用户名: 密码: 验证码:
生物降解聚乳酸基复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸是一种以可再生的植物资源为原料经过化学合成制备的生物降解高分子,在被使用后最终可分解为二氧化碳和水,因此它是一种典型的绿色聚合物。聚乳酸无毒、无刺激性,具有优良的可生物降解性、生物相容性和力学性能,并可采用传统方法成型加工,因此,聚乳酸替代现有的一些通用石油基塑料已成为必然趋势。由于聚乳酸自身强度、脆性、阻透性、耐热性等方面的缺陷限制了其应用范围,因而,增强改性聚乳酸已成为目前聚乳酸研究的热点和重点之一。
     本论文综述了聚乳酸的最新研究进展,紧紧围绕增强改性聚乳酸这个当前的研究热点,选用蚕丝纤维、鸡羽纤维、碳纳米管和纳米金刚石对聚乳酸进行了增强改性,系统地研究了四种增强剂对聚乳酸各方面性质的影响,主要研究内容如下:
     (1)为增强改性聚乳酸、开拓蚕丝应用的新领域,首次将蚕丝纤维作为聚乳酸的增强剂,采用易工业化的熔融混合法制备了可完全生物降解的聚乳酸/蚕丝纤维生物复合材料。通过力学拉伸实验、动态力学分析、热重分析、差示扫描量热分析、热机械分析以及酶降解实验等手段,研究了该复合材料的结构、力学和热学性质以及酶降解行为。实验结果表明,当蚕丝纤维的长度和添加量分别是5mm和5 wt%时,聚乳酸/蚕丝纤维生物复合材料的力学拉伸性能达到最好。在聚乳酸橡胶平台区,添加蚕丝纤维会显著地提高聚乳酸的存储模量;由于蚕丝纤维有一定的塑化作用,聚乳酸/蚕丝纤维生物复合材料的玻璃化转变温度会略低于纯聚乳酸。蚕丝纤维可以作为聚乳酸的结晶成核剂,并会使其熔点稍有降低。添加蚕丝纤维会降低聚乳酸基体的热稳定性,但能使其热尺寸稳定性略有改善。聚乳酸/蚕丝纤维生物复合材料的酶降解过程不仅发生在其表面,而且还会深入到内部;添加蚕丝纤维能够提高聚乳酸基体的吸水率,从而会加速聚乳酸的酶降解过程。
     (2)为增强改性聚乳酸、有效利用鸡毛资源,首次将鸡羽纤维作为聚乳酸的增强剂,采用熔融混合法制备了可完全生物降解的聚乳酸/鸡羽纤维生物复合材料,并系统研究了该复合材料的结构、力学和热学性质以及酶降解行为。研究结果表明,当在聚乳酸基体中添加5 wt%的鸡半羽上的绒羽纤维时,聚乳酸/鸡羽纤维生物复合材料的力学拉伸性能达到最好。在聚乳酸的玻璃态和橡胶态区,添加鸡羽纤维均会明显地提高聚乳酸的存储模量,并且当鸡羽纤维的含量为10 wt%时,聚乳酸的玻璃化转变温度也会有所提高。鸡羽纤维可以作为聚乳酸的结晶成核剂,添加2~8 wt%的鸡羽纤维可以使聚乳酸的熔点稍有提高。添加鸡羽纤维会降低聚乳酸基体的热稳定性和尺寸稳定性。聚乳酸/鸡羽纤维生物复合材料的酶降解过程在其表面和内部都会发生;添加鸡羽纤维能够提高聚乳酸的吸水率,从而加速聚乳酸的酶降解过程:但当鸡羽纤维的含量超过8 wt%后,鸡羽纤维则会阻碍聚乳酸的酶降解过程。
     (3)首次将纳米金刚石作为聚乳酸的增强剂,采用熔融混合法制备了聚乳酸/纳米金刚石纳米复合材料。借助各种分析方法研究了纳米金刚石对聚乳酸的结构、力学和热学性质以及酶降解行为的影响。实验结果表明,归因于纳米金刚石纳米簇的均匀分散以及纳米金刚石与聚乳酸基体间较好的附着力,当纳米金刚石的含量为0.5 wt%时,聚乳酸/纳米金刚石纳米复合材料的力学拉伸性能达到最好。在聚乳酸的玻璃态和橡胶态区,添加纳米金刚石都会显著地提高聚乳酸的存储模量。纳米金刚石可以作为聚乳酸的结晶成核剂,并且当其添加量大于0.5 wt%后,聚乳酸的熔点开始随添加量增加而降低。添加纳米金刚石能够改善聚乳酸的热稳定性和尺寸稳定性。纳米金刚石纳米复合材料的酶降解过程不仅发生在其表面,而且还会深入到内部;添加纳米金刚石能够提高聚乳酸基体的吸水率,从而会加速聚乳酸的酶降解过程。
     (4)采用熔融混合法制备了聚乳酸/碳纳米管纳米复合材料。首次系统地研究了纯化、羟基化和羧基化碳纳米管对聚乳酸的结构、力学和热学性质以及酶降解行为的影响。研究结果表明,羧基化碳纳米管对聚乳酸力学拉伸性能的增强效果最佳,其次为羟基化和纯化碳纳米管,这与三种碳纳米管在聚乳酸中分散状态的优劣以及它们与聚乳酸基体的相互作用的强弱有着密切的关系。分散好、相互作用强,增强效果就好。三种碳纳米管都会在85~150℃之间有效地提高聚乳酸的存储模量,同时,羟基化和羧基化碳纳米管能更为显著地降低聚乳酸的阻尼和增加聚乳酸的玻璃化转变温度。碳纳米管可以作为聚乳酸的结晶成核剂,并会略微降低聚乳酸的熔点。添加碳纳米管能够改善聚乳酸基体的热稳定性和尺寸稳定性,其中纯化碳纳米管能更好地改善聚乳酸的热稳定性,而羟基化和羧基化碳纳米管改善聚乳酸尺寸稳定性的效果则更为显著。在纯化碳纳米管含量小于1wt%时,纯化碳纳米管会略微加速聚乳酸的酶降解过程,在大于1 wt%后,纯化碳纳米管则会妨碍聚乳酸发生酶降解;与纯化碳纳米管相比,羟基化和羧基化碳纳米管更容易限制聚乳酸进行酶降解。
Poly (lactic acid) (PLA) is a biodegradable polymer, which is prepared from renewable plant resources by chemical synthesis methods. It will be decomposed into CO_2 and H_2O after using, so it is a representative green polymer. Nontoxic and nonirritant PLA has excellent biodegradability, biocompatibility and mechanical properties, and it can be processed by using traditional methods, therefore, PLA replacing some general-purpose oil-based plastics have become an inevitable trend. Because the shortcomings from its strength, brittleness, permeability resistance, heat resistance limit the scope of its applications, modifying PLA has become one of critical researches.
