用户名: 密码: 验证码:
不饱和脂肪酸海藻糖单酯酶法合成及水相氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸糖酯是一类具有重要生理活性的、绿色、安全、可生物降解的非离子表面活性剂,因其具有良好的乳化能力和杀菌性能以及对皮肤刺激性低等诸多优点而广泛应用于食品、医药、化妆品和农业。目前商业上使用的脂肪酸糖酯大多来自饱和脂肪酸和糖的合成,不饱和脂肪酸糖酯的文献及商品相对较少,然而不饱和脂肪酸具有许多特殊的保健功能以及较低的凝固点等优点,因此,不饱和脂肪酸糖酯已经成为近年来糖酯类表面活性剂研究的新焦点。不饱和脂肪酸及其酯很容易氧化,关于其在油相和水溶液中氧化行为的报道不尽相同。因此,本文对不饱和脂肪酸海藻糖单酯的合成、性质以及其在水溶液中的氧化行为进行了研究,并对胶束模型中不饱和脂肪酸海藻糖单酯的氧化行为与其自身结构的关系进行了探讨。
     在间歇式反应器中对固定化脂肪酶Novozym435催化合成不饱和脂肪酸海藻糖酯的工艺进行了研究。利用分子筛作为脱水剂,分别以油酸、亚油酸、亚麻酸和海藻糖为原料,采用直接酯化法合成了油酸海藻糖酯、亚油酸海藻糖酯和亚麻酸海藻糖酯。分别以EPA乙酯、DHA乙酯和海藻糖为原料,采用酯交换法合成了EPA海藻糖酯和DHA海藻糖酯。考察了反应时间、分子筛、溶剂、温度、脂肪酶、底物浓度等因素在酶催化反应中的作用和对不饱和脂肪酸海藻糖单酯转化率的影响,确定了有机相脂肪酶催化合成海藻糖酯的反应介质为叔丁醇,脱水剂选用4?分子筛。在此基础上,通过Box-Behnken二次回归正交设计对影响合成的主要工艺参数进行优化,确定了合成亚油酸海藻糖单酯的最佳工艺条件:海藻糖13.2 mmol/L,亚油酸41.7 mmol/L,分子筛添加量3.1 g,脂肪酶添加量0.3 g,在20 mL叔丁醇中,50 oC、150 rpm恒温水浴振荡器反应50.4 h,亚油酸海藻糖单酯的转化率达到74.5 %。
     对非水相酶法合成的不饱和脂肪酸海藻糖酯反应液采用硅胶柱层析分离,流动相为正己烷/异丙醇/甲醇(5/4/1,v/v/v)和正己烷/异丙醇/甲醇(4/4/2,v/v/v),梯度洗脱,流速为1.3 mL/min。采用薄层层析(TLC)技术对不饱和脂肪酸海藻糖酯的组成进行定性分析,TLC的展开剂为乙酸乙酯/甲醇/水(8.5/1/0.5,v/v/v),用饱和碘蒸气显色。采用制备HPLC对硅胶柱提纯的产物进行精制,提纯EPA海藻糖单酯的流动相为甲醇/水(80/20,v/v),提纯其余四种糖酯的流动相为甲醇/水(85/15,v/v),流速为8 mL/min。利用高效液相-质谱联用(HPLC-MS)技术对不饱和脂肪酸海藻糖单酯产品进行分析,并采用1H NMR和13C NMR对目标产物进行确认和结构鉴定,确定它们分别为6-O-油酸海藻糖单酯、6-O-亚油酸海藻糖单酯、6-O-亚麻酸海藻糖单酯、6-O-EPA海藻糖单酯和6-O-DHA海藻糖单酯。其中6-O-亚麻酸海藻糖单酯、6-O-EPA海藻糖单酯和6-O-DHA海藻糖单酯是新化合物。
     采用表面张力法研究了油酸海藻糖单酯、亚油酸海藻糖单酯、亚麻酸海藻糖单酯、EPA海藻糖单酯和DHA海藻糖单酯的吸附性质,得到了表征各个不饱和脂肪酸海藻糖单酯表面活性的参数CMC、γ_(CMC)、Г、A,并与对应的饱和脂肪酸糖酯表面活性剂进行比较,研究了酰基链上碳原子数量、双键数量和温度等因素对不饱和脂肪酸海藻糖单酯表面张力、CMC等界面性质的影响。结果表明,酰基链上碳原子数增加使CMC值减小,酰基链上双键数增加使CMC值增大,温度对不饱和脂肪酸海藻糖单酯CMC的影响很小,随着温度升高,CMC值略有下降。
     研究了油酸海藻糖单酯、亚油酸海藻糖单酯、亚麻酸海藻糖单酯、EPA海藻糖单酯和DHA海藻糖单酯在水溶液中的氧化行为。考察了酰基链上双键数量、脂肪酸链长以及不同浓度对不饱和脂肪酸海藻糖单酯在水溶液中氧化行为的影响、并分析了氧化与不饱和脂肪酸海藻糖单酯结构的关系。结果表明,当不饱和脂肪酸海藻糖单酯在水溶液中以单体状态存在时,其稳定性递减顺序为:油酸海藻糖单酯、亚油酸海藻糖单酯、亚麻酸海藻糖单酯、EPA海藻糖单酯和DHA海藻糖单酯;当不饱和脂肪酸海藻糖单酯在水溶液中以胶束状态存在时,其稳定性递增顺序为:亚麻酸海藻糖单酯、亚油酸海藻糖单酯、油酸海藻糖单酯、EPA海藻糖单酯和DHA海藻糖单酯。
Carbohydrate fatty acid esters is a kind of nonion surfactant, which is made from renewable feedstock and does harmless to the environment. Due to their functional, nontoxic and nonskin-irritant properties, they have been widely used in food, pharmaceutical, cosmetic and detergent industries. Because the obviously defects of chemical synthesis, we adopt bio-catalytic process to synthesize the carbohydrate fatty acid esters. Most carbohydrate fatty acid esters saled on market are from saturated fatty acid and sugar. However, unsaturated fattty acid have many biological activities and physiological functions and other merits, so the research on carbohydrate unsaturated fatty acid esters attract the interest of many researchers. Lipids with high PUFAs content are susceptible to oxidation and it is reported that the oxidation of an unsaturated substrate in aqueous solution is different from that in bulk oil. We studied on the synthesis and properties of carbohydrate unsaturated fatty acid esters firstly, then investigated their oxidation in aqueous solution. The main results are as follows:
     Five carbohydrate fatty acid esters were synthesized from trehalose and unsaturated fatty acids or their ethyl esters in tert-butanol using microbial lipase as a biocatalyst in a batch stirred tank reactor. We systematically investigated the effect of many factors such as reaction time, molecular sieves, solvent, temperature, lipase, substrate concentration on the synthesis of carbohydrate fatty acid esters. The optimal condition for nonaqueous synthesis of monoacyl trehalose was as follows: trehalose concentration 13.2mmol/l, linoleic acid concentration 41.7 mmol/l, molecular sieves 3.1 g, lipase 0.3 g and tert-butanol 20 mL. The condensation was carryied at 50oC and 150 rpm for 50.4 h.The solvent was dehydrated by contact with molecular sieves (4 ?) for at least 24 h before use.
