用户名: 密码: 验证码:
可降解多孔型丝素蛋白/羟基磷灰石的制备及其修复骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分可降解多孔型丝素蛋白/羟基磷灰石的制备及其在SD大鼠体内降解的实验观察
     【目的】制备丝素蛋白/羟基磷灰石(silk fibroin/hydroxyapatite,SF/HA)复合人工骨材料,并将该材料植入生物体内降解,以了解SF/HA在动物体内的降解速率及机体对SF/HA的组织学反应,为后续成骨实验提供可靠的参考数据。
     【方法】以蚕丝丝素蛋白作为羟基磷灰石沉积的模板,以家蚕丝素短纤维为增强材料,以NaCl为致孔剂,采用等静压的方法制备4种SF/HA复合多孔材料。以羟基磷灰石为对照组,测定4种SF/HA复合材料及羟基磷灰石在0.5h、2h、6h、12h及24h不同时间点的吸水率。将4种SF/HA复合材料及羟基磷灰石植入SD大鼠背部皮下,进行体内降解观察。实验组分别于术后2、6、12、16、20及24周取材,对照组分别于术后2、12及24周取材,进行大体观察及组织学检查。
     【结果】丝素蛋白、HA、添加剂及致孔剂配比不同,制备的4种SF/HA人工骨材料的孔径、孔隙率及强度等也不同。材料吸水率趋势如下:SF/HA_3、SF/HA_4>SF/HA_2、SF/HA_1 >HA。HA、SF/HA_1及SF/HA_2降解十分缓慢或基本不能降解;SF/HA_3 20~24周降解完毕;SF/HA_4 12~16周降解完毕;各种材料周围组织未见明显变性坏死等。
     【结论】SF/HA_1平均孔径为6.5μm,最大孔径也只有15μm,不适合骨组织工程支架材料的要求。SF/HA_4虽然孔径、孔隙率满足要求,但力学强度较低,压缩强度只有1.59MPa,在水中很快散开,也不适合骨组织工程的要求。故在后续的试验中,我们剔除这两种材料,将对SF/HA_3及SF/HA_2两种材料进行体外细胞相容性研究。
     第二部分兔骨髓基质细胞的分离培养及其成骨诱导分化的实验研究
     【目的】体外分离培养兔骨髓基质细胞(bone marrow stromal cells,BMSCs),并向成骨方向诱导培养,为SF/HA相容性提供检测细胞及为SF/HA组织工程化骨提供适宜的种子细胞。
     【方法】抽取新西兰白兔的骨髓5ml,通过密度梯度离心法获取BMSCs,体外贴壁培养、扩增、传代,倒置显微镜下观察原代及各代细胞形态、数量生长情况,描绘生长曲线。第2代细胞用含1×10~(-8)g/l地塞米松、10mmol/lβ-甘油磷酸钠及50μg/l L-抗坏血酸的条件培养液将其定向成骨诱导培养、扩增。采用倒置相差显微镜观察细胞形态变化;采用MTT法测定细胞增殖情况;使用碱性磷酸酶染色及Von Kossa钙结节染色等方法,鉴定其成骨性能。
     【结果】BMSCs在培养皿中贴壁生长、增殖,条件培养液诱导后表现出明显的成骨活性,细胞增殖良好,体外矿化结节Von Kossa染色阳性、碱性磷酸酶染色阳性,证实其有成骨潜能。
     【结论】可以通过体外分离纯化兔BMSCs,在一定条件下能够向成骨方向诱导分化,并能使细胞保持较高的成骨活性,适于作为材料相容性的检测细胞及构建组织工程化骨的种子细胞。
     第三部分可降解多孔型丝素蛋白/羟基磷灰石复合人工骨材料的细胞相容性研究
     【目的】以成骨诱导的BMSCs作为检测细胞,与两种丝素蛋白/羟基磷灰石(SF/HA)进行体外复合培养,检测SF/HA的细胞相容性。
     【方法】将兔BMSCs体外成骨诱导至第3代,接种到预湿的SF/HA_2及SF/HA_3材料上复合培养,以单纯BMSCs相同条件下培养作为对照。通过相差显微镜、扫描电镜及HE染色等方法观察细胞在材料中的生长情况。以MTT法检测材料对细胞增殖活性的影响,以碱性磷酸酶活性测定评价其成骨能力,以材料浸提液的细胞毒性试验评估材料是否有细胞毒性。
     【结果】扫描电镜及组织学观察发现,细胞材料复合后,BMSCs在SF/HA_2及SF/HA_3上能够良好地粘附和增殖。ALP活性测定及MTT法测定OD值均证实,BMSCs细胞活性及成骨性能不受材料影响,与对照组相比,差异无统计学意义(P>0.05)。材料浸提液细胞毒性试验显示,细胞毒性分级均为0~Ⅰ级,两种SF/HA浸提液对细胞生长基本无毒性作用。
     【结论】SF/HA_2与SF/HA_3对BMSCs的生长和成骨功能无影响,具有良好的细胞相容性,具有构建组织工程化骨的可行性。
     第四部分可降解多孔型丝素蛋白/羟基磷灰石异位成骨及其组织相容性的实验研究
     【目的】探讨SF/HA_2及SF/HA_3体内异位成骨的能力,并通过肌肉植入实验进一步观察两种材料的组织相容性,为SF/HA修复节段性骨缺损提供实验依据。【方法】将体外诱导培养的兔骨髓基质细胞,以5×10~7/ml的密度接种到SF/HA_2,作为实验组1;接种到SF/HA3,作为实验组2,并于3~5d后植入兔背部肌肉中。植入单纯SF/HA_2与SF/HA_3,作为对照组。对照组亦作为材料的肌肉植入实验模型,观察组织相容性。于术后第4、8、12周,每次随机选取5只兔处死后取材,大体观察及HE染色组织学观察,并进行骨组织形态计量学分析,定量比较各组新骨形成情况。
     【结果】实验组术后4、8、12周均有新骨形成,随着时间延长,新骨生成量增多;骨组织形态计量学分析显示,实验组1优于实验组2(P<0.05);对照组则均无新骨形成。肌肉植入实验未见肌肉变性坏死等。
     【结论】肌肉植入实验、第一部分的皮下植入实验及第三部分的细胞相容性研究均显示,两种SF/HA具有良好的组织相容性。SF/HA_3与SF/HA_2复合细胞后构建的组织工程化骨,具有良好的异位成骨能力,可望应用于临床修复骨缺损。但从生物降解性及异位成骨的效果看,SF/HA_3更适合于作为人工骨材料,将进一步研究该材料修复节段性骨缺损的能力。
     第五部分可降解多孔型丝素蛋白/羟基磷灰石组织工程化骨修复节段性骨缺损的实验研究
     【目的】探索SF/HA_3组织工程化骨的成骨作用及作为骨替代材料的可行性,期望为临床治疗骨缺损提供新的人工骨材料。
     【方法】在本实验中将SF/HA_3更名为SF/HA,与诱导的兔BMSCs复合,构建组织工程化骨。麻醉生效后,充分显露兔左侧桡骨中上段,造成15mm节段骨缺损。实验组植入SF/HA+BMSCs复合物,实验对照组植入SF/HA材料,空白对照组骨缺损区不植入任何材料。
     于术后第4、8、12及16周行X线摄片及16周时行螺旋CT扫描重建,观察骨缺损修复及骨塑形情况。参照Lane-Sandhu X线评分标准对各组桡骨缺损的骨修复程度评分。标本行HE染色及Masson染色组织学观察,按照Lane-Sandhu组织学评分法比较12周及16周时各组动物的骨修复情况。
     【结果】实验组、实验对照组及空白对照组的放射学及组织学检查评分显示,新骨生成有统计学差异(P<0.05),实验组优于实验对照组优于空白对照组;大体观察及放射学检查证实:实验组兔桡骨缺损完全愈合;实验组对照组缺损处少部分骨愈合;空白对照组缺损基本无骨修复作用,由纤维组织充填。
     【结论】SF/HA与BMSCs复合,降解速率适宜,能较快被骨组织取代,具有相当于自体骨的骨缺损修复能力,基本达到现代骨组织工程学的要求。但材料本身缺乏骨诱导作用,单独用于节段性骨缺损修复作用有限。
PartⅠ: Preparation of Degradable Porus Silk Fibroin/Hydroxyapatite (SF/HA) Composite and Degradation of the Composite in SD rats in Vivo
     【Objective】To prepare a novel bone substitute of silk fibroin/hydroxyapatite (SF/HA) composite for bone tissue engineering, and to explore the composite degradation rate and tissue reaction on it in SD rats in vivo.