     In this paper, we gave an overview of the latest research progress of PLA. With the focus on the modification of PLA, we used silkworm silk fiber (Silk), chicken feather fiber (CFF), carbon nanotubes (CNTs) and nanodiamond (ND) to reinforce PLA, and investigated the effect of four reinforcements on the properties of PLA. The main research contents are as follows:
     (1) To reinforce PLA and expand the application areas of silkworm silk fiber (Silk), the first time we used silkworm silk fiber as reinforcement for PLA, and fabricated completely biodegradable PLA/Silk biocomposites by using melting compound method which is a common technology in industry. By means of Mechanical tensile test, Dynamic mechanical analysis, Thermogravimetric analysis, Differential scanning calorimetry, Thermal mechanical analysis and Enzymatic degradation test, the structure, mechanical and thermal properties and enzymatic degradation behavior of the biocomposites were studied. When 5 wt% silk fiber with 5 mm length is added into PLA matrix, PLA/Silk biocomposites has the best mechanical tensile properties. Among the rubbery plateau of PLA, the addition of silk fiber will significantly enhance the storage modulus of PLA; the glass transition temperature (T_g) of all the PLA/Silk biocomposites is slightly lower than that of PLA due to the plasticization effect of silk fiber. Silk fiber acts as nucleating agent for the crystallization of PLA, and will slightly decrease the melting point temperature (T_m) of PLA. The presence of silk fiber will reduce the thermal stability of PLA, but the thermal dimensional stability of PLA can be somewhat improved. The enzymatic degradation of PLA/Silk biocomposites occurs not only on their surface, but also into the internal; the water absorption ratio of PLA can be enhanced by the addition of silk fiber, and thus the enzymatic degradation of PLA will be accelerated.
     (2) To reinforce PLA and effectively use chicken feather fiber (CFF), the first time we used CFF as reinforcement for PLA, and prepared completely biodegradable PLA/CFF biocomposites by using melting compound method. The structure, mechanical and thermal properties and enzymatic degradation behavior of the biocomposites were studied. When 5 wt% down feather fiber from semiplume of chicken is added into PLA matrix, PLA/CFF biocomposites has the best mechanical tensile properties. In the glassy and rubbery region of PLA, the addition of CFF will significantly enhance the storage modulus of PLA; when the CFF content is 10 wt%, the T_g value of PLA will be increased somewhat. CFF acts as nucleating agent for the crystallization of PLA, and the T_m value of PLA will be slightly increased as the CFF content is 2-8 wt%. The addition of CFF will reduce the thermal stability and the dimensional stability of PLA. The enzymatic degradation of PLA/CFF biocomposites occurs not only on their surface, but also into the internal; the water absorption ratio of PLA can be enhanced by the addition of CFF, and thus the enzymatic degradation of PLA will be accelerated. However, CFF will hinder the enzymatic degradation of PLA, when the CFF content is over 8 wt%.
     (3) The first time we used nanodiamond (ND) as reinforcement for PLA, and fabricated PLA/ND nanocomposites by using melting compound method. The effect of ND on the structure, mechanical and thermal properties and enzymatic degradation behavior of PLA was studied. Due to homogeneous dispersion of ND nanoclusters and good adhesion between ND and PLA matrix, PLA/ND nanocomposites has the best mechanical tensile properties, when 0.5 wt% ND is added into PLA matrix. In the glassy and rubbery region of PLA, the addition of ND will significantly enhance the storage modulus of PLA. ND could act as nucleating agent for the crystallization of PLA, and the T_m value of PLA will be decreased with the increase of ND content as the ND content is over 0.5 wt%. The presence of ND will improve the thermal stability and the dimensional stability of PLA. The enzymatic degradation of PLA/ND nanocomposites occurs not only on their surface, but also into the internal; the water absorption ratio of PLA can be enhanced by the addition of ND, and thus the enzymatic degradation of PLA will be accelerated.