     The silica gel column chromatography with mobile phases of hexane-isopropanol- methanol 5:4:1(v/v/v) followed by 4:4:2 (v/v/v) for unsaturated trehalose esters at 1.3 mL/min was applied. The elution was collected and monitored by thin layer chromatography analysis (TLC). The mobile phase for TLC was ethyl acetate/methanol/water (8.5/1/0.5, v/v/v) and iodine was used for development The fractions containing monoacyl trehalose was pooled. Further purification was performed using semi-preparative HPLC. The eluent was a mixture of methanol and water at 35 oC and 8 mL/min. The identities of the pure compounds were confirmed using MS, 1H NMR and 13C NMR as 6-O-oleoyl trehalose, 6-O-linoleoyl trehalose, 6-O-linolenoyl trehalose, 6-O-eicosapentaenoyl trehalose, 6-O-docosahexaenoyl trehalose. Among them, 6-O-linolenoyl trehalose, 6-O-eicosapentaenoyl trehalose, and 6-O-docosahexaenoyl trehalose are new compound.
     Surface properties of monoacyl trehaloses with different long unsaturated fatty acid chains were investigated at 30, 40, 50 and 60°C. Each monoacyl trehaloses was dispersed in double distilled water and surface tension of aqueous solution was measured using a Doüy ring method. The critical micelle concentrations (CMC), surface tension at the CMC (γ_(CMC)), surface excess (Г) and residual area per molecule (A) of these amphiphilic compounds was studied and compared with other carbohydrate fatty acid esters. The effect of fatty acid chains length, double bond number and temperature on the surface properties of monoacyl trehaloses was also investigated. The value of CMC decreased as the chain length and temperature increased, while increased with more double bond when the chain length was the same.
     Oxidation of unsaturated monoacyl trehalose was studied in aqueous solution. Unsaturated monoacyl trehalose exist as monomers below the CMC, whereas they can aggregate spontaneously to form micelles above this concentration. Effect of double bond number, hydrophobic tail group size and concentration on the oxidative stability of unsaturated monoacyl trehalose in aqueous solution was studied. The results indicate that the oxidation of unsaturated monoacyl trehalose in micelles depended on both the degree of unsaturation and hydrophobic chain length. Oxidation increased as the number of double bonds increased in the unsaturated monoacyl trehaloses with identical hydrophobic chain length. However, when the hydrophobic chain length was different, the extent of oxidation decreased with chain length.
引文
1. Klibanov A M. Enzymes that Work in Organic Solvents. Chem Tech, 1986, 6: 354-359
    2. Shinoda K, Carlsson A, Lindman B. On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane lipids. 1996, 64: 253-271
    3. Sachiko Okabe M S Y T. Disaccharide esters screened for inhibition of tumor necrosis factors-αrelease are new anticancer agents. Cancer Science, 1999, 90(6): 669-676
    4. Ferrer M, Soliveri J, Plou F J, et al. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. 2005, 36(4): 391-398
    5. Sola A, Rodríguez S, García Gancedo A, et al. Inactivation and inhibition of African swine fever virus by monoolein, monolinolein, andγ-linolenyl alcohol. Arch Virol, 1986, 88(3): 285-292
    6. Salentinig S, Yaghmur A, Guillot S, et al. Preparation of highly concentrated nanostructured dispersions of controlled size. J Colloid Interf Sci, 2008, 326(1): 211-220
    7. Ryan M, Mcinerney D, Owens D, et al. Diabetes and the Mediterranean diet : a beneficial effect of oleic acid on insulin sensitivity , adipocyte glucose transport and endothelium-dependent vasoreactivity. Q J Med, 2000, 93: 85-91
    8. Martinez-Gonzalez M A, Bes-Rastrollo M. The cardioprotective benefits of monounsaturated fatty acid. Altern Ther Health Med, 2006, 12(1): 24-30
    9.柳红芳,陆菊明,母义明,等.增加n-6脂肪酸对高脂诱导的大鼠胰岛素抵抗和血清游离脂肪酸谱的影响[J].基础医学与临床, 2005, 12: 1124-1129
    10. Abadie J M, Malcom G T, Porter J R, et al. Dehydroepiandrosterone alters phospholipids profiles in zucker rat muscle tissue. Lipids, 2001, 36(12): 1383-1386
    11. Murase T, Aoki M, Tokimitsu I. Supplementation with [alpha]-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of [beta]-oxidation in Zucker fatty rats. BBA-Mol. Cell Biol. L., 2005, 1733(2-3): 224-231
    12. Hooper L, Thompson R L, Harrison R A, et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev, 2005(4): D3177
    13. Poulsen R, Firth E, Rogers C, et al. Specific effects ofγ-linolenic, eicosapentaenoic, and docosahexaenoic ethyl esters on bone post-ovariectomy in rats. Calcified Tissue Int., 2007, 81(6): 459-471
    14. Pardini R S. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem-Biol Interact, 2006, 162(2): 89-105
    15. Zhao G, Etherton T D, Martin K R, et al. Dietaryα-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr., 2004, 134: 2991-2997
    16. Persaud R. Inhibition of proliferation to omega-3 fatty acids in chemoresistant pancreatic cancer cells:mechanism of action may be more complex. Ann Surg Oncol, 2008, 15(7): 2057