     【Methods】Silk fibroin (SF) and Hydroxyapatite (HA) composite powders were synthesized. 4 types of porous silk fibroin/hydroxyapatite (SF/HA) composite could be prepared when adding silk short fibers and using NaCl as porogen by isostatic pressing. Using HA as a control group, water absorption rate of 4 composites and HA were measured at 0.5, 2, 6, 12 and 24 h after these materials soaked in deionized water. These materials were implanted into SD rats’back subcutaneously to observe their degradation rate and tissue reaction on them. Specimens in experiment group were observed in general and from the aspect of histology at post-operative 2, 6, 12, 16, 20 and 24 weeks respectively, while control group at post-operative 2, 12 and 24 weeks.
     【Results】Pore size, porosity and strength of these 4 type of SF /HA were different when proportion of SF, HA, affix and porogen was different. Absorption rate was as follows: SF/HA_3 and SF/HA4>SF/HA_2 and SF/HA_1>HA. HA, SF/HA_1 and SF/HA_2 had little degradation. SF/HA_3 had complete degradation during post-operative 20~24 weeks, while SF/HA4 had complete degradation during post-operative 12~16 weeks. Histology showed that tissue surrounding SF/HA had no apomorphosis and necrosis.
     【Conclusions】SF/HA_1 is unsuitable for bone tissue engineering scaffold because its average pore size was 6.5μm, and its maximum pore size was only 15μm. SF/HA4 is also unsuitable for bone tissue engineering scaffold because its strength is only 1.59MPa and it quickly spread in water. In the future experiment, we will exclude these two composites, and only carry out study on SF/HA_3 and SF/HA_2.
     PartⅡ: Experimental Studies on Cultivation of Bone Marrow Stromal Cells (BMSCs) from Rabbits and BMSCs Osteogenic Differentiation
     【Objective】To differentiate and proliferate bone marrow stromal cells (BMSCs) from rabbit’s marrow into osteoblasts in vitro to prepare seed cells for bone tissue engineering and compatibility test.
     【Methods】Primarily cultured BMSCs isolated from a rabbit’s bone marrow by density gradient centrifugation were subcultured in mineralization medium to induce their differentiation into osteoblasts, whose morphological characteristics and proliferation status were observed by phase-contrast microscope. Von Kossa staining and alkaline phosphatase (ALP) activity test were employed to assess BMSCs’osteoblastic differentiation and the generation of calcified extracellular matrix. MTT assay detected the osteoblast proliferation.
     【Results】BMSCs cultured in vitro showed obvious osteogenic capacity in mineralization DMEM. Von Kossa staining of the mineralized nodules and alkaline phosphatase detection of the passaged cells both yielded positive results. MTT assay showed the osteoblast proliferation was normal.
     【Conclusions】BMSCs could be cultured, differentiated and proliferated with active osteogenic function by differentiation culture medium in vitro. So it could be suitable for seed cell for bone tissue engineering.
     PartⅢ: Study on Cellular Compatibility of the degradable porus composite of SF/HA
     【Objective】To evaluate SF/HA cellular compatibility as well as the feasibility of the composite to serve as a scaffold in tissue engineering by using co-culturing of osteogenic BMSCs and SF/HA.
     【Methods】The third passage BMSCs were transplanted into SF/HA_2 and SF/HA_3 after being induced to differentiate into osteoblasts and then seeded into the materials for 3 to 5 days. BMSCs alone were cultured at the same condition to act as controls. The cellular morphology and function (attachment, proliferation and differentiation) were assessed separately by means of phase contrast microscope, HE, SEM and MTT assay, ALP activity. The material leaching liquor were used to test cell toxicity.
     【Results】BMSCs could adhere to SF/HA_2 and SF/HA_3, and proliferate and grow on the surface of the composites normally. The cellular activity and function were not affected by the materials, and no statistical difference was found between the two groups and the control group (P>0.05). Cell toxicity test discovered these materials had no toxic effect on BMSCs.
     【Conclusion】SF/HA_2 and SF/HA_3 have a good biocompatibility and can be used as a tissue engineering scaffold.
     PartⅣ: Studies on ectopic bone formation of SF/HA with rabbit BMSCs and the composite tissue compatibility
     【Objective】To explore the ectopic osteogenesised ability of the tissue engineered bone fabricated by osteoblasts which derived from rabbit BMSCs co-cultured with SF/HA, and to observe the material tissue compatibility by placing it into rabbits’muscle.
     【Methods】The differentiated osteoblasts which were derived from BMSCs, with 5×107/ml density, were seeded onto SF/HA (SF/HA_2+BMSCs as Group1; SF/HA_3+BMSCs as Group2). Then, co-cultured for 5 days, the compounds with cells and SF/HA were implanted into muscular pouch of back of rabbits and SF/HA alone was implanted as a control group. The effectiveness of bone formation was assessed separately by means of gross observation and histology after implantation for 4, 8, 12 weeks.
     【Results】New osteogenesis was detected at the end of the 4th, 8th and 12th week after implantation respectively in experimental group. The quantity of new osteogenesis in experimental group 1 was better than in experimental group 2 by histology morphometry (P<0.05). There was no new bone formation in the control group. Muscle surrounding all materials had no apomorphosis and necrosis from the aspect of histology.
     【Conclusion】Muscle implantation test, Subcutanea implantation test in PartⅠand cell compatibility in PartⅢshow SF/HA_2 and SF/HA_3 have a good biocompatibility. The tissue engineered bone fabricated by osteoblasts which derived from BMSCs cultured onto SF/HA have a good ability of ectopia osteogenesis in vivo. It is supposed to be a good way to repair clinical bone defect. However, SF/HA_3 is more suitable than SF/HA_2 because SF/HA_3 has a better bio-degradation rate and ectopia osteogenesis effect.
     PartⅤ: Experimental study on rabbit segmental radial defects repaired by SF/HA co-cultured with rabbit BMSCs
     【Objective】To discuss the bone formation of SF/HA_3 tissue engineered bone co-cultured with rabbit’s BMSCs and the feasibility of SF/HA_3 as a bone substitute.
     【Methods】SF/HA_3 is named SF/HA in the current study. The purified, culture-expanded, and osteogenic BMSCs were combined with SF/HA in vitro according to condition of cell culture. A segmental bone defect (15 mm in length) was created at left radial in each rabbit. The composite grafts were implanted into the bone defects in rabbits through open operation. The curative effect was evaluated by radiographic examination, histology analysis and eyes observation in experimental groups, experimental control group and blank control group at post-operative 4, 8, 12, 16 week, respectively.
     【Results】The bone defects that had been treated with grafts exhibited new bone formation increased with time by radiography, histology and eye observation. The rate and quality of new bone formation were significantly different in the experimental groups, experimental control groups and blank control groups (P<0.05). The segmental bone defects were complete union in the experimental groups, while the defects were partial union in the experimental control groups. In the defects in blank groups, there were no formation of new bone after operation and bone defects were finally repaired only by fibrous tissue.
     【Conclusion】SF/HA has a suitable degradation rate and can be replaced by normal bone tissue appropriately. The bone formation ability of SF/HA combined with BMSCs is equivalent to the ability of autogenous bone. It is supposed to be a good way to repair clinical bone defect. However, the composite has no bone induction, and using the material alone has little bone formation in the segmental bone defect.
引文
1李玉宝.骨修复纳米生物材料及其发展前景.中国国际新材料产业研讨会,生物医用材料专业论坛, 2004: 4-11.
    2张亚平,高家诚,王勇.人工关节材料的研究与展望.世界科技研究与发展, 2000, 22: 47-48.
    3 United States Markets for Orthopedic Biomaterials. Toronto, ON: Millennium, Research Group; 2005.
    4 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury, 2005, 36 (Supplement 1): S20-S27.
    5 Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials, 2000, 21: 757-764.
    6 Smartt JM, Karmacharya J, Gannon, et a1. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity, and remodeling capacity. Plast Reconstr Surg, 2005, 115: 1642-1650.
    7 Flalkov JA, Holy CE, Shoichet MS, et a1. In vivo bone enginering in a rabbit femur. J Cranioface Surg, 2003, l4: 324-332.
