzman, D., Kadmon, R., Mapping of temperature variables in Israel: a comparison of different interpolation method. Clim. Res., 1999, 13: 33-43.
    [164] Lennon, J.J., Turner, J.R.G., Predicting the spatial distribution of climate: temperature in Great Britain. J. Anim. Ecol., 1995, 64: 370-392.
    [165] Li Xin, Cheng Guodong, Lu Ling. Spatial analysis of air temperature in the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research. 2005, 37(2): 246-252.
    [166] Lieth, H., Whittaker, R.H., Primary Productivity of the Biosphere. New York: Springer-Verlag Press, 1975.
    [167] Lieth, H.F.H., Modeling the primary productivity of the world. Nature and Resources, 1972, 8(2): 5-10.
    [168] Menz, G. and Zock, A., Regionalization of precipitation models in east Africa using METEOSAT data. InternationalJournal of Climatology, 1997, 17(10): 1011-1027.
    [169] Milly, P.D., Potential evaporation and soil moisture in general circulation models. Journal of Climate, 1992, 5(3): 209-226.
    [170] Monteith, J.L., Solar radiation and productivity in tropical ecosystem. Journal of Application Ecology, 1972, 9: 747-766.
    [171] Mottus, M., Ross, J., Sulev, M., Experimental study of ration of PAR to direct integral solar radiation under cloudless conditions. Agric. For. Meteorol., 2001, 109: 161-170.
    [172] Nalder, I.A., Wein, R.W., Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 1998, 92: 211-225.
    [173] Ninyerola, M., Pons, X., Roure, J.M., A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int. J. Climatol., 2000, 20: 1823-1841.
    [174] Papaioannou, G, Nikolidakis, G, Asimakopoulos, D., Redalis, D., Photosynthetically active radiation in Athens. Agric. For. Meteorol., 1996, 81:287-298.
    [175] Pinde, Fu, Rich, P.M., Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales. Proceedings of the 19th Annual ESRI User Conference, San Diego, USA. 1999. Available from http: //gis. esri. com/library/userconf/proc99/proceed/papers/pap867/p867. htm.
    [176] Pinde, Fu, Rich, P.M., A geometric solar radiation model with application in agriculture and forestry. Computer and Electionics in Agriculture, 2002, 37: 25-35.
    [177] Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., and Klooster, S.A., Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles. 1993, 7(4): 811-841.
    [178] Prince, S.D., A model of regional primary production for use with coarse-resolution satellite data. International Journal of Remote Sensing, 1991, 12: 1313-1330.
    [179] Prince, S.D., Goward, S.N., Global net primary production: a remote sensing approach. Journal of Biogeography, 1995, 22: 815-835.
    [180] Ruimy, A., Saugier, B., Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 1994, 99: 5263-5283.
    [181] Ruimy, A., Dedieu, G., Saugier, B., TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 1996a, 10: 269-286.
    [182] Running, S. W., Baldocchi, D., Gower, S.T., et al., A global terrestrial monitoring network integrating power fluxes, flask sampling, ecosystem modeling and EOS satellite data, Remote Sens. Environ., 1999, 70(1): 108-127.
    [183] Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I., Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Amer J., 1986, 50(4): 1031-1036.
    [184] Sevruk, B., and Nevenic, M., The geography and topography effects on the areal pattern of precipitation in aAmall Prealpline basin. War. Sci. Tech., 1998, 37(11), 163-170.
    [185] Smith, M., Report on the expert consultation on revision of FAO methodologies for crop water requirements. FAO Rome, 1991.
    [186] Tsanis, I. K., and Gad, M. A., A GIS precipitation method for analysis of storm Kinematics. Environment Modelling & Software, 2001, 16, 273-281.
    [187] Tucker, C. J., Fung, I. Y., Keeling, C. D., and Gammon, R.H. Relationship between atmospheric CO_2 variations and a satellite derived vegetation index. Nature, 1986, 319: 195-199.
    [188] Verstraete, M. M., et al., Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment, 1996, 58: 201-214.
    [189] Vogt, J. V., Viau, A. A., Paquet, F., Mapping regional air temperature fields using satellite-derived surface skin temperatures, Int. J. Climatol., 1997, 17:1559-1579.
    [190] Willmott, C. J., Matsuura, K., Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol., 1995, 34(12): 2577-2586.
    [191] Williams, L. D., Barry, R. G., Andrews, J. T., Application of computed global radiation for areas of high relief. Journal of Applied Meteorology, 1972, (11): 526-533.
    [192] Wotling, G., Bouvier, Ch., and Danloux, J., et al. Regionalization of Extreme Precipitation Distribution Using the Principal Components of the Topographical Environment. Journal of Hydrology, 2000, 233, 86-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700