     (4) The PLA/carbon nanotubes (CNTs) nanocomposites were fabricated by using melting compound method. The first time we investigated the effect of purified CNTs (pCNTs), hydroxy CNTs (hCNTs) and carboxylic CNTs (cCNTs) on the structure, mechanical and thermal properties and enzymatic degradation behavior of PLA. The best mechanical tensile properties of PLA/ CNTs nanocomposites will be given by the addition of cCNTs, followed by hCNTs and pCNTs, which is ascribed to the different dispersion of three CNTs in the PLA matrix and the different interaction between three CNTs and the PLA matrix; the best dispersion and strongest interaction will result in generating the best reinforcing effectiveness. All the CNTs will significantly enhance the storage modulus of PLA from 85 to 150℃, and cCNTs and hCNTs can more significantly decrease the damping of PLA and increase the T_g value of PLA. CNTs could act as nucleating agent for the crystallization of PLA, and the T_m value of PLA will be slightly decreased by the addition of CNTs. The presence of CNTs will improve the thermal stability and the dimensional stability of PLA; pCNTs shows better performance for improving the thermal stability of PLA, and the effectiveness of cCNTs and hCNTs for improving the dimensional stability of PLA is better than that of pCNTs. The enzymatic degradation of PLA will be accelerated somewhat, when the pCNTs content is lower than 1 wt%, however, pCNTs will hinder the enzymatic degradation of PLA, as the pCNTs content is over 1 wt%; compared with pCNTs, cCNTs and hCNTs can more easily hinder the enzymatic degradation of PLA.
引文
[1]侯庆普,周春阳,现代化工,2000,20,20。
    [2]C.C.Chen,J.Y.Chueh,H.Tseng,H.M Huang,S.Y.Lee,Biomaterials,2003,24,1167.
    [3]G.Ruan,S.S.Feng,Biomaterials,2003,24,5037.
    [4]G.Biresaw,C.J.Carriere,Compos.:Part A,2004,35,313.
    [5]T.J.Corden,l.A.Jones,C.D.Rudd,P.Christian,S.Downes,K.E.McDougall,Biomaterials,2000,21,713.
    [6]杨斌,绿色塑料聚乳酸,化学工业出版社,北京,2007。
    [7]P.Nousiainen,J.Appl.Polym.Sci.,2000,76,1725.
    [8]D.Garlotta,J.Polym.Environ.,2001,9,63.
    [9]T.Y.Ke,X.Z.Sun,J.Polym.Environ.,2003,11,7.
    [10]H.Wang,X.Z.Sun,P.Seib,J.Polym.Environ.,2002,10,133.
    [11]T.Hirotsu,A.A.Ketelaars,K.Nakayama,Polym.Degrad.Stab.,2000,68,311.
    [12]T.Kissel,Y.X.Li,F.Unger,Adv.Drug Deliver.Rev.,2002,54,99.
    [13]A.Breitenbach,Y.X.Li,T.Kissel,J.Control.Release,2000,64,167.
    [14]www.asumi-lab.com.
    [15]L.Ning,L.Xue,H.N.Huang,etc.,China Journal of Modern Medicine,1999,9,9.
    [16]D.Howard,K.Partridge,X.B.Yang,etc.,Biochem.Biophys.Res.Commun.,2002,299,208.
    [17]W.R.Shankar,E.T.Thachil,Polym.Recycl.,1999,4,101.
    [18]K.Darwin,M.Sebastian,Polym.Int.,1999,48,346.
    [19]R.L.Shogren,W.M.Doane,D.Garlotta,J.W.Lawton,J.L.Willett,Polym.Degrad.Stab.,2003,79,405.
    [20]J.L.Willett,R.L.Shogren,Polymer,2002,43,5935.
    [21]Y.Liu,M.L.Yuan,X.M.Deng,Eur.Polym J.,2003,39,977.
    [22]X.S.Wu,N.Wang,J.Biomater.Sci.:Polym.Ed.,2001,12,21.
    [23]G.Scott,Polym.Degrad.Stab.,2000,68,1.
    [24]M.Lang,J.Bei,S.Wang,J.Biomater.Sci.:Polym.Ed.,1999,10,501.
    [25]P.R.Gruber,et al.,U,S,Patent 5142023,1992.
    [26]汪朝阳,赵耀明,材料导报,2003,6,53。
    [27]M.Pluta,Polymer,2004,45,8239.
    [28]G.H.Yew,A.M.Mohd Yusof,Z.A.Mohd Ishak,U.S.Ishiaku,Polym.Degrad.Stab.,2005,90,488.
    [29]J.Guana,K.M Eskridgeb,M.A.Hannaa,Ind.Crop.Prod.,2005,22,109.
    [30]R.Gattin,A.Copinet,C,Bertrand,Y.Coutorier,Int.Biodeterio.Biodegrad.,2002,50,25.
    [31]Q.Fang,M.A.Hanna.In.Crop.Prod.,1999,10,47.
    [32]M.E.Broz,D.L.VanderHart,N.R.Washburn,Biomaterials,2003,24,4181.
    [33]P.M.J.Pelouze,Ann.Chim.Phys.,1845,Ser.3,257.
    [34]J.U.Nef,Ann.Chem.,1914,403,204.
    [35]W.H.Carothers,et al.,J.Am.Chem.Soc.,1932,54,761.
    [36]曹延生,北京化工大学硕士学位论文,2007。
    [37]宇恒星,王朝生,黄南薰,唐志廉,化工新型材料,2002,30,16。
    [38]秦志忠,杨百春,合成技术及应用,2000,15,12。
    [39]S.I.Moon,C.W.Lee,M.Miyamoto,etal.,J.Polym.Sci.PartA:Polym.Chem.,2000,38,1673.
    [40]陈景华,印刷工程,2005,1,19。
    [41]S.I.Moon,C.W.Lee,I.Taniguchi,etal.,Polymer,2001,42,5059.
    [42]钱刚,华东理工大学博上学位论文,2004。
    [43]赵耀明,汪朝阳,麦杭珍等,华南理工大学学报(自然科学版),2002,30,155。
    [44]The Japan Steel works,Ltd.,U.S.Patent,5574129,1996.