    8 Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg, 2005, 13: 77-86.
    9 Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, Schulten EA. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery: report of 3 cases and review of the literature. J Oral Maxillofac Surg, 2004, 62: 781-786.
    10 Mankin HJ. The changes in major limb reconstruction as a result of the development of allografts. Chir Organi Mov, 2003, 88: 101-113.
    11 Enncking WF, Campanacci DA. Retrieved human allografts: a clinical-pathological study. J Bone Joint Surg (Am), 2001, 83: 971-986.
    12 Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin, 2003, 8: 1-14.
    13吴王喜,周磊.骨组织工程生物活性支架研究进展.中华创伤骨科杂志, 2006, 8: 165-168.
    14 Lin AS, Barrows TH, Cartmell SH, et a1. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials, 2003, 24: 481-489.
    15 Li S, De Wijn JR, Li J, et a1. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng, 2003, 90: 535-548.
    16曹谊林,周广东. 21世纪组织工程面临的机遇与挑战.中华医学杂志, 2005, 85: 2523-2525.
    17 Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24: 2161-2167.
    18 Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop, 2002, (395): 44-52.
    19 Proussaefs P, Lozada J, Valencia G, et al. Histologicevaluation of a hydroxyapatite onlay bone graft retrieved after 9 years: a clinical report. J Prosthet Dent, 2002, 87: 481-484.
    20李世普,编著.生物医用材料导论.武汉:武汉工业大学出版社, 2000. 214-218.
    21黄先智.丝蛋白在食品和化妆品中的应用.四川丝绸, 2003, (2) : 19-20.
    22盛伟华,谢宇锋,缪竞诚,等.蚕丝蛋白材料对鼠胚表皮细胞毒性的实验研究.苏州大学学报(医学版), 2005, 25: 551-554.
    23 Cordewener FW, Bos RR, Rozema FR, et al. Poly (L-lactide) implants for repair of human orbital floor defects: clinical and magnetic resonance imaging evaluation of long-term results. J Oral Maxillofac Surg, 1996, 54: 9-13.
    24 Lorenz M, Sandra H, Vassilis K et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26: 147-155.
    25 Altmana GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligments. Biomaterials, 2002 , 23: 4131-4141.
    26张亚,王晓东,张希峰,等.兔骨髓间充质干细胞在丝素蛋白上的体外培养.中华小儿外科杂志, 2006, 27: 34-37.
    27 Oh SH, Kang SG, Kim ES, et a1. Fabrication and characterization of hydrophilie poly (1actic-co-glyeolic acid)/poly (vinyl alcoho1) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 2003, 24: 401l-4021.
    28 S′anchez-Salcedo S, Nieto A, Vallet-Regf M. Hydroxyapatite/β-tricalcium phosphate/ agarose macroporous scaffolds for bone tissue engineering. Chemical Engineering Journal, 2008, 137: 62-71.
    1. Wang XJ, Li YB, Wei J, et al Development of biomimetic nano-hydroxyapatite/ poly (hexamethylene adipamide) composites. Biomaterials, 2002, 23: 4787-4792.
    2. Wang M, Bmfield W. Chemically coupled hydroxyapatite/polyethylene composites: structure and properties. Biomaterials, 2001, 22: 1311-1320.
    3. Yasuhiko I. Reduction of surface-induced in ammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, 23: 3897-3903.
    4. Joseph PV, Robert L. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 1999, 354: 32-34.
    5. Dietmar W, Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529-2543.
    6. Felicity RA, Rose J, Richard OC, et al.. Bone tissue engineering: hope vs hype. Biochemical and Biophysical Research Communications, 2002, 292: 1-7.
    7. Wang X, Bank RA, TeKoppele JM, et al. The role of collagen in determining bone mechanical properties. Journal of Orthopaedic Research, 2001, 19: 1021-1026.
    8. Hellmich CH, Ulm FJ. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? -some energy arguments. Journal of Biomechanics, 2002, 35: 1199-1212.
    9. Martin RI, Brown PW. Mechanical properties of hydroxyapatite formed at phys iological temperature. J Mater Sci Mater Med, 1995, 6 : 138-143.
    10.唐文胜,蒋电明.羟基磷灰石及其复合材料在骨修复中的作用及研究进展.中华创伤骨科杂志, 2003, 5: 370-373.
    11.冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报, 2002, 24: 124-128.
    12. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2002, 21: 2529-2543.
    13. Guo XD, Zheng QX, Du JY, et al. Biogradation and mechanical properties of hydroxyapatite/poly DL-lactide composites for fracture fixation. J Wuhan Univer Technol, 1998, 13: 9- 15.
    14. Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly (alpha-hydroxylacids)/hydroxyapatite composite scaffolds. J Biomed Mater Res, 2001, 54: 284-293.
    15. Cordewener FW, Bos RR, Rozema FR, et al. Poly(L-lactide) implants for repair of human orbital floor defects: clinical and magnetic resonance imaging evaluation of long-term results. J Oral Maxillofac Surg, 1996, 54: 9-13.
    16.林炜,穆畅道,朱梅湘.利用皮边角料提取食品级胶原蛋白/多肽(Ⅰ)-氨基酸组成分析和分子量测定.中国皮革, 2003, 32: 5-8.
    17. Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003, 24: 4987-4997.
    18.刘永成,邵正中,孙玉宇,等.蚕丝蛋白的结构和功能.高分子通报, 1998, 3: 17-23.
    19. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomateria1. Biomaterials, 1990, 11: 430-434.
    20.张世明,刘向阳,李明忠,等.丝素膜代人工硬脑膜的相容性研究.中华神经外科杂志, 2004, 20: 303-306.
    21. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials., 2003, 24: 357-365.
    22. Panilaitis B, Altman GH, Chen J, et al. Macrophage responses to silk. Biomaterials, 2003, 24: 3079-3085.
    23. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238: 491-497.
    24. Chiarini A, Petrini P, Bozzini S, et a1. Silk fibroin/poly (carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials, 2003, 24: 789-799.
    25. Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nano fiber membranes for guided bone regeneration. Journal of Biotechnology, 2005, 120: 327-339.
    26. Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26: 147-155.
    27. Meinela L, Fajardod R, Hofmanna S, et al. Silk implants for the healing of critical size bone defects. Bone, 2005, 37: 688–698.
    28. Kong XD, Cui FZ, Wang XM, Zhang M. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202.
    29. Wang L, Ning GL, Senna M. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A: Physicochen. Eng Aspects, 2005, 254: 159-164.
    30. Dam SG, Allain P, Marie PJ. Incorporation and distribution of strontium in bone. Bone, 2001, 28: 446-452.
    31. Baldock PA, Sainsbury A, Allison S, et a1. Hypothalamic control of bone form ation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res, 2005, 20: l85l-l857.
    32. Porter NL, Pilliar RM, Grynpas MD. Fabrication of porous calcium polyphosphate implants by solid free form fabrication: A study of processing parameters and in vitro degradation characteristics. Journal of Biomedical Materials Research. 2001, 56: 504-513.
    33. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res, 2002, (395): 44-52.
    34.王永刚,裴国献,张洪涛,等.兔股骨干缺损模型的制备及在组织工程骨实验中的应用.中华创伤骨科杂志, 2005, 7: 97l-974.
    35.李建军,傅永慧,孙鸿斌,等.基因修饰的组织工程骨联合血管束植入修复节段性骨缺损.中华创伤杂志, 2006, 22: 674-678.
    36. Bignon A, Chouteau J, Chevalier J, et a1. Effect of micro-and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci: Mater Med, 2003, 14: 1089-1097.
    37. Trecant M, Delecrin J, Royer J, et a1. Mechanical changes in macroporous calcium phosphate ceramics after implantation in bone. Clin Mater, 1994, 15: 233-240.
    38. Wei J, Li YB. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polymer J, 2004, 40: 509-5l5.
    39. Wang Li, Nemoto Rei, Senna Mamoru. Changes is mocrostructure and physico-chemical properties of hydroxyapatite nanocomposite with varying silk fibroin content. Journal of the European Ceramic Society, 2004, 24: 2707-2715.
    40. Dillon GP, Yu X, Bellamkonda RV. Thepolarity and magnitude of ambient charge influences three-dimensional neurite extension from DRGs. J Biomed Mater Res, 2000, 51: 510-519.