    17. Miyashita K, Tateda N, Ota T. Oxiative stability of polyunsaturated fatty acids in an aqueous solution. Fisheries Science (Japan), 1993, 57(10): 1638-1640
    18. Araseki M, Yamamoto K, Miyashita K. Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosciences Biotechnology and Biochemistry, 2002, 66(12): 2573-2577
    19. Nagler L G, Lankin V Z, Kozachenko A I, et al. Rate of free-radical oxidation of C18 diene and triene fatty acids in aqueous micellar solutions and effectiveness ofβ-Carotene as an inhibitor of their oxidation. Biochemistry (Moscow), 2003, 68(2): 203-208
    20. Timm-Heinrich M, Skall N N, Xu X, et al. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn2-position - as bulk lipids and in milk drinks. Innovative Food Science & Emerging Technologies, 2004, 5(2): 249-261
    21. Kohya H, Ishii F, Takano S, et al. Antitumor effect of a synthetic cord factor, 6,6-di-O-decanoyl-alpha, alpha-trehalose (SS 554) in mice. Jpn J Cancer Res, 1986, 77: 602-609
    22. Okabe S, Suganuma M, Tada Y, et al. Disaccharide esters screened for inhibition of tumor necrosis factors-αrelease are new anticancer agents. Cancer Science, 1999, 90(6): 669-676
    23. Garti N, Aserin A, Slavin Y. Competitive adsorption in O/W emulsions stabilized by the new Portulaca oleracea hydrocolloid and nonionic emulsifiers. Food Hydrocolloid, 1999, 13(2): 139-144
    24.彭立凤,杨国营.脂肪酶催化合成生物表面活性剂[J].日用化学工业, 2000, (02): 35-38
    25. Fanun M, Leser M, Aserin A, et al. Sucrose ester microemulsions as microreactors for model Maillard reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194(1-3): 175-187
    26. Kelkar D S, Kumar A R, Zinjarde S S. Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester. Bioresource Technol, 2007, 98(7): 1505-1508
    27. Davidson I G, Langner E J, Plowman S V, et al. Release mechanism of insulin encapsulated in trehalose ester derivative microparticles delivered via inhalation. Int J Pharm, 2003, 254(2): 211-222
    28. Rico-Lattes I, Lattes A. Synthesis of new sugar-based surfactants having biological applications: key role of their self-association. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124: 37-48
    29. Gallarate M, Carlotti M E, Trotta M, et al. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm, 1999, 188(2): 233-241
    30. Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations. Food Hydrocolloid, 1998, 12(2): 237-244
    31.刘少友,甄卫军,闵犁园,等.红花油脂肪酸单甘酯的合成及其宏观动力学研究[J].日用化学工业, 2004, (04): 217-219
    32.闵犁园.红花油衍生多元醇的合成.食品科学, 2005(08): 200-202
    33. Shah S, Gupta M N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem, 2007, 42(3): 409-414
    34. Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. J Biosci Bioeng, 2005, 99(2): 87-94
    35. Liu X, Gong L, Xin M, et al. The synthesis of sucrose ester and selection of its catalyst. Journal of Molecular Catalysis A: Chemical, 1999, 147(1-2): 37-40
    36.方云,吕栓锁,夏咏梅.酶法合成生物表面活性剂[J].食品与生物技术, 2004, (01): 99-105
    37. Oosterom M W, Rantwijk F V, Sheldom R A. Regioselective acylation of disaccharides in tert-Butyl alcohol catalyzed by candida antarctica lipase. Biotechnol Bioeng, 1996, 49: 328-333
    38.罗贵民.酶工程.北京:化学工业出版社, 2002: 388
    39. Zhang X, Kobayashi T, Adachi S, et al. Lipase-catalyzed synthesis of 6-O-vinylacetyl glucose in acetonitrile. Biotechnol Lett, 2002, 24(13): 1097-1100
    40. Sabeder S, Habulin M, Knez Z. Lipase-catalyzed synthesis of fatty acid fructose esters. J Food Eng, 2006, 77(4): 880-886
    41. Zhou J, Tao G, Liu Q, et al. Equilibrium yields of mono- and di-lauroyl mannoses through lipase-catalyzed condensation in acetone in the presence of molecular sieves. Biotechnol Lett, 2006, 28(6): 395-400
    42. Chen J, Kimura Y, Adachi S. Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase. Biochem Eng J, 2005, 22(2): 145-149
    43. Zhang X, Kobayashi T, Watanabe Y, et al. Lipase-catalyzed synthesis of monolauroyl maltose through condensation of maltose and lauric acid. Food Sci Technol Res, 2003, 9(1): 110-113
    44. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol, 2002, 96(1): 55-66
    45. Mn G. Enzyme in Organic Solvents. Eur.J.Biochem., 1991(203): 25-32
    46.冯雷刚.非水相脂肪酶催化合成糖酯的研究.天津科技大学, 2004
    47. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J Mol Catal B-Enzym, 2001, 11(4-6): 949-954
    48. Torres C, Otero C. Direct enzymatic esterification of lactic acid with fatty acids. Enzyme Microb Tech, 2001, 29: 3-12
    49. Castillo E P, F N A L A. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach. J Biotechnol, 2003, 102: 251-259
    50. Ganske F, Bornscheuer U T. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. J Mol Catal B-Enzym, 2005, 36(1-6): 40-42
    51. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol, 2002, 96(1): 55-66
    52. Kang I J, Pfromm P H, Rezac M E. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. J Biotechnol, 2005, 119(2): 147-154
    53. Sakaki K, Aoyama A, Nakane T, et al. Enzymatic synthesis of sugar esters in organic solvent coupled with pervaporation. Desalination, 2006, 193(1-3): 260-266