    [45]任杰,廖文俊,中国专利,200400166456.4,2005。
    [46]J.Tuominen,J.Kylm(a|¨),J.Sepp(a|¨)l~(a|¨),Polymer,2003,43,3.
    [47]S.I.Woo,B.O.Kim,H.S.Jun,et al.,Polym.Bull.,1995,35,415.
    [48]钟伟,马敬红,复旦学报:自然科学版,1999,38,705。
    [49]H.Tsuji,In:Y.Doi,A.Steinbuchel,editors.Polyesters 3.Biopolymers,Wiley-VCH,2002,4,129.
    [50]闫有旺,知识介绍,2004,12,37。
    [51]张美洁,李树材,塑料加工,2002,2,25。
    [52]徐兆瑜,合成材料老化与应用,2003,2,39。
    [53]J.H Park,M.G.Allen,M.R.Prausnitz,J.Control.Release,2005,104,51.
    [54]M.Hussain,G Beale,M Hughes,S.Akhtar,Int.J.Pharm.,2002,234,129.
    [55]L.Mu,M.M.Teo,H.Z.Ning,C.S.Tan,S.S.Feng,J.Control.Release,2005,103,565.
    [56]C.T.Laurencin,M.A.Attawia,L.Q Lu,M.D.Borden,H.H.Lu,W.J.Gorum,J.R.Lieberman,Biomaterials,2001,22,1271.
    [57]W.Vogelhuber,P.Rotunno,E.Magni,A.Gazzaniga,T.Sprub,G.Bernhardt,A.Buschauer,A.G(o|¨)pferich,J.Control.Release,2001,73,75.
    [58]X.Y.Xiong,K.C.Tam,L.H.Gan,Polymer,2005,46,1841.
    [59]S.B.Chen,R.Pieper,D.C.Webster,J.Singh,Int.J.Pharm.,2005,288,207.
    [60]Y.Fujimoto,S.S.Ray,M.Okamoto,A.Ogami,K.Yamada,K.Ueda,Macromol.Rapid Commun.,2003,24,457.
    [61]L.Safinia,N.Datan,M.H(o|¨)hse,A.Mantalaris,A.Bismarck,Biomaterials,2005,26,7537.
    [62]A.B.Loebsack,C.R.Halberstadt,W.D.Holder,C.R.Culberson,R.J.Beiler,K.G Greene,W.D.Roland,KJ.L.Burg,J.Biomed.Mater.Res.Appl.Biomater.,1999,48,504.
    [63]J.J.Ludwick,S.N.Rossmann,M.M.Johnson,J.L.Edmonds,Int.J.Pediatr.Otorhinolaryngol.,2006,70,407.
    [64]陈志祥,张政委,田华等,化学推进剂与高分子材料,2005,3,31。
    [65]王正,国外建材科技,2005,2,26。
    [66]黄根龙,上海化工,1996,2,32。
    [67]王琳霞,塑料科技,2002,147,37。
    [68]吴卫霞,涂阿朋,肖俊霞,段明锋,油气田环境保护,2005,1,40。
    [69]A.C.Renouf-Glauser,J.Rose,D.Farrar,R.E.Cameron,Biomaterials,2005,26,2415.
    [70]H.Tsuji,Y.Tezuka,Macromol.Biosci.,2005,5,135.
    [71]R.L.Shogren,W.M.Doane,D.Garlotta,J.W.Lawton,J.L.Willett,Polym.Degrad.Stab.,2003,79,405.
    [72]M.Viljanmaa,A.S(o|¨)derg(a|¨)rd,R.Mattila,P.T(o|¨)rm(a|¨)l(a|¨),Polym.Degrad.Stab.,2002,78,269.
    [73]C.F.van Nostrum,T.F.J.Veldhuis,G.W.Bos,W.E.Hennink,Polymer,2004,45,6779.
    [74]GH.Yew,A.M Mohd Yusof,Z.A.Mohd lshak,U.S.Ishiaku,Polym.Degrad.Stab.,2005,90,488.
    [75]任建敏,邹全明,望缚鲲,张玮,第三军医大学学报,2002,24,995。
    [76]J.Holmbom,A.S(o|¨)dergard,E.Ekholm,M.M(a|¨)rtson,A.Kuusilehto,P.Saukko,R.Penttinen,J.Biomed.Mater.Res.Part A,2005,75A,308.
    [77]C.Hiemstra,Z.Y.Zhong,P.J.Dijkstra,J.Feijen,Macromol.Symp.,2005,224,119.
    [78]Y.Baimark,R.Molloy,Polym.Adv.Technol.,2005,16,332.
    [79]M.H.Huang,S.M.Li,M.Vert,Polymer,2004,45,8675.
    [80]陈红丽,贝建中,王身国,高分子学报,2000,10,626。
    [81]L.Chen,X.Y.Qiu,M.X.Deng,Z.K.Hong,R.Luo,X.S.Chen,X.B.Jing,Polymer,2005,46,5723.
    [82]S.Nishino,Y.Kitamura,A.Kishida,H.Yoshizawa,Macromol.Biosci.,2005,5,1066.
    [83]T.K.Kim,J.J.Yoon,D.S.Lee,T.G Park,Biomaterials,2006,27,152.
    [84]Q.L.Zhou,Y.H.Gong,C.Y.Gao,J.Appl.Polym.Sci.,2005,98,1373.
    [85]J.J.A.Barry,M.M.C.G Silva,K.M.Shakesheff,S.M Howdle,M.R.Alexander,Adv.Funct.Mater.,2005,15,1134.