    41. Gauthier O, Bouler JM, Aguado E, et a1. Elaboration condition influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramies. J Mater Sci: Mater Med, 1999, 10: 199-204.
    42. Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone in-growth. Biomaterials, 1998, 19: 133-139.
    43. Nehrer S. Matrix collagen type and pore size influence behavior of seeded canine chondrocytes. Biomaterials, 1997, 18: 769-776.
    44.沈尊理, Berger A, Hierner R.组织工程化人工神经内部支架及其生物相容性研究.中华手外科杂志, 2000, 16: 232-235.
    45. Daculsi G, Legeros RZ, Heughebaert M, et a1. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int, 1990, 46: 20-27.
    46. Pater D, Costantino MD, Crain D, et al. Experimental hydtoxyapatite cement cranioplasty. Plastic and Reconstructive Surgery, 1992, 90: 174-191.
    47. Guillemin G, Meunier A, Dallant P, et al. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res, 1989, 23: 765-779.
    48. Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture- expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop and Related Res, 1991, 262: 298-310.
    49.杨子彬.论植入体内医用材料的生物相容性.中国医疗器械信息, 2006, 7: 36-39.
    1. Van Damme A, Vanden-Driessche T, Collen D, et a1. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther, 2002, 2: 195-209.
    2. Pittenger MF, Mackay AM, Beck SC, et a1. Multlineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    3. Vacanti CA, Bonassar LJ, Vacanti MP, et a1. Replacement of an avulsed phalanx with tissue engineered bone. N Engl J Med, 2001, 344: 1511-15l4.
    4. Kamalia N, McCulloch CA, Tenebaum HC, et a1. Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow stromal cell cultures. Blood, 1992, 79: 320-326.
    5. Falla N, Van Vlasselaer, Bierkens J, et a1. Characterization of a 5-fluorouracil- enriched osteoprogenitor population of the murine bone marrow. Blood, 1993, 82: 3580-3591.
    6. Maniatopoulos C, Sodek J, Melcher AH, et a1. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Tissue Res, 1998, 254: 3 17-325.
    7. Nuttall ME, Patton AJ, Olivera DL, et a1. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteogenic disorders. J Bone Miner Res, 1998, 13: 371-379.
    8. Jerry H, Steven B, Zhu Min, et a1. Rat etramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg, 2002, 109: 1033-1041.
    9.邓廉夫,汤雪明,柴本甫,等.肿瘤坏死因子仅和骨形态发生蛋白-2诱导成纤维细胞成骨表型表达的体外研究.中国修复重建外科杂志, 1998, 12: 236-240.
    10. Kemp KC, Hows J, Donaldson C. Bone marrow derived mesenchymal stem cells. Leuk Lymphoma, 2005, 46: 1531-1544.
    11. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop, 1992, (276): 291-298.
    12. Lisignoli G, Remiddi G, Gattini L, et a1. An elevate number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res, 2001, 42: 49-58.
    13. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxgen osteochondrogenosis. J Cell Physiol, 2001, 187: 345-355.
    14. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen- activated proteinkinase. J Bio Chem, 2000, 275: 9645-9652.
    15. Ghilzon R, McCulloch CA, Zohar R. Stromal mesenchymal progenitor cells. Leuk Lymphoma,1999, 32: 211-221.
    16. Miao D. Towards selective adhesion of. mesenchymal progenitor cells from the rat bone marrow. Tissue Eng, 2004, 10: 807-817.
    17. Dost P, Tencate WJ, Wiemann I. Osteoblast like cell cultures from human stapes. Acta Otolaryngol, 2002, 122: 836- 840.
    18. Short B, Brouard N, Occhiodoro-Scott T, et a1. Mesenchymal stem cells. Arch Med Res, 2003, 34: 565-571.
    19. Gronthos S, Graves SE, Ohta S, et al. The Stro-1 fraction of adult human bone marrow contains the osteogenic precursors. Blood, 1994, 84: 4164-4173.
    20. Simmons PJ, Gronths S, Annetino A, et al. Isolation characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Pro Clin Biol Res, 1994, 389: 271-277.
    21.李秀森,郭子宽,杨靖清,等.骨髓间充质干细胞的生物学特性.解放军医学杂志, 2000, 25: 346-348.
    22. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med, 2005, 11: 76-81.
    23. Heng BC, Cao T, Stanton LW, et al. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res, 2004, 19: 1379-1394.
    24. Kurtz A, Aigner A, Cabal-Manzano RH, et al. Differential regulation of a fibroblast growth factor-binding protein during skin carcinogenesis and wound healing. N eoplasia, 2004, 6: 595-609.
    25. Harris CT, Cooper LF. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res A, 2004, 68: 747-755.
    26. Labrie JE, Borghesi L, Gerstein RM. Bone marrow microenvironmental changes in aged mice compromise V (D) J recombinase activity and B cell generation. Sem in Immunol, 2005, 17: 347-355.
    27. Conget PA, Minguell JJ. Phonotypical and functional properties of human bone marrow mesenchyrnal progenitor cells. J Cell Physiol, 1999, 181: 67-73.
    28.张德强,王晓东.人骨髓间充质干细胞生长特性及碱性成纤维细胞生长因子对其增殖的影响.中国组织工程研究与临床康复, 2007, 11: 3976-3979.
    29.周健,戴戴戴,汤亭亭.复合干细胞生物陶瓷在裸鼠异位成骨中的评价.上海第二医科大学学报, 2004, 24: 793-797.
    30. Kveiborg M, Flyvbjerg A, Eriksen EF, et al. 1, 25-Dihydroxy vitamin D3 stimulates the production of insulin like growth factor-binding proteins-2, -3 and-4 in human bone marrow stromal cells. Eur J Endocrinol, 2001, 144: 549-557.
    31. HanadaK, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morpholgenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenehymal stem cells. J Bone Miner Res, 1997, 12: 1606-1614.
    32. Chen TL. Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone, 2004, 35: 83-95.
    33. Peter SJ, Liang CR, Kim DJ, et al. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. J Cell Biochem, 1998, 71: 55-62.
    34. Cheng SL, Zhang SF, Avioi LV, et a1. Expression of bone matrix proteins during dexamethesone induced mineralization of human bone marrow stromal cells. Cel Biochem, 1996, 61: 182-193.
    35. Shibano K, Watanabe J, Iwamoto M, et al. Culture of stromal cells derived from medullary cavity of human long bone in the presence of 1, 25-dihydroxyvitamin D3, recombinant human bone morphogenetic protein-2, or ipriflavone . Bone, 1998, 22: 251-258.
    36. Otsuka E, Yamaguchi A, Shigehisa H, et al. Characterizations of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am J Physiol, 1999, 277: 132-138.
    37. McQillan DJ, Richardson MD, Bateman JF. Matrix deposition by a calcifying human osteogenic sarcoma cell line (SAOS22). Bone, 1995, 16: 415-426.
    38. Coelho M, Fernandes H. Human bone cell cultures in biocompatibility stating: PartⅡ: effect of ascorbic acid,β-glycerrophosphate and dexamethasone on osteoblastic differentiation. Biomaterials, 2002, 21: 1095-1201.
    39. Takafumi Y. Bone reconstruction by cultured bone graft. Mater Sci Eng C, 2000, 13: 29-34.
    40. Yamamoto N, Sobem I, Negishi A, et a1. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J Med Dent Sci, 2003, 50: 63-69.
    41. Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem, 1999, 45: 1359-1368.
    42. Alborzi A, Mack G, Lackin CA, et a1. Endochondral and intramembranous fetal bone development: osteoblastic cell proliferation and expression of alkaline phosphatese, M-twist, and histone H4. J Craniofac Genet Dev Biol, 1996, 16: 94-106.
    43. Abdauah BM, Jensen CH, Gutierrez G, et al. Regulation of human skeletal stem cells differentiation. J Bone Miner Res, 2004, 19: 84l-852.
    44.张伟国.成骨细胞表型分化及其基因调控研究进展.上海口腔医学, 1998, 7: 179-181.
    45.郑晓雁,张振庭,方玉. MTT法评价国产碳纤维桩材料的细胞毒性.北京口腔医学, 2006, 14: 189-191.
    46.薛庆善.体外培养的原理与技术[M].北京:科学出版社, 2001, 339.
    1. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529-43.
    2. Jin QM, Takita H, Kohgo T, et a1. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation in PPHAP and PBHAP while only endochondral ossification took place in HCHAP. J Biomed Res, 2000, 51: 491-499.