    54. Naoe K, Ohsa T, Kawagoe M, et al. Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles. Biochem Eng J, 2001, 9(1): 67-72
    55. Sonwalkar R D, Chen C C, Ju L. Roles of silica gel in polycondensation of lactic acid in organic solvent. Bioresource Technol, 2003, 87(69–73)
    56. Xiao Y W Q C Y. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohyd Res, 2005, 340: 2097-2103
    57. Ferrer M, Soliveri J, Plou F J, et al. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb Tech, 2005, 36(4): 391-398
    58. Zhang D H, Bai S, Sun Y. Lipase-catalyzed regioselective synthesis of monoester of pyridoxine (vitamin B6) in acetonitrile. Food Chem, 2007, 102(4): 1012-1019
    59.冯光炷,李喜宏,卢奎.微乳化法合成松香酸蔗糖酯及其应用性能研究.郑州工程学院学报, 2004(02): 29-33
    60. Li Y, Rethwisch D G. Scale-up of pseudo solid-phase enzymatic synthesis of alpha-methyl glucoside acrylate. Biotechnol Bioeng, 2002, 79(1): 15-22
    61.罗志刚,胡乐孙.分子蒸馏单甘酯在食品工业中的发展前景.四川粮油科技, 2003(02): 40-42
    62. Arcos J A, Bernabe M, Otero C. Quantitative enzymatic production of 1,6-diacyl fructofuranoses. Enzyme Microb Tech, 1998, 22(1): 27-35
    63. Griffin W C. Hydrophilic-Lipophilic Balance. J Soc Cosmet Chem, 1949, 1: 311-326
    64. Rosen M J. Surfactants and interfacial phenomena, 2nd ed. New York: Wiley, 1989
    65. Junkui P K. Enzymatic synthesis of myristoyl disaccharides and their surface activity. J Sci Food Agr, 2007, 87(9): 1743-1747
    66. Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227(1-3): 35-44
    67. Ferrer M, Comelles F, Plou F J, et al. Comparative surface activities of di- and trisaccharide. Langmuir, 2002, 18: 667-673
    68. Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueous solution. LWT - Food Science and Technology, 2007, 40(3): 412-417
    69. Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-Biol Interact, 2006, 160(1): 1-40
    70. Nawar W W. Lipids[M]. Food Chemistry, 3rd. ed; Fennema O. R., New York:Marcel Dekker, 1996
    71. Chang S S, Peterson R J, Ho C. Chemistry of deep fat fried flavor[C]. Washington, D C, USA: American chemical society, 1978
    72. Ramarathnam N, Rubin L J. The flavour of cured meat[M]. Flavor of Meat and Meat Products,Shahidi F., London:Blackie Academic & Professional, 1994, 174-198
    73. Heath H B, Reineccius G. Flavor Chemistry and Technology. Westport, Conn. (USA): AVI Pub. Co., 1986
    74. Barclay L. Model biomembranes-quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress. Can. J. Chem, 1993, 71: 1-16
    75. Frankel E N S T. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. J Agr Food Chem, 2002, 50(7): 2094-2099
    76. Frankel E N H S P E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil in water emulsion. J Agr Food Chem, 1996, 44: 131-135
    77. Shahidi F, Wanasundara U N. Methods of measuring oxidative rancidity of fats and oils[M]. Food lipids: chemistry, nutrition and biotechnology, 2nd. ed; Akoh C. C., Min D. B., New York:Marcel Dekker, 1998, 465-488
    78. Mcclements D J, Decker E A. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci, 2000, 65(8): 1270-1282
    79. Kobayashi H, Yoshida M, Miyashita K. Comparative study of the product components of lipid oxidation in aqueous and organic systems. Chem Phys Lipids, 2003, 126(1): 111-120
    80. Miyashita K, Tateda N, Ota T. Oxidative stability of free fatty acid mixtures from soybean, linseed, and sardine oils in an aqueous solution. Fisheries Science (Japan) , 1994, 60(3): 315-318
    81. Coupland J N, Zhu Z, Wan H, et al. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. J Am Oil Chem Soc, 1996, 73(6): 795-801
    82. Coupland J N, Zhu Z, Wan H, et al. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate—Supporting evidence. J Am Oil Chem Soc, 1996, 73(9): 1207
    83. Hu M M D D E. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in water emulsions. J Agric Food Chem, 2003, 51(5): 1435-1439
    84. Ke P, Ackman R. Bunsen coefficient for oxygen in marine oils at various temperatures determined by an exponential dilution method with a polarographic oxygen electrode. J Am Oil Chem Soc, 1973, 50(11): 429-435
    85. Marcuse R, Fredriksson P O. Fat oxidation at low oxygen pressure.I.Kinetic studies on the rate of fat oxidation in emulsion. J Am Oil Chem Soc, 1968, 45: 400-406
    86. Marcuse R, Fredriksson P O. Fat oxidation at low oxygen pressure.II.Kinetic studies on linoleic acid oxidation in emulsion in the presence of antioxidants. J Am Oil Chem Soc, 1969, 46: 262-268
    87. Mancuso J R, Mcclements D J, Decker E A. Ability of iron to promote surfactant peroxide decomposition and oxidize alpha-tocopherol. Journal of Agricultural & Food Chemistry, 1999, 47(10): 4146-4149
    88. Donnelly J L, Decker E A, Mcclements D J. Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J Food Sci, 1998, 63(6): 100-997
    89. Kabalnov A. Can Micelles Mediate a Mass Transfer between Oil Droplets. Langmuir, 1994, 10: 680-684
    90. Mei L, Mcclements D J, Wu J N, et al. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem, 1998, 61(3): 307-312