    [86]齐锦刚,曹丽云,王建中,苍大强,复合材料学报,2005,2,34。
    [87]T.Kasuga,Y.Ota,M.Nogami,Y.Abe,Biomaterials,2001,22,19.
    [88]K.Oksman,M.Skrifvars,J.F.Selin,Compos.Sci.Technol.,2003,63,1317.
    [89]S.H.Lee,S.Q.Wang,Compos.Part A:Appl.Sci.Manufact.,2006,37,80.
    [90]M.S.Huda,L.T.Drzal,M.Misra,A.K.Mohanty,K.Williams,D.F.Mielewski,Ind.Eng.Chem.Res.,2005,44,5593.
    [91]M.S.Huda,L.T.Drzal,AK.Mohanty,M.Misra,Compos.Sci.Technol.,2006,66,1813.
    [92]M.Shibata,K.Ozawa,N.Teramoto,R.Yosomiya,H.Takeishi,Macromol.Mater.Eng.,2003,288,35.
    [93]B.Bax,J.M(u|¨)ssig,Compos.Sci.Technol.,2008,68,1601.
    [94]A.Saikku-B(a|¨)ckstr(a|¨)m,R.M Tulamo,J.E.Raiha,T.Pohjonen,T.Toivonend,P.T(o|¨)rm(a|¨)l(a|¨),P.Rokkanen,Biomaterials,2004,25,2669.
    [95]O.Martin,L.Averous,Polymer,2001,42,6209.
    [96]Z.Kulinski,E.Piorkowska,Polymer,2005,46,10290.
    [97]X.Q.Yang,M.L.Yuan,W.Li,G.Y.Zhang,J.Appl.Polym.Sci.,2004,94,1670.
    [98]C.S.Wu,H.T.Liao,Polymer,2005,46,10017.
    [99]D.Raghavan,A.Emekalam,Polym.Degrad.Stab.,2001,72,509.
    [100]J.H.Chang,Y.UkAn,D.Cho,E.P.Giannelis,Polymer,2003,44,3715.
    [101]M.A.Paul,M.Alexandre,P.Degee,C.Henrist,A.Rulmont,P.Dubois,Polymer,2003,44,443.
    [102]T.M Wu,M.F.Chiang,Polym.Eng.Sci.,2005,45,1615.
    [103]N.Ignjatovic,D.Uskokovic,Appl.Surf.Sci.,2004,238,314.
    [104]T.Kasuga,H.Maeda,K.Kato,M.Nogami,K.Hata,M.Ueda,Biomaterials,2003,24,3247.
    [105]周海鸥,史铁钧,王华林等,高分子材料科学与工程,2006,22,220。
    [106]S.F.Yan,J.B.Yin,Y.Yang,et al.,Polymer,2007,48,688.
    [107]D.H.Zhang,M.A.Kandadai,J.Cech,et al.,J.Phys.Chem.B,2006,110,12910.
    [108]S.I.Moon,F.Jin,C.J.Lee,et al.,Macromol.Symp.,2005,224,287.
    [109]L.Jiang,J.W.Zhang,M.P.Wolcott,Polymer,2007,48,7632.
    [110]N.Nakayama,T.Hayashi,Polym.Degrad.Stab.,2007,92,1255.
    [111]W.Zhuang,J.Liu,J.H.Zhang,B.X.Hu,J.Shen,Polym.Compos.,DOI:10.1002/pc.20658.
    [1]A.K.Mohanty,M.Misra,G.Hinrichsen,Macromol.Mater.Eng.,2000,276,1.
    [2]L.A.Pothan,Z.Oommen,S.Thomas,Compos.Sci.Technol.,2003,63,283.
    [3]R.Karnani,M.Krishnan,R.Narayan,Polym.Eng.Sci.1997,37,476.
    [4]A.L.Martinez-Hernandez,C.Velasco-Santos,M.de-Icaza,V.M.Castano, Compos.Part B:Eng.,2007,38,405.
    [5]X.Lu,M.Q.Zhang,M.Z.Rong,G.Shi,G.C.Yang,Polym.Compos.,2002,23,624.
    [6]D.Plackett,T.L.Andersen,W.B.Pedersen,L.Nielsen,Compos.Sci.Technol.,2003,63,1287.
    [7]T.Nishino,K.Hirao,M.Kotera,K.Nakamae,H.Inagaki,Compos.Sci.Technol.,2003,63,1281.
    [8]H.L.Bos,J.M(u|¨)ssig,M.J.A.Van den Oever,Compos.Part A:Appl.Sci.Manufact.,2006,37,1591.
    [9]Y.S.Lu,L.H.Weng,X.D.Cao,Macromol.Biosci.,2005,5,1101.
    [10]K.G.Satyanarayana,G.G.C.Arizaga,F.Wypych,Prog Polym.Sci.,2009,In press.
    [11]A.L.,Martinez-Hernandez,C.Velasco-Santos,M.de-Icaza,V.M.Castano,Polymer,2005,46,8233.
    [12]上海市丝绸工业公司编,丝绸染整手册,纺织工业出版社,1982。
    [13]刘永成,邵正中,高分子通报,1998,3,17。
    [14]X.Chen,Z.Z.Shao,D.P.Knight,F.Vollrath,Proteins:Structure,Function,and Bioinformatics,2007,68,223.
    [15]L.J.Zhu,M.Arai,K.Hirabayashi,J.Seric.Sci.Jp.,1995,5,415.
    [16]吕靖,现代纺织技术,2004,12,40。
    [17]P.V.Joseph,K.Joseph,S.Thomas,Compos.Sci.Technol.,1999,59,1625.