    3. Yamada Y, Ueda M. Regenerative medicine for bone using mesenchymal stem cells. Nippon Ronen Igakkai Zasshl, 2006, 43: 338-341.
    4.张毅,庄昭霞,卢风琪,等.牙周引导组织再生壳聚糖膜的生物相容性研究.山东大学学报, 2002, 40: l15-117.
    5. Hofman S, Sidqui M, Abensur D, et a1. Effects of ladder on the formation of calcified bone matrix in rat calvariae cells culture. Biomaterials, 1999, 20: 1155-1166.
    6. ISO1 0993: Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods. Geneva: ISO. 1992
    7. Zhang CX. A new method of measuring the cytotoxicity by spectrophotometer for amalgam of different cupric quantity. Zhonghua Kou Qiang Yj Xue Za Zhi, 1990, 25: 216-218.
    8. Michael S, Hiroshi Y, Joseph PV. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Engineering, 2004, 10: 33-41.
    9. El-Amin SF, Lu HH, Khan Y, et al. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003, 24: 1213-1221.
    10. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21: 431-440.
    11. Mathieu LM, Mueller TL, Bourban PE, et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27: 905-916.
    12. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnol, 1998, l6: 224-230.
    13.张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志, 2002, 19: 117-112.
    14.康非吾,唐休发,温玉明,等.骨生物衍生支架材料组织相容性实验研究.口腔颌面外科杂志, 2005, 15: 223-226.
    15. Johnson HJ, Northup SJ, Seagraves PA, et a1. Biocompatibility test procedures for materials evaluation in vitro II. Objective methods of toxicity assessment. J Biomed Mater Res, 1985, l9: 489-508.
    16. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop, 2002, (395): 44-52.
    17. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 2003, 24: 357-365.
    18.汪群力,裴国献,曾宪利,等.成年恒河猴骨髓基质干细胞的体外培养.中华创伤骨科杂志, 2004, 6: 728-730.
    19. Choong CS, Hutmacher DW, Triffitt JT. Co-culture of bone marrow fibroblasts and endothetial cells on modified potycaprotact one substrates for enhanced potentials in bone tissue engineering. Tissue Eng, 2006, 12: 2521-2531.
    20. Cai K, Yao K, Lin S, et a1. Poly(D, L-lactic acid)Surfaces modified by silk fibroin: Effects on the culture of osteoblast in vitro. Biomaterials, 2002, 23: 1153-1l60.
    21. Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly(alpha- hydroxylacids)/hydroxyapatite composite scaffolds. J Biomed Mater Res, 2001, 54: 284-293.
    22.郑晓雁,张振庭,方玉. MTT法评价国产碳纤维桩材料的细胞毒性.北京口腔医学, 2006, 1 4: 189-191.
    23.黄永光,陈治清.硬组织替代材料对成骨细胞骨钙蛋白和ALP水平的影响.华西口腔医学杂志, 2000. 18: 192-194.
    24.张伟国.成骨细胞表型分化及其基因调控研究进展.上海口腔医学, 1998, 7: 179-181.
    1. Goshima J, Goldberg VM, Caplan AI. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop Relat Res, 1991, 269: 274-283.
    2. Thomas A, Einborn MD. Clinically applied models of bone regeneration in tissue engineering research. Clin Orthop Relat Res, 1999, 367: 59-67.
    3.郭建刚,赵然,侯桂英,等.骨组织成分与Masson三色染色反应的关系分析.中医正骨, 2001, 13: 5-6.
    4.王俊艳,梁玉.试用Masson染色评价骨组织的成熟程度.解剖科学进展, 2004, 10: 17-18.
    5. Crane GM, Lshaugug SL, Mikos AG, et a1. Bone tissue engineering. Nat Med, 1995, 1: 1332-1334.
    6. Ekelund A, Brosjo O, Nilsson OS. Experimental induction of heterotopic bone. Clin Orthop Relat Res, 1991, (263): 102-112.
    7. NoshiT, YoshikawaT, IkeuchiM, et a1. Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. J Biomed Mater Res, 2000, 52: 621-630.
    8. Wlodarski KH. Heterotopic bone marrow formation in xenogeneic implants of insoluble bone matrix gelatin. Clin Orthop Relat Res, 1982, (171): 210-212.
    9. Kon E, Murglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res, 2000, 49: 328-337.
    10. Eiselt P, Kim BS, Chacke B. Development of technologies aiding large-tissue engineering. Biotechnol Prog, 1998, 14(1): 134-139.
    11. Vunjak NG, Obradovic B, Martin I. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog, 1998, 14: 193-121.
    12. Wakitani S. Repair of large full-thickness articular cartilage defects with allograft articular chondricytes embedded in a collagen gel. Tissue Engineering, 1998, 4: 429-435.
    13. Williams JT, Southeriand SS, Souza J, et a1. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg, 1999, 65: 22-26.
    14. McDavid PT, Boone ME, Kafaivy AH, et a1. Efect of autogenous marrow and calcitonin on reactions to a ceramic. J Dent Res, 1979, 58: 1478-1483.
    15. Ohgushi H, Goldberg VM, Caplan AI. Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res, 1989, 7: 568-578.
    16. Guillemin G, Meunier A, Dallant P, et al. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res, 1989, 23: 765-779.
    17.李世普,编著.生物医用材料导论.武汉:武汉工业大学出版社, 2000. 214-218.
    18. Nade S, Armstrong L, McCartney E, et a1. Osteogenesis after bone and bone marrow transplantation: The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells preliminarystudies. Clin Orthop Relat Res, 1983, (181): 255-263.
    19. Kuhne JH, Bartl R, Frisch B, et a1. Bone formation in coralline hydroxyapatite: Effects of pore size studied in rabbits. Acta Orthop Scand, 1994, 65: 246-252.
    20. Hollinger JO, Battistone GC. Biodegradable bone repair materials. Synthetic polymers and aramics. Clin Orthop, 1986, (207): 290-305.
    21. Cooper LF, Harris CT, Bruder SP, et a1. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J Dent Res, 200l, 80: 3l4-320.
    22. Yang Z, Yuan H, Tong W, et a1. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 1996, 17: 2131-2137.
    23. Ripamonti U. Osteoinduetion in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials, 1996, 17: 31-35.
    24. Habibovic P, Yuan H, van der Valk CM, et al. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 2005, 26: 3565-3575.
    25. Wooley PH, Nasser S, Fitzgerald RH Jr. The immune response to implant materials in humans. Clin Orthop Relat Res, 1996, (326): 63-70.
    1. Smartt JM, Karmacharya J, Gannon, et a1. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity, and remodeling capacity. Plast Reconstr Surg, 2005, 115: 1642-1650.
    2. DeCoster TA, Gehlert RJ, Mikola EA, Pirela-Cruz MA. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg. 2004, 12: 28-38.
    3. Flalkov JA, Holy CE, Shoichet MS, et a1. In vivo bone enginering in a rabbit femur. J Cranioface Surg, 2003, l4: 324-332.
    4. Mankin HJ. The changes in major limb reconstruction as a result of the development of allografts. Chir Organi Mov, 2003, 88: 101-113.
    5. Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg, 2005, 13: 77-86.
    6. Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, Schulten EA. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery: report of 3 cases and review of the literature. J Oral Maxillofac Surg, 2004, 62: 781-786.
    7. Enncking WF, Campanacci DA. Retrieved human allografts: a clinical- pathological study. J Bone Joint Surg (Am), 2001, 83: 971-986.
    8. Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin, 2003, 8: 1-14.
    9.曹谊林,周广东. 21世纪组织工程面临的机遇与挑战.中华医学杂志, 2005, 85: 2523-2525.
    10. Lane JM, Sandhu HS, Current approaches to experimental bone grafting. Orthop Clin of North Am, 1987, 18: 213-224.
    11.郭建刚,赵然,侯桂英.等.骨组织成分与Masson三色染色反应的关系分析.中医正骨, 2001, 13: 5-6.
    12.王俊艳,梁玉.试用Masson染色评价骨组织的成熟程度.解剖科学进展, 2004, 10: 17-18.
    13. Stephen DC, Michael WW, Samantha LS, et al. Effect of recombinant hman osteogenic protein-1 on healing of segmental defects in non-human primate. J bone Jiont Surg (Am), 1995, 77: 734-742.