    91. Chen G. Interaction decay of nonionic surfactants at water surfaces. Chem Phys Lett, 2003, 376(5-6): 758-760
    92. HofmanováJ, Soucek K, VaculováA, et al. Fatty acids in the modulation of reactive oxygen species balance in cancer[M]. Oxidants in Biology: A Question of Balance, Springer Netherlands, 2008, 129-153
    93. Leitzmann M F, Stampfer M J, Michaud D S, et al. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J Clin Nutr, 2004, 80(7): 204-216
    94. Pardini R S. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem-Biol Interact, 2006, 162(2): 89-105
    95. Persaud R. Inhibition of proliferation to omega-3 fatty acids in chemoresistant pancreatic cancer cells: mechanism of action may be more complex. Ann Surg Oncol, 2008, 15(7): 2057
    96.孔欣.浅谈多不饱和脂肪酸的研究概况[J].质量天地, 2002, (01): 58
    97. Kolanowski W, Swiderski F, Berger S. Possibilities of fish oil application for food products enrichment with n-3 PUFA. Int J Food Sci Nutr , 1999, 50: 39-49
    98. Kris-Etherton P, Taylor D, Yu-Poth S, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr, 2000, 71(Suppl): 179S-188S
    99. Devulapalle K S, Gomez S A, Ferrer M, et al. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity. Carbohyd Res, 2004, 339(6): 1029-1034
    100. Milosevic I, Mauroy V, Dabboue H, et al. Synthesis and size control of polystyrene nanoparticles via "liquid crystalline" nanoemulsion. Micropor Mesopor Mat, 2009, 120(1-2): 7-11
    101. Karboune S, St-Louis R, Kermasha S. Enzymatic synthesis of structured phenolic lipids by acidolysis of flaxseed oil with selected phenolic acids. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53: 96-105
    102. Forsythe C E, Phinney S D, Fernandez M L, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids, 2008, 43(1): 65-77
    103. Willemsen L W M, Koetsier M, Balvers M, et al. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr, 2008, 47(4): 183-191
    104. Frankel E N. Lipid oxidation. Dundee, Scoland: The Oily Press, 1998
    105. E Bruna E P M B. Specific susceptibility of docosahexaenoic acid and eicosapentaenoic acid to peroxidation in aqueous solution. Lipids, 1989, 24: 970-975
    106. T M K N E. Comparative study on the oxidative stability of phosphatidylcholines from salmon egg and soybean in aqueous solution. Biosciences Biotechnology and Biochemistry, 1994, 58: 1772-1775
    107. Kato T, Hirukawa T, Namiki K. Selective terminal olefin oxidation of n-3 polyunsaturated fatty acids.Tetrahedron Lett, 1992, 33(11): 1475-1478
    108. Decker E A. Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends Food Sci Tech, 1998, 9(6): 241-248
    109. Sims R, Fioriti J, Trumbetas J. Effect of sugars and sugar alcohols on autoxidation of safflower oil in emulsions. J Am Oil Chem Soc, 1979, 56(8): 742-745
    110. R M. The effect of some amino acids on the oxidation of linoleic acid and itsmethyl ester. J Am Oil Chem Soc, 1962, 39: 97-103
    111. Mancuso J R M D. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions[Z]. 1999: 47, 4112-4116
    112. Faraji H, Mcclements D J, Decker E A. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions. J Agric Food Chem, 2004, 52(14): 4558-4564
    113. Sims R J. Oxidation of fats in food products[Z]. 1994: 5, 1020-1028
    114. Osborn H T, Akoh C C. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chem., 2004, 84(3): 451-456
    115. Coupland J N, Zhu Z, Wan H, et al. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. J Am Oil Chem Soc, 1996, 73(6): 795-801
    116. Fritsch C W. Lipid oxidation-the other dimension. Inform, 1994, 5: 423-436
    117. Osborn H T, Akoh C C. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chem., 2004, 84(3): 451-456
    118. Mei L, Decker E A, Mcclements D J. Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. J Agric Food Chem, 1999, 47(6): 2267-2273
    119. Mancuso J R M D. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. J Agric Food Chem, 1999, 47(10): 4112-4116
    120. Kasaikina O T, Kortenskab V D, Kartasheva Z S, et al. Hydrocarbon and lipid oxidation in micro heterogeneous systems formed by surfactants or nanodispersed Al2O3, SiO2 and TiO2. Colloid Surface A, 1998, 149(3)
    121. Young-Je Cho M D J D. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion. J Agric Food Chem, 2002, 50(20): 5704-5710
    122. Hu M, Mcclements D J, Decker E A. Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. J Agric Food Chem, 2003, 51(6): 1696-1700
    123. Silvestre M P C, Chaiyasit W, Brannan R G, et al. Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions. J Agr Food Chem, 2000, 48(6): 2057-2061
    124. Chaiyasit W, Silvestre M P C, Mcclements D J, et al. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions. J Agr Food Chem, 2000, 48(8): 3077-3080
    125. Fomuso L B C M. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions. J. Agr. Food Chem., 2002, 50(10): 2957-2961
    126. Longyuan Mei D E A M. Evidence of iron association with emulsion droplets and its impact on lipidoxidation. J Agric Food Chem, 1998, 46(12): 5072-5077