    [18]D.N.Saheb,J.P.Jog,Adv.Polym.Tech.,1999,18,351.
    [19]C.A.S.Hill,H.P.S.A.Khalil,J.Appl.Polym.Sci.,2000,78,1685.
    [20]P.M.Cunniff,S.A.Fossey,M.A.Auerbach,et al.,Polym.Adv.Technol.,1994,5,401.
    [21]J.M.Gosline,P.A.Guerette,C.S.Ortlepp,K.N Savage,J.Exp.Biol.,1999,202,3295.
    [22]S.Katori,T.Kimura,Injection moulding of silk fiber reinforced biodegradable composites.In:C.A.Brebbia and W.P.de Wilde,editors.High performance structures and composites.Boston:WIT Press;2002.
    [23]C.Baillie,editor.Green composites:polymer composites and the environment.England and USA:Woodhead Publishing Ltd.and CRC Press LLC;2004.
    [24]K.S.Santhosh Kumar,C.P.Reghunadhan Nair,K.N.Ninan,Polym.Adv.Technol.,2008,19,895.
    [25]A.Lewis,D.L.Robbins,J.Polym.Sci.Part C:Polym.Symp.,1967,19,117.
    [26]沈维治,廖森泰,刘吉平,广东蚕业,2008,42,45。
    [27]孙长坡,刘训理,北方蚕业,2002,23,7。
    [28]柯贵珍,徐卫林,武汉科技学院学报,2003,16,21。
    [29]J.P.Craven,R.Cripps,C.Viney,Compos.Part A:Appl.Sci.Manufact.,2000,31,653.
    [30]S.Padma Priya,H.V.Ramakrishna,S.K.Rai,A.Varada Rajulu,J.Reinf.Plast.Compos.,2005,24,643.
    [31]S.M Lee,D.Cho,W.H.Park,S.G.Lee,S.O.Han,L.T.Drzal,Compos.Sci.Technol.,2005,65,647.
    [32]H.Y.Cheung,K.T.Lau,Key Eng.Mater.,2006,326-328,457.
    [33]H.Y.Cheung,K.T.Lau,Key Eng.Mater.,2007,334-335,1161.
    [34]S.O.Han,S.M.Lee,W.H.Park,D.Cho,J.Appl.Polym.Sci.,2006,100,4972.
    [35]H.Y.Cheung,K.T.Lau,X.M.Tao,D.Hui,Compos.Part B:Eng.,2008,39,1026.
    [36]叶夏裕,任永利,虞国跃,森林与人类,2006,26,37。
    [37]M.S.Reeve,S.P.McCarthy,M.J.Downey,R.A.Gross,Macromolecules,1994,27,825.
    [38]A.M.Gajria,V.Dave,R.A.Gross,S.P.McCarthy,Polymer,1996,37,437.
    [39]K.P.Menard,Time-temperature scans:transitions in polymers.In:K.P.Menard,editor.Dynamic mechanical analysis:A practical introduction.Boca Raton:CRC Press,1999.p.90-122.
    [40]M.T.Shaw,W.J.MacKnight,Dielectric and NMR methods.In:M.T.Shaw,W.J.Macknight,editor.Introduction to polymer viscoelasticity(Third Edition).New Jersey:John Wiley & Sons,Inc,1999.p.213-237.
    [41] L. Jiang, J.W. Zhang, M.P. Wolcott, Polymer, 2007,48,7632.
    
    [42] JR. Sarasua, RE. Prud'homme, M. Wisniewski, A. Le Borgne, N. Spassky,Macromolecules, 1998,31, 3895.
    [43] H. Zhang, J. Magoshi, M. Becker, J.Y. Chen, R. Matsunaga, J. Appl. Polym. Sci.,2002,86,1817.
    
    [44] D.F. Wu, L. Wu, M. Zhang, Y.L. Zhao, Polym. Degrad. Stab., 2008, 93, 1577.
    [45] N. Fukuda, H. Tsuji, Y. Ohnishi, Polym. Degrad. Stab., 2002,78, 119.
    [46] N. Fukuda, H. Tsuji, J. Appl. Polym. Sci., 2005,96,190.
    [47] G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak, U.S.Ishiaku, Polym. Degrad.Stab, 2005,90,488.
    [48] S.M. Li, M. Tenon, H. Garreau, C. Braud, M. Vert, Polym. Degrad. Stab., 2000,67, 85.
    [49] H.F. Liu, Z.G. Ge, Y. Wang, S.L. Toh, V. Sutthikhum, G.C.H. Goh, J. Biomed.Mater. Res. Part B: Appl. Biomater., 2007, 82,129.
    [1]S.M.Lee,D.Cho,W.H.Park,S.G.Lee,S.O.Han,L.T.Drzal,Compos.Sci.Technol.,2005,65,647.
    [2]J.W.Kock,Master Thesis from Georgia Institute of Technology,2005.
    [3]A.L.,Martinez-Hernandez,C.Velasco-Santos,M.de-Icaza,V.M.Castano,Polymer,2005,46,8233.
    [4]M.Feughelman,Keratin,In:H.Mark,N Bikales,C.Overberger,C.Menges,J.I.Kroschwitz,editors.Encyclopedia of polymer science and engineering,vol.8. New York: Wiley; 1987. p. 584-97.
    [5] A.L., Martinez-Hernandez, C. Velasco-Santos, M. de-Icaza,V.M. Casta(?)o, Int. J.Environ. Pollut, 2005,23,162.
    
    [6] JR. Barone, W.F. Schmidt,Compos. Sci. Technol.,2005,65, 173.