    14. Theyse LFH, Oosterlaken-Dijksterhuis MA, Doorn J, et al. Growth hormone stimulates bone healing in a critical-sized bone defect model. Clin Orthop Relat Res, 2006, 446: 259-267.
    15.吴王喜,周磊.骨组织工程生物活性支架研究进展.中华创伤骨科杂志, 2006, 8: 165-168.
    16. Lin AS, Barrows TH, Cartmell SH, et a1. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials, 2003, 24: 481-489.
    17. Li S, De Wijn JR, Li J et a1. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng, 2003, 90: 535-548.
    18. Grifith LG.Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann NY Acad Sci, 2002, 961: 83-95.
    19. Oh SH, Kang SG, Kim ES, et a1. Fabrication and characterization of hydrophilie poly (1actic-co-glyeolic acid)/poly(vinyl alcoho1) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 2003, 24: 401l-4021.
    20. S′anchez-Salcedo S, Nieto A, Vallet-Regf M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chemical Engineering Journal, 2008, 137: 62-71.
    21.陈红卫,赵钢生,张西峰,等.自固化磷酸钙人工骨修复骨缺损的临床应用.中国骨伤, 2007, 20: 376-378.
    22.何森,张其清.羟基磷灰石/胶原人工骨在创伤后骨缺损修复中的初步研究.生物医学工程与临床, 2008, 12: 56-60.
    23.冯振洲,陈峥嵘,夏庆,等.骨基质明胶与羟基磷灰石修复兔桡骨缺损模型的对照研究.复旦学报:医学版, 2005, 32: 222-224.
    24.卫爱林,刘世清,彭昊,等.磷酸三钙-透明质酸-Ⅰ型胶原-骨髓基质细胞复合修复骨缺损的实验研究.中国修复重建外科杂志, 2005, 19: 468-472.
    25. Hench LL. Biomaterials. Science, 1980, 208(4446): 826-837.
    26. Jones JR, Ahir S, Hench LL. Large-scale production of 3 D bioactire glass macmpomus scafolds for tissue engineering. J Sol Gel Sci & Tech, 2004, 29: 179-188.
    27. Bauer TW, Muschler GF. Bone graft material: An overview of the basic science. Clin Orthop, 2000, (371): 10-27.
    28. Wei J, Li YB. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polymer J, 2004, 40: 509-5l5.
    29. Higashi S, Yamamuro T. Polymer-hydroxyapatite composite for biodegradable bone fillers. Biomaterials, 1986, (7): 183-187.
    30.易诚青,杜靖远,郑启新.转化生长因子-β1转基因生物衍生型移植体修复骨缺损.中华实验外科杂志, 2006, 23: 157-159.
    31. ZeUin G, Gritli A, Linde A.Healing of mandibular defects with different biodegradable and non-biodegrable membranes: an experimental study in rats. Biomaterials, 1995, 16: 601-609.
    32.黄岚峰,刘建国,徐莘香.利用可生物降解共聚膜引导骨再生.中国修复重建外科杂志, 1999, 13: 321-325.
    33.孙梁,胡蕴玉,熊卓,等.三种快速成型制作的聚酯/钙磷盐人工骨修复兔桡骨缺损的实验研究.中华外科杂志, 2005, 43: 535-539.
    34. Devine SM. Mesenehymal stem cells: will they have a role in the clinic. J Cell Biochem Suppl Supplement, 2002, 38: 73-79.
    35. Wakitani S, Goto T, Young RG, et a1. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen ge1. Tissue Eng, 1998, 4: 429-444.
    36. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop, 1992, (276): 291-298.
    37. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988, 254: 317-321.
    38. Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop, 2000, 371: 10-18.
    39.魏宽海,裴国献.骨科领域创伤修复的基因方法.中华骨科杂志, 2000, 20: 185-187.
    40. Yuan H, Bruijn JD, Zhang XD, et a1. Bone induction by porous glass ceramic made from bioglass. J Biomed Mater Res, 2001, 58: 270-276.
    41.杨自权,卫小春,焦强,等.自体骨髓间充质干细胞移植修复兔关节软骨损伤.中华创伤杂志, 2005, 21: 183-186.
    42. Becerra J, Andrades JA, Ertl DC,et al. Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro:effect of age of cell donor. J Bone Mine Res, 1996, 11: 1703-1712.
    43. Hoh S, Kikuchi M, Takakuda K, et a1. The biocompatibillity and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. Biomed Mater Res, 2001, 54: 445-453.
    1 Bucholz RW. Nonallograft osteoconductive bone graft substitutes [J]. Clin Orthop, 2002, (395): 44-52.
    2 Proussaefs P, Lozada J, Valencia G, Rohrer MD. Histologicevaluation of a hydroxyapatite onlay bone graft retrieved after 9 years: a clinical report [J]. J Prosthet Dent, 2002, 87: 481-484.
    3 Hollinger JO, Battistone GC. Biodegradable bone repair materials. Synthetic polymers and aramics [J]. Clin Orthop, 1986, (207): 290-305.
    4 Yuan H, Kurashina K, de Bruijn JD, et al. A preliminary study on osteoinduction of two kind of calcium phosphate ceramic [J]. Biomaterials, 1999, 20: 1799-1806.
    5 Guo L, Guo X, Leng Y, et al. Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion mode1 [J]. J Biomed Mater Res, 2001, 54: 554-559.
    6 Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation [J]. J Biomed Mater Res, 2000, 52: 491-499.
    7 Chistolini P, Ruspantini I, Bianco P, et al. Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects [J]. J Mater Sci Mater Med, 1999, 10: 739-743.
    8 Flautre B, Ansehne K, Delecourt C, et al. Histological aspects in bone regeneration of an association with porous hydroxyapaite and bone marrow cells [J]. J Mater Sci, Mater Med, 1999, 10: 811-814.
    9 Agrillo U, Mastronardi L, Puzzilli F. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: observations in 45 consecutive cases of soft-disc herniation [J]. J Neurosurg, 2002, 96: 273-276.
    10郑启新,郭晓东,杜靖远,等.羟基磷灰石/聚DL乳酸内固定材料对骨折愈合的影[J].中华实验外科杂志, 1999, 16: 462-463.
    11 Lind M. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation [J]. Acta Orthop Scand, 1998, 283 (Supp1): 32-37.
    12李爱民,孙康宁,尹衍升,等.生物材料的发展应用评价与展望[J].山东大学学报, 2002, 6, 287-293.
    13 Imai S, Higashijima K, Ishida A, et al. Determination of the position and orientation of artificialknee implants using markers embedded in a bone: preliminary in vitro experiments [J]. Medical Engineering & Physics, 2003, 25: 4l9-424.
    14 Tayyar PS, Weinhold RA, Butler JC, et al. Computer simulation of trabecular remodeling using a simplified structural model [J]. Bone, 1999, 25: 733-739.
    15 K0ji H, Naohide T, Takafumi Y, et al. Prospects for bone fixation- development of new cerclage fixation techniques [J]. Materials Science and Engineering, 200l, l 7, 27-32.
    16 Karen JL, SCott P, Jane FK. Biomaterial developments for bone tissue engineering [J]. Biomaterials, 2000, 21: 23-47.
    17 Pilliar RM, Filiaggi MJ, Wells MD, et a1. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization [J]. Biomaterials, 2001, 22: 963-972.
    18 Porter NL, Pilliar RM, Grynpas MD. Fabrication of porous calcium polyphosphate implants by solid free form fabrication: A study of processing parameters and in vitro degradation characteristics [J]. J Boimed Mater Res, 2001, 56: 504-511.
    19 Sous M, Bareille R, Rouais F, et a1. Cellular biocompatiblity and compression of macro porousβ-tricalcium phosphate ceramics [J]. Biomaterials, 1998, 19: 2147-2053.
    20 Eggli PS, Muller W, Schenk PK. Hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: A comparative histomorphomertric and histologic study of bony ingrowth and implant substitution [J]. Clin Orthop, 1988, 322: 127-138.
    21 Klein CP, Driessen AA, Groot K, et a1. Biodegradation behavior of various calcium phosphate in bone tissue [J]. J Boimed Mater Res, 1983, 17: 769-784.
    22 Manjubala I, Kumar TS. Effect of TiO2-Ag2O additives on the formation of calcium phosphate bioceramics [J]. Biomaterials, 2000, 21: 1995-2002.