    127. Shu-Wen Huang F E N A. Partition of selected antioxidants in corn oil-water model systems. Journal of Agricultural & Food Chemistry, 1997, 45(6): 1991-1994
    128. Huang S W, Hopia A, Schwarz K F E N, et al. Antioxidant activity of alpha-tocopherol and Trolox in different lipid substrates: Bulk oils vs oil-in-water emulsions. J. Agric. Food Chem., 1996, 44(2): 444-452
    129. Gramlich G, Zhang J Y, Nau W M. Increased Antioxidant Reactivity of Vitamin C at Low pH in Model Membranes. J Am Chem Soc, 2002, 124(38): 11252-11253
    130. Rietjens I M, Boersma M G, Haan L, et al. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Phar, 2002, 11(3-4): 321-333
    131. Chen J H, Ho C T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem, 1997, 45(7): 2374-2378
    132. Tong L M, Sasaki S, Mcclements D J, et al. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J Agric Food Chem, 2000, 48(5): 1473-1478
    133.王宪青,余善鸣,刘妍妍.油脂的氧化稳定性与抗氧化剂[J].肉类研究, 2003, (03): 18-20
    1. Kato A, Ando K, Tamura G, et al. Effects of Some Fatty Acid Esters on the Viability and Transplantability of Ehrlich Ascites Tumor Cells. Cancer Res, 1971, 31: 501-504
    2. Ferrer M, Soliveri J, Plou F J, et al. Synthesis of sugar esters in solvent mixtures by lipases fromThermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb Tech, 2005, 36(4): 391-398
    3. Fanun M, Leser M, Aserin A, et al. Sucrose ester microemulsions as microreactors for model Maillard reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194(1-3): 175-187
    4.刘少友,甄卫军,闵犁园,等.红花油脂肪酸单甘酯的合成及其宏观动力学研究[J].日用化学工业, 2004, (04): 217-219
    5.闵犁园.红花油衍生多元醇的合成.食品科学, 2005(08): 200-202
    6. Shah S, Gupta M N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem, 2007, 42(3): 409-414
    7. Sola A, Rodríguez S, García Gancedo A, et al. Inactivation and inhibition of African swine fever virus by monoolein, monolinolein, andγ-linolenyl alcohol. Arch Virol, 1986, 88(3): 285-292
    8. Salentinig S, Yaghmur A, Guillot S, et al. Preparation of highly concentrated nanostructured dispersions of controlled size. J Colloid Interf Sci, 2008, 326(1): 211-220
    9. Bousquet M, Willemot R, Monsan P, et al. Enzymatic Synthesis of Unsaturated Fatty Acid Glucoside Esters for Dermo-Cosmetic Applications. Biotechnol Bioeng, 1999, 63(6): 730-736
    10. Kohya H, Ishii F, Takano S, et al. Antitumor effect of a synthetic cord factor, 6,6-di-O-decanoyl-alpha, alpha-trehalose (SS 554), in mice. Jpn J Cancer Res, 1986, 77: 602-609
    11. Okabe S, Suganuma M, Tada Y, et al. Disaccharide esters screened for inhibition of tumor necrosis factors-αrelease are new anticancer agents. Cancer Science, 1999, 90(6): 669-676
    12. Janssen A E M, Lefferts A G, Van'T Riet K. Enzymatic synthesis of carbohydrate esters in aqueous media. Biotechnol Lett, 1990, 12(10): 711-716
    13. Riva S, Chopineau J, Kieboom A P G, et al. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J Am Chem Soc, 1988, 110(2): 584-589
    14. Gonnan L, Dordick J S. Organic Solvents Strip Water off Enzymes. Biotechnol Bioeng, 1992, 39: 392-397
    15. Pedersen N R, Halling P J, Pedersen L H, et al. Efficient transesterification of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide. Febs Lett, 2002, 519(1-3): 181-184
    16. Somashekar B R, Divakar S. Lipase catalyzed synthesis of l-alanyl esters of carbohydrates. Enzyme Microb Tech, 2007, 40(2): 299-309
    17. Ergan F, Trani M, AndréG. Solvent free triglyceride synthesis using lipozymeTM IM-20. Biotechnol Lett, 1988, 10(9): 629-634
    18. Arcos J A, Bernabe M, Otero C. Quantitative enzymic production of 6-O-acylglucose esters. Biotechnol Bioeng, 1998, 57(5): 506-509
    19. Giacometti J, Giacometti F, Milin C, et al. Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4-6): 921-928
    20. Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4-6): 949-954
    21. Kuwabara K, Watanabe Y, Adachi S, et al. Continuous production of acyl L-ascorbates using a packed-bed reactor with immobilized lipase. J Am Oil Chem Soc, 2003, 80(9): 895-899
    22. Kuwabara K, Watanabe Y, Adachi S, et al. Synthesis of 6-O-unsaturated acyl -ascorbates by immobilized lipase in acetone in the presence of molecular sieve. Biochem Eng J, 2003, 16(1): 17-22
    23. Dordick J S. Enzymatic catalysis in monophasic organic solvents. Enzyme Microb Tech, 1989, 11(4): 194-211
    24. Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents. Biotech Bioeng, 1987, 30(1): 81-87
    25. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol, 2002, 96(1): 55-66
    26. Lay L, Panza L, Riva S, et al. Regioselective acylation of disaccharides by enzymatic transesterification. Carbohyd Res, 1996, 291: 197-204
    27. Humeau C, Girardin M, Rovel B, et al. Enzymatic synthesis of fatty acid ascorbyl esters. Journal of Molecular Catalysis B: Enzymatic, 1998, 5(1-4): 19-23
    28.冯雷刚,张国政.非水相中酶法合成糖酯的研究[J].食品科技, 2004, (02): 58-60
    29. Katsoura M H, Polydera A C, Katapodis P, et al. Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids. Process Biochem, 2007, 42(9): 1326-1334
    1.孔庆江.薄层色谱分析在层析分离过程中的应用.化学工程师[J], 2004(04): 20-21