    [7] C.K. Hong, R.P. Wool, J. Appl. Polym. Sci., 2005,95, 1524.
    [8] R.D.B. Fraser, T.P. MacRae, G.E.Rogers, Keratins: their composition, structure,and biosynthesis. Springfield. Charles C. Thomas Publisher; 1972. p. 31.
    [9] W.F. Schmidt, M.J. Line, Physical and chemical structures of poultry feather fiber fractions in fiber process development In: TAPPI Proceedings: 1996 Nonwovens Conference. p. 135-140.
    [10] A.L., Martinez-Hernandez, C. Velasco-Santos, M. de-Icaza,V.M. Casta(?)o,Microsc. Microanal., 2003,9,1282.
    [11] W.F. Schmidt, Innovative feather utilization strategies. In: National poultry waste management conference proceeding, vol. 98, Springdale, Arkansas, USA; 1998.p. 276-82.
    [12] G. Gassner, W. Schmidt, M.J. Line, C. Thomas, R.M. Water, U.S. Patent 5705030. 1998.
    [13] M. Misra, P. Kar, G. Priyadarshan, C. Licata, Keratin protein nano-fiber for removal of heavy metals and contaminants. MRS Symposium Fall 2001 Proceedings,702(U1): 1-7.
    
    [14] S. Al-Asheh, et al., J. Clean. Prod., 2003,11,321.
    [15] R. Wool, C. Hong, U.S. Patent 20040072976. 2004.
    [16] L. Jacobson, Can Computers Fly on the Wings of a Chicken? The Washington Post, From http://www.washingtonpost.com/ac2/wp-dvn/A36816-2002Jul7,2002
    [17] S. Durham, Save a Tree, Use Some Feathers, Agricultural Research Service,From http://www.ars.usda.gov/is/pr/2002/020329.htm. 2002.
    [18] J.R. Barone, W.F. Schmidt, C.F.E. Liebner, Compos. Sci. Technol., 2005, 65,683.
    [19] T.A. Bullions, D. Hoffman, R.A. Gillespie, J Price-O'Brien, A.C. Loos, Compos Sci. Technol., 2006,66,102.
    [20] A.L., Martinez-Hernandez, C. Velasco-Santos, M. de-Icaza,V M. Castano,Compos. Part B: Eng., 2007,38,405.
    
    [21] S. Huda, Y.Q. Yang, Compos. Sci. Technol., 2008,68, 790.
    [22] L.A. Pothan, Z. Oommen, S. Thomas, Compos. Sci. Technol., 2003,63,283.
    [23] L. Jiang, J.W. Zhang, M.P. Wolcott, Polymer, 2007,48, 7632.
    [24] J.R. Sarasua, RE. Prud'homme, M. Wisniewski, A. Le Borgne, N. Spassky,Macromolecules, 1998, 31, 3895.
    
    [25] D.F. Wu, L. Wu, M. Zhang, Y.L. Zhao, Polym. Degrad. Stab., 2008,93,1577.
    [26] N. Fukuda, H. Tsuji, Y. Ohnishi, Polym. Degrad. Stab., 2002,78,119.
    [27] N. Fukuda, H. Tsuji, J. Appl. Polym. Sci., 2005,96,190.
    [28] G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak, U.S.Ishiaku, Polym. Degrad.Stab., 2005, 90,488.
    [29] S.M. Li, M. Tenon, H. Garreau, C. Braud, M. Vert, Polym. Degrad. Stab., 2000,67, 85.
    [1]O.A.Shenderov,D.M.Gruen,Uitrananocrystalline diamond:synthesis,properties,and applications,William Andrew Publishing,New York,2006.
    [2]M.Ozawa,M.Inaguma,M.Takahashi,F.Kataoka,A.Kr(u|¨)ger,E.(O|¨)sawa,Adv.Mater.,2007,19,1201.
    [3]C.C.Chou,S.H.Lee,J.Mater.Process.Technol.,2008,201,542.
    [4]S.Park,D.Srivastava,K.Cho,J.Nanosci.Nanotechnol.,2001,1,75.
    [5]V.Livramento,J.B.Correia,N.Shohoji,E.(O|¨)sawa,Diam.Relat.Mater.,2007,16,202.
    [6]A.P.Puzyr,A.V.Baron,K.V.Purtov,E.V.Bortnikov,N.N.Skobelev,O.A Mogilnaya,V.S.Bondar,Diam.Relat.Mater.,2007,16,2124.
    [7]Y.Liu,Z.N.Gu,J.L.Margrave,V.N.Khabashesku,Chem.Mater.,2004,16,3924.
    [8]V.N.Khabashesku,J.L.Margrave,E.V.Barrera,Diam.Relat.Mater,,2005,14,859.
    [9]A.Kr(u|¨)ger,Y.J.Liang,G.Jarre,J.Stegk,J.Mater.Chem.,2006,16,2322.
    [10]A.Krueger,J.Mater.Chem.,2008,18,1485.
    [11]A.Krueger,Chem.Eur.J.,2008,14,1382.
    [12]V.Y.Dolmatov,Russ.Chem.Rev.,2001,70,607.
    [13]O.A.Shenderova,V.V.Zhirnov,D.W.Brenner,Crit.Rev.Solid State Mater.Sci., 2002,27,227.
    [14] K. Ushizawa, Y. Sato, T. Mitsumori, T. Machinami, T. Ueda, T. Ando, Chem.Phys. Lett.,2002, 351, 105.
    [15] P.I. Belobrov, LA. Bursill, K.I. Maslakov, A. P. Dementjev, Appl. Surf. Sci.,2003,215,169.
    
    [16] T. Jiang, K. Xu, Carbon, 1995, 33,1663.