    23 Croteau S, Rauch F, Silvestri A, et a1. Bone morphogenetic proteins in orthopaediics: from basic science to clinical practice [J]. Orthopaedics, 1999, 22: 686-695.
    24何悦,张志愿,卢建熙,等.犬骨髓基质细胞和β-磷酸三钙复合物在裸鼠体内的成骨性能[J].中国口腔颌面杂志, 2005, 4: 101-106.
    25 Bennett S, Connolly K, Lee DR, et a1. Initial biocompatibility studies of a model degradable polymeric bone substitute that hardens insitu [J]. Bone, 1996, 19: 101-107.
    26 Peter SJ, Miller MJ, Yasko Aw, et a1. Crosslining characteristics of an injectable poly (propylene fumarate)/β-tricalciumphosphate paste and mechanical properties of the crossliked composite for use as a biodegrdable bone cement [J]. Biomed Materials, 1999, 44: 314-321.
    27凌翔,陈卫民.王罡.胶原/纳米磷酸三钙复合人工骨骨膜下引导成骨实验研究[J].华中科技大学学报(医学版), 2002, 12: 700-702.
    28 Williams DF. Biomaterials and tissue engineering in reconstructive surgery [J]. Sadhana Acad ProcEng Sci, 2003, 28: 563-574.
    29 Daculsi G. Why develop biphasic-calcium phosphates bioceramics in place of HA orβ-TcP [J]. J Mater Sci: Mater Med, 2003, 14: 3-4.
    30 Trecant M, Delecrin J, Royer J, et a1. Mechanical changes in macroporous calcium phosphate ceramics after implantation in bone [J]. Clin Mater, 1994, 15: 233-240.
    31 Kurashina K, Kurita H, Wu Q, eta1. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits [J]. Biomaterials, 2002, 23: 407-412.
    32 Zhou D, Yang W, Yin G, et a1. In vitro characterizations of PLLA/β-TCP porous matrix materials and rMSC-PLLA-β-TCP composite scaffolds [J]. J Mater Sci Technol, 2004, 20: 248-252.
    33 Legeros RZ, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications [J]. J Mater Sci: Mater Med, 2003, 14: 201-209.
    34 Kawamtra H, Ito A, Miyakawa S, et a1. Stimulatory effect of increasing calcium phosphate implant on bone formation in rabbit femora [J]. Biomed Materials, 2000, 50: 184-190.
    35 Beruto DT, Mezzasalma SA, Capurro M, et a1. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of polymethylmethacrylate (PMMA) bone cements and to produce bone substitute compounds [J]. Biomed Materals, 2000, 49: 498-505.
    36 Chow LC. Development of self-setting calcium phosphate cements [J]. J Ceram Soci Jap, 1991, 99: 954-957.
    37 Constaniz BR, Ison IC, Fulmer MT. Skeletal repair by in situ formation of the mineral phase of bone [J]. Science, 1995, 267: l796-l799.
    38 Otsuka M, Mtsuda Y, Suwa Y, et al. Effect of particle size of metastase calcium phosphate on mechanical strength of a novel self-setting bioactive calcium phosphate cement [J]. J Biomed Mater Res, 1995, 29: 25-32.
    39 Ishikawa K. Estimation ideal mechanical strength and critical porosity of calcium phosphate cement [J]. J Biomed Mater Res, 1995, 29: 1537-1543.
    40 Liu CS, Wang W, Shen W. Evaluation of the biocompatibility of a nonceramic hydroxyapatite [J]. J Endon, 1997, 23: 490-493.
    41 LeGeros RZ. Properties of osteoconductive biomaterials: cmcium phosphates [J]. Clin Orthop, 2002, (395): 81-98.
    42 Hidaka N, Yamano Y, Kadoya Y, et a1. Calcium phosphate bone cement for treatment of distal radius fractures: a preliminary report [J]. J Orthop Sci, 2002, 7: 182-187.
    43 Csizy M, Buckley RE, Fennel C. Benign calcaneal bone cyst and pathologic fracture-surgical treatment with injectable calcium-phosphate bone cement (Norian): a case report [J]. Foot AnkleInt, 2001, 22: 507-5l0.
    44 Lim TH, Brebach GT, Rermer SM, et a1. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty [J]. Spine, 2002, 27: 1297-1302.
    45 Ratier A, Gibson IR, Best SM, et a1. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline [J]. Biomaterials, 2001, 22: 897-901.
    46 Nilsson M, Fernandez E, Sarda S, etal. Characterization of4 novel calcium phosphate/sulphate bone cement [J]. J Biomed Mater Res, 2002, 61: 600-607.
    47 Ohura K, Hamanishi c, Tanaka S, et a1. Healing of segmental bone defect in rats induced by a Beta-TCP-MCPM cement combinated with rhBMP-2 [J]. J Biomed Mater Res, 1999, 44: 168-175.
    48 Bigi A. Effect of added gelatin on the properties of calcium phosphate cement [J]. Biomaterials, 2004, 25: 2893-2899.
    49 Hockin HK. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility [J]. Biomaterials, 2005, 26: l337-l348.
    50 Quinten PR. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials, 2004, 25: 2l23-2l32.
    51 Biota EJ, Klein-Nulend J, Wolke JGC, et a1. Transforming growth factor-beta l incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetra calcium phosphate monoxide cement: release characteristics and physicochemical properties [J]. Biomaterials, 2002, 23: 1261-1268.
    52 Knabe C, Diessens FC, Planell JA, et a1. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures [J]. J Biomed Mater Res, 2000, 52: 498-508.
    53 Miyamoto Y, lshikawa K, Fukao H, et a. In vivo setting behaviour of fast-setting calcium phosphate cements [J]. Biomaterials, 1995, 16: 855-860.
    54 Lew KU, Gresser JD, Wise DL. Osteoconductivity of an injectable and bioresorbable poly (propylene glycol-co-funm aricacid) bone cement [J]. Biomaterials, 2000, 2l: 293-298.
    55 Hench LL. Bioceramics [J]. J Am Ceram, 1998, (81): 1705-1728.
    56 Kokubo T, Ito S, Shigematsu M, et a1. Mechanical properties of a new type of apatite containing glass-ceramic for prosthetic application [J]. J Mater Sci, 1985, (20): 2001-2004.
    57 Hench LL, Wilson J. An Introduction to Bioceramics [M]. London: World Scientific, 1993, 1-24.
    58 Elgayar I, Alley AE, Boccaccini AR. Structural analysis of bioactive glasses [J]. Journal of NonK-Crystalline Solids, 2005, (351): 173-183.
    59 Niemela T, Henna N. Self-reinforced composites of bio-absorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity [J]. Acta Biomaterialia, 2005, (1): 1-8.
    60 Nieves O, Martin AI. Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation [J]. Biomaterials, 2003, (24): 3383-3393.
    61 Guo HB, Miao X. Characterization of hydroxyapatie and bioglass-316L fiber composites prepared by spark plasma sintering [J]. Materials Letters, 2004, (58): 304-307.
    62 Goller G. The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings [J]. Ceramics International, 2004, (30): 351-355.
    63 McKee MD, Wild LM, Schemitseh EH, et a1. The use of an antibiotic-impregnated, osteoconducive, bio-absorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial [J]. J orthop Trauma, 2002, 16 (9): 622-627.
    64 Song HR, Oh CW, Kyung HS, et a1. Injected Calcium sulfate for consolidation of distraction osteogenesis in rabbit tibia [J]. J Pediatr orthop B, 2004, 13 (3): 170-175.
    65 Walsh WR, Morberg P, Yu Y, et a1. Response of a calcium sulphate bone graft substitute in a confined cancellous defect [J]. Clin orthop Relat Res, 2003, 406: 228-236.
    66 Turner TM, Urban RM, Gitelis S, et a1. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience [J]. J Bone Joint Surg (Am) 2001, 83-A (Suppl 2): 8-18.
    67 Peltier LF. The use of plaster of paris to fill defects in bone [J]. Clin orthop Relat Res, l96l, 2l: l-3l.
    68 Kelly CM , Wilkins RM , Gitelis S, et a1. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicentertria1 [J]. Clin Ortho Relat Res, 2001, (382): 42-50.
    69 Borrelli JJ, Prickett WD, Ricei WM. Treatment of nonunions and osseous defects with bone graft and calcium sulphate [J]. Clin Orthop Relat Res, 2003: 411: 245-254.