    2. Hammond E W. chapter 3: Thin layer chromatography[M]. Chromatography for the analysis of lipids, Boca Raton:CRC Press, 1993, 21-24
    3.李延科,张淑芬,杨锦宗.蔗糖酯的薄层色谱分析[J].色谱, 2002, (05): 476-478
    4. Antczak T, Patura J, Szczesna-Antczak M, et al. Sugar ester synthesis by a mycelium-bound mucor circinelloides lipase in a micro-reactor equipped with water activity sensor. Journal of Molecular Catalysis B: Enzymatic, 2004, 29(1-6): 155-161
    5.杨勤萍,徐国梁,施邑屏,等.高效液相色谱及薄层色谱分析蔗糖脂肪酸酯[J].分析测试学报, 1999, (01): 29-31
    6. Pedersen N R, Wimmer R, Emmersen J, et al. Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides. Carbohyd Res, 2002, 337(13): 1179-1184
    7. Gao C, Whitcombe M J, Vulfson E N. Enzymatic synthesis of dimeric and trimeric sugar-fatty acid esters. Enzyme Microb Tech, 1999, 25(3-5): 264-270
    8. Plou F J, Cruces M A, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol, 2002, 96(1): 55-66
    9. Ferrer M, Cruces M A, Plou F J, et al. A simple procedure for the regioselective synthesis of fatty acid esters of maltose, leucrose, maltotriose and n-dodecyl maltosides. Tetrahedron, 2000, 56(24): 4053-4061
    10. Woudenberg-Van Oosterom M, Van Rantwijk F, Sheldon R A. Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol Bioeng, 1996, 49(3): 328-333
    11.董淮海,陶冠军,王林祥, et al.高效液相色谱-电喷雾质谱联用法检测大豆异黄酮和皂苷.食品与生物技术, 2002(4): 415-419
    12. Hsieh Y, Brisson J M, Wang G, et al. Simultaneous fast HPLC-MS/MS analysis of drug candidates and hydroxyl metabolites in plasma. J. Pharm Biomedical Anal, 2003, 33(2): 251-261
    13. Ravanat J L, Duretz B, Guiller A, et al. Isotope dilution high performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J. Chromatogr B, 1998, 715: 349-356
    1. Mcbain M E L, Hutchinson E. Solubilization. New York: Academic Press Inc., 1955
    2. Chen X, Hu N, Zeng Y, et al. Ordered Electrochemically Active Films of Hemoglobin, Didodecyldimethylammonium Ions, and Clay. Langmuir, 1999, 15(20): 7022-7030
    3. Hartley G S. The application of the Debye-Hückel theory to colloidal electrolytes. Trans. Faraday Soc., 1935, 31: 31-50
    4. Hartley G S. State of solution of colloidal electrolytes. Q. Rev. Chem. Soc., 1948, 2: 152-183
    5. Fromherz P. Micelle structure: a surfactant-block model. Chem Phys Lett, 1981, 77(3): 460-466
    6.朱步瑶,赵振国.界面化学基础.北京:化学工业出版社, 1996
    7. Mukerjee P, Mysels K J. Critical micelle concentrations of aqueous surfactant systems. In: NSRDS-NBS 36. National Bureau of Standards, Washington, DC. 1971
    8.刘程,张万福,陈长明.表面活性剂应用手册.化学工业出版社, 1995
    9. Griffin W C. Hydrophilic-Lipophilic Balance. J Soc Cosmet Chem, 1949, 1: 311-326
    10. Soultani S, Ognier S, Engasser J M, et al. Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227(1-3): 35-44
    11. Raku T, Kitagawa M, Shimakawa H, et al. Enzymatic synthesis of trehalose esters having lipophilicity. J Biotechnol, 2003, 100(3): 203-208
    12.郑斗波,房宽峻,张霞,等.可聚合阳离子表面活性剂DMDB的合成及在颜料分散中的应用[J].精细化工, 2008, (02): 143-146
    13.祝青哲,夏书芹,许时婴.辅酶Q(10)前体脂质体的研制及其特性研究.食品工业科技, 2008(01): 113-115
    14. The SAS Program for Windows. SAS Institute: Cary, NC, 2001
    15. Rosen M J. Surfactants and interfacial phenomena, 2nd ed. New York: Wiley, 1989
    16.黄红云,曹洪亮.液体表面张力系数随温度升高而减小的定量证明.常州工学院学报, 2006(04): 51-52
    17. Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueous solution. LWT - Food Science and Technology, 2007, 40(3): 412-417
    18. Ferrer M, Comelles F, Plou F J, et al. Comparative surface activities of di- and trisaccharide. Langmuir,2002, 18: 667-673
    19. Garofalakis G, Murray B S, Sarney D B. Surface activity and critical aggregation concentration of pure sugar ester with different suagar headgroups. J Colloid Interf Sci, 2000, 229(2): 391-398
    20. Ducret A, Giroux A, Trani M, et al. Characterization of enzymatically prepared biosurfactants. J Am Oil Chem Soc, 1996, 73(1): 109-113
    21. Polat T, Bazin H G, Linhardt R J. Enzyme Catalyzed Regioselective Synthesis of Sucrose Fatty Acid Ester Surfactants. J Carbohyd Chem, 1997, 16(9): 1319-1325
    22. Havlinova B, Zemanovic J, Kosik M, et al. Synthesis and properties of surfactants based on carbohydrates I, Synthesis of some O-dodecyl aldoses. Tenside Deterg., 1978, 15(3): 119-121
    23. Kitahata A, Tamai Y, Hayano S, et al. Surfactants: Property, application and chemical ecology[M]. Tokyo:Kodansha, 1979
    24.戚文彬.表面活性剂与分析化学.中国计量出版社, 1986
    25.贝·勋佛尔特.非离子表面活性剂的生产与应用.中国轻工业出版社, 1990
    26. Moroi Y. Micelles: Theoretical and Applied Aspects. New York: Plenum Press, 1992
    1. Addis P B, Park S W. Role of oxidation products in atherosclerosis. In:Taylor S. L., Scanlan R. A., New York , Dekker, 1989: 297-330
    2. Sanders T A B. Nutritional aspects of rancidity in rancidity in foods. 3rd. Glasgow: Blackie Academic and Professional . an imprint of Chapman & Hall, 1994: 129-140
    3. Leitzmann M F, Stampfer M J, Michaud D S, et al. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J Clin Nut, 2004, 80(7): 204-216
    4. HofmanováJ, Soucek K, VaculováA, et al. Fatty acids in the modulation of reactive oxygen species balance in cancer[M]. Oxidants in Biology: A Question of Balance, Valacchi G., Davis P. A., Dordrecht, Holland:Springer Netherlands, 2008, 129-153
    5. Miyashita K, Tateda N, Ota T. Oxiative stability of polyunsaturated fatty acids in an aqueous solution. Fisheries Science (Japan), 1993, 57(10): 1638-1640
    6. Nagler L G, Lankin V Z, Kozachenko A I, et al. Rate of free-radical oxidation of C18 diene and triene fatty acids in aqueous micellar solutions and effectiveness ofβ-Carotene as an inhibitor of their oxidation. Biochemistry (Moscow), 2003, 68(2): 203-208
    7. Osborn H T, Akoh C C. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidationin structured lipid-based oil-in-water emulsions. Food Chem, 2004, 84: 451-456
    8. Mancuso J R, Mcclements D J, Decker E A. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. J Agric Food Chem, 1999, 47(10): 4112-4116
    9. Richards M P, Wilailuk C, Mcclements D J, et al. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions. Journal of Agricultural & Food Chemistry, 2002, 50(5): 1254-1259
    10. Mei L, Mcclements D J, Wu J N, et al. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem, 1998, 61(3): 307-312
    11.贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社, 2001
    12. Miyashita K, Tateda N, Ota T. Oxiative stability of polyunsaturated fatty acids in an aqueous solution. Fisheries Science (Japan), 1993, 57(10): 1638-1640
    13. Timm-Heinrich M, Skall N N, Xu X, et al. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn2-position - as bulk lipids and in milk drinks. Innovative Food Science & Emerging Technologies, 2004, 5(2): 249-261
    14. Cho Y J, Mcclements D J, Decker E A. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion. J Agric Food Chem, 2002, 50(20): 5704-5710
    15. Young-Je C, Mcclements D J, Decker E A. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion. J Agric Food Chem, 2002, 50(20): 5704-5710
    16. ?zilgen S, ?zilgen M. Kinetic model of lipid oxidation in foods. J Food Sci, 1990, 55(2): 498-501
    17. Minemoto Y, Kometani T, Piao J, et al. Oxidation of oleoyl residue of its esters with ethylene glycol, glycerol and erythritol. LWT - Food Science and Technology, 2006, 39(1): 1-5
    18. Adachi S, Ishiguro T, Matsuno R. Autoxidation kinetics for fatty acids and their esters. J Am Oil Chem Soc, 1995, 72(5): 547-551
    19. Chen J, Kimura Y, Adachi S. Oxidation of linoleoyl residue of its trehalose ester in an aqueous solution. Food Science and Technology Research, 2006, 12(3)
    20. Coupland J N, Zhu Z, Wan H, et al. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. J Am Oil Chem Soc, 1996, 73(6): 795-801
    21. Gunstone F D, Norris F A. Lipids in foods: chemistry, biochemistry and technology[M]. Pergamon Press, 1983, 58-69
    22. Adachi S, Mizuno T, Matsuno R. Concentration dependence of the distribution coefficient of maltooligosaccharides on a cation-exchange resin. J Chromatogr A, 1995, 708(2): 177-183
    23. Nuchi C D, Hernandez P, Mcclements D J, et al. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions. J Agric Food Chem, 2002, 50(19): 5445-5449
    24. Pekkarinen S S, Stockmann H, Schwarz K, et al. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J Agric Food Chem, 1999, 47(8): 3036-3043
    25. Chaiyasit W, Silvestre M P C, Mcclements D J, et al. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions. J Agric Food Chem, 2000, 48(8): 3077-3080
    26. Weiss J, Coupland J N, Brathwaite D, et al. Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles. Colloid and Surface A, 1997, 121(1):53-60
    27. Israelachvili J N. Intermolecular and Surface Forces. New York: Academic, 1992
    28. Aveyard R, Binks B P, Clark S, et al. Cloud points, solubilisation and interfacial tensions in systems containing nonionic surfactants. J Chem Technol Biot, 1990, 48(2): 161-171
    29. Hiemen P C. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker, 1986
    30. Karaborni S, Van Os N M, Esselink K, et al. Molecular dynamics simulations of oil solubilization in surfactant solutions. Langmuir, 1993, 9: 1175-1178
    31. Esselink K, Hilbers P A J, Van Os N M, et al. Molecular dynamics simulations of model oil/water/surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 91: 155-167
    32.张玉亭.胶体与界面化学.北京:中国纺织出版社, 2001
    33.孙国春,尹宝霖,魏西莲.表面活性剂胶束溶液的增溶及相转移自由能.聊城大学学报(自然科学版), 2005(02): 36-38
    34. Kasaikina O T, Kortenskab V D, Kartasheva Z S, et al. Hydrocarbon and lipid oxidation in micro heterogeneous systems formed by surfactants or nanodispersed Al2O3, SiO2 and TiO2. Colloid and Surface A, 1998, 149(3): 29-38
    35. Osborn H T, Akoh C C. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chem, 2004, 84(3): 451-456
    36. Coupland J N, Zhu Z, Wan H, et al. Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. J Am Oil Chem Soc, 1996, 73(6): 795-801
    37. Fomuso L B, Corredig M, Akoh C C. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions. J Agr Food Chem, 2002, 50(10): 2957-2961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700