    70 Watson TJ. The use of an injectable bone graft substitute in tibial metaphyseal fractures [J]. Orthopedics, 2004, 27: 103-107.
    71 Huc A. Collagen biomaterials characteristics and applications [J]. J American Leather Chemists Association, 1985, 80: 195-212.
    72 Santin M, Motta A, Cannas M. Changes in serum conditioning profiles of glutaraldehyde crosslinked collagen sponges after their treatment with calcification inhibitors [J]. J Biomed Res, 1998, 40: 434-441.
    73 Chang MC. Preparation of a porous hydroxyapatite/collagen nanlocomposite using glutaraldehyde as a crosslinkage agent [J]. J Mater Sci, 2001, 20: 1199-1201.
    74 Chapman MW, Davis MD, Robert BMD, et a1. Treatment of acute fractures with a collagen-calcium phosphate graft material [J]. J Bone Joint Surgery, 1997, 79: 495-502.
    75 Hoh S, Kikuchi M, Takakuda K, et a1. The biocompatibillity and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2 [J].Biomed Mater Res, 2001, 54: 445-453.
    76 Hemmerle J, Leize M, Voegel JC. Long-term behavior of a hydroxyapatite / collagen glycosaminoglycan biomaterial used for oral surgery: a case report [J]. J Mater Sci: Mater Med, 1995, 6: 360-366.
    77 Chen GP, Takashi U, Tetsuya T, Biodegradable hybrid sponge nested with collagen microsponges [J]. J Biomed Mater Res, 2000, 512: 273-279.
    78 Rose FR, Orefo RO. Bone tissue engineering: hope VS hype [J]. Biochem Biophys Res Common, 2002, 292: 1-13.
    79 Zhang K, Wang YB, Hillmyer MA, et a1. Processing an d properties of porous poly (L-lactide)/bioactive glass composites [J]. Biomaterials, 20o4, 25: 2489-2500.
    80 Kasuga O, Nogami M. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers [J]. Biomaterials, 2001, 22: l9-23.
    81 Kaito T, Myoui A. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite [J]. Biomaterials, 2004, (26): 73-79.
    82李景红,黄金中,杜江,等.转化生长因子-βl和同种异体软骨细胞及高孔隙率聚乳酸复合物修复兔耳廓软骨缺损[J].中华耳鼻咽喉科杂志, 2004, 39: 340-344.
    83 Park SJ, Kim SH. Preparation and characterization of biodegradable poly (1-lactide)/poly (ethylene glyco1) microcapsules containing erythromycin by emulsion solvent evaporation technique. Colloid and Interface [J]. Science, 2004, 271: 336-341.
    84赵建华,廖维宏,王远亮,等.消旋聚乳酸/羟基磷灰石/脱钙骨基质的制备及其体外降解特性研究[J].中国修复重建外科杂志,2003, 17: 6l-64.
    85 Ragel CV, Vallet-Regi M. In vitro bioactivity and gentamicinre 1ease from glass-polymer antibiotic composites [J]. J Biomed Mat Res, 2000, 5l: 424-428.
    86 Lind M. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation [J]. Acta Orthop Scand Suppl, 1998, 283: 2-37.
    87 Urist MR. Bone formation by autoinduction [J]. Science, 1965, 150: 893-899.
    88 Lee SJ, Park YJ, Park SN, et a1. Molded porous poly (L-lactide) membranes for guided bone regeneration the enhanced effects by controlled growth factor release [J]. J Biomed Mater Res, 2001, 55: 295-303.
    89 Izngdahl BL, Kassem M, Moiler MK, et a1. The effects of IGF-I and IGF-Ⅱon proliferation and differentiation of human osteoblasts and interactions with growth hormone [J]. Eur J Clin Invest, 1998, 28: 176-183.
    90 Zhao G, Monier-Faugere MC, Langub MC, et a1. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: ncreased trabecular bone volume without increased osteoblast proliferation [J]. Endocrinology, 2000, 141: 2674-2682.
    91 Yu X, Hsieh SC, Bao W, et a1. Temporal expression of PDGF receptors and PDGF regulatory effects on osteoblastic cells in mineralizing cultures [J]. Am J Physiol, 1997, 272: 1709-1716.
    92 Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis [J]. Endocrinology, 1997, 138: 3849-3858.
    93陈伟良,藕小平,王建广,等.人颌骨骨膜成骨细胞复合异体部分脱钙骨的成骨实验研究[J].口腔颌面外科杂志, 2004, 14: l12-l14.
    94毛天球,陈富林,杨维东,等.骨组织工程的研究进展[J].现代康复, 2001, 5: 5-8.
    95 Nuttall ME, Patton AJ, Olivera DL, et a1. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteogenic disorders [J]. J Bone Miner Res, 1998, 13: 371-378.
    96 Pittenger MF, Mackay AM, Beck SC, et a1. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284: 143-145.
    97 Mauney JR, Sjostorm S, Blumberg J, et a1. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro [J]. Calcif Tissue Int, 2004, 74: 458-468.
    98 Fleming JE Jr, Comel CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering [J]. Orthop Clin North Am, 2000, 3: 357-364.
    99 Zuk PA, Zhu M, Mizuno H, et a1. Muhilineage cells from human adipose tissue: implications for cell-based therapies [J]. Tisue Eng, 2001, 7: 211-218.
    100袁捷,刘德莉,周广东,等.应用GFP标记技术示踪裸鼠体内组织工程化骨的形成[J].上海第二医科大学学报, 2004, 4: 235-236.
    101 Buttery LD, Boume S, Xynos JD, et a1. Differentiation of osteoblast and in vitro bone formation from murine embryonic stem cells [J]. Tissue Eng, 2001, 7: 89-93.
    102 Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities [J]. Science, 2002, 295: 1009-1014.
    103 Ferrara N. Molecular and biological properties of vascular endothelial growth factor [J]. J Mol Med, 1999. 77: 527-543.
    104 Bouletreau PT, Warren SM, Spector JA, et a1. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvasculal endothelial cells: implications for fracture healing [J]. Plast Reconstr Surg, 2002, 109: 2384-2397.
    105 Yamashita J, Itoh H, Hirashima M, et a1. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors [J]. Nature, 2000, 408: 92-96.
    106 Reyes M, Dudek A, Jabagirdar B, et a1. Origin of endothelial progenitors in human postnatal bone marrow [J]. J Clin Invest, 2002, 109: 337-346.
    107 Sreerekha PR, Krishnan LK. Cultivation of endothelial progenitor cells on fibrin matrix andlayering on dacron-poltetrafluoroethylene vascular grafts [J]. Artif Organs, 2006, 30: 242-249.
    108 Kaihara S, Borenstein J, Koka R, et a1. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication [J]. Tissue Eng, 2000, 6: 105-117.
    109杨志明,解慧琪.显微外科技术在组织工程学研究中的地位和作用[J].中华显微外科杂志, 2000, 21: 2l-22.
    110 Webster TJ, Ergun C, Doremus RH et a1. Enhanced functions of osteoblasts on nanophase ceramics [J]. Biomaterials, 2000, 21: 1803-1810.
    111 Puleo DA, Nanci A. Understanding and controlling the bone-implant interface [J]. Biomaterials, 1999, 20: 231 1-2321.
    112 Massia SP, Hubbell JA. Immobilized amines and basic aminoacids as mimetic heparin binding domains for cell surface proteoglycan-mediated adhesion [J]. J Biol Chem, 1992, 267: 10133-10141.
    113 Kouvroukog1ou S, Dee KC, Bizios R, et a1. Endothelial cell migration on surfaces modified with immobilized adhesive peptides [J]. Biomaterials, 2000, 21: 1725-1733.
    114 Zhu XL, Chen J, Scheideler L, et a1. Effects of topography and composition of titanium surface oxides on osteoblast responses [J]. Biomaterials, 2004, 25: 4087-4103.
    115曹谊林,周广东. 21世纪组织工程面临的机遇与挑战[J].中华医学杂志, 2005, 85: 2523-2525.
    116 Oh SH, Kang SG, Kim ES et a1. Fabrication and characterization of hydrophilic poly (1actic-co-glyeolic acid) / poly (vinyl alcoho1) blend cell scaffolds by melt-molding particulate-leaching method [J]. Biomaterials. 2003, 24: 401l-4021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700