    
    [17] N. Komatsu, N. Kadota, T. Kimura, E. Osawa, Chem. Lett., 2007,36, 398.
    [18] G.B. Zhang, J.M. Zhang, X.S. Zhou, D.Y. Shen, J. Appl. Polym. Sci., 2003, 88,973.
    
    [19] X.F. Ma, J.G. Yu, N. Wang, J. Polym. Sci. Part B Polym. Phys., 2006,44, 94.
    [20] N. Wang, X.X. Zhang, X.F. Ma, J.M. Fang, Polym. Degrad. Stabil., 2008,93,1044.
    
    [21] A. Pawlak, M. Mucha, Thermochim. Acta, 2003,396, 153.
    [22] R. Auras, B. Harte, S. Selke, Macromol. Biosci., 2004,4, 835.
    [23] L. Jiang, J.W. Zhang, M.P. Wolcott, Polymer, 2007,48, 7632.
    [24] L. Nicolais, M. Narkis, Polym. Eng. Sci., 1971, 11,194.
    [25] S.Y. Fu, X.Q. Feng, B. Lauke, YM. Mai, Compos. Part B: Eng., 2008, 39,933.
    [26] E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, J. Varlet, Polymer, 2001,42, 8759.
    [27] M.N. Bureau, F. Perrin-Sarazin, M.T. Ton-That, Polym. Eng. Sci., 2004, 44,1142.
    
    [28] ML. Costa, S.F.M. de Almeida, M.C. Rezende, Mater. Res.,2005, 8, 335.
    [29] L. Jiang, J.W. Zhang, M.P. Wolcott, Polymer, 2007,48, 7632.
    [30] JR. Sarasua, RE. Prud'homme, M. Wisniewski, A. Le Borgne, N. Spassky,Macromolecules, 1998, 31, 3895.
    [31] F.D. Kopinke, M. Remmler, K. Mackenzie, M. M(?)der, O. Wachsen, Polym.Degrad. Stab, 1996,53,329.
    [32] Y.J. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, T. Endo, Polym. Degrad. Stab., 2004,86,197.
    [33] G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak, U.S.Ishiaku, Polym. Degrad Stab., 2005,90,488.
    [34]S.M Li,M.Tenon,H.Garreau,C.Braud,M.Vert,Polym.Degrad.Stab.,2000,67,85.
    [1]S.Iijima,Nature,1991,354,56.
    [2]E.W.Wong,P.E.Sheehan,Science,1997,277,1971.
    [3]M.M.J.Treacy,T.W.Ebbesen,J.M.Gibson,Nature,1996,381,678.
    [4]T.W.Ebbesen,P.M.Aiayan,Nautre,1992,358,220.
    [5]陈卫祥,陈文录,徐铸德,刘宗建,涂江平,张孝彬,郭鹤桐,复合材料学报,2001,18,1。
    [6]E.T.Thostenson,A.F.Ren,T.W.Chou,Compos.Sci.Tech.,2001,61,1899.
    [7]P.Calvert,Nature,1999,156,210.
    [8]T.Kuzumaki,K.Mivazawa,H.Ichinose,K.Ito,J.Mater.Res.,1998,13,2445.
    [9]W.X Chen,H.Y.Gan,J.P.Tu,W.L.Chen,J.B.Xia,J.G.Wang,Z.D.Xu,G.Z.Zhou,Tribolo.,2002,22,241.
    [10]W.X Chen,J.P.Tu,L.Y.Wang,H.Y.Gan,ZD.Xu,X.B.Zhang,Carbon,2003,41,215.
    [11]J.P.Tu,Y.Z.Yang,L.Y.Wang,X.C.Ma,X.B.Zhang,Tribol.Lett.,2001,10,225.
    [12]D.S.Lim,J.W.An,H.J.Lee,Wear,2002,252,512.
    [13]Z.Yang,H.Xu,M.K.Li,Y.L.Shi,Y.Huang,H.L.Li,Thin Solid Films,2004,466,86.
    [14]R.H.Baughman,A.A.Zakh idov,W.A.de Heer,Science,2002,297,787.
    [15]P.M.Ajayan,L.S.Schadler,C.Giannaris,et al.Adv.Mater.,2000,12,750.
    [16]G.M Odegarda,T.S.Gatesb,K.E.Wisea,et al.Compos.Sci.Technol.,2003,63,1671.
    [17]K.T.Lau,S.Q.Shi,Carbon,2002,40,2965.
    [18]T.Fukushima,A.Kosaka,Y.Ishimura,T.Yamamoto,T.Takigawa,N.Ishii,T.Aida,Science,2003,300,2072.
    [19]P.M.Ajayan,O.Stephan,C.Colliex,D.Trauth,Science,1994,265,1212.
    [20]M.S.P.Shaffer,A.H.Windle,Adv.Mater.,1999,11,937.
    [21]C.Stephan,T.P.Nguyen,M.L.D.L.Chapelle,S.Lefrant,C.Jounet,P.Bernier,Synth Met.,2000,108,139.
    [22]Z.X Jin,K.P.Pramoda,G.Q.Xu,S.H.Gob,Chem.Phys.Lett.,2001,337,43.
    [23]陆梅,兰州大学博士学位论文,2004。
    [24]杨志,兰州大学博士学位论文,2005。
    [25]C.S.Wu,H.T.Liao,Polymer,2007,48,4449.
    [26]H.Tsuji,Y.Kawashima,H.Takikawa,S.Tanaka,Polymer,2007,48,4213.
    [27]G.X.Chen,H.Shimizu,Polymer,2008,49,943.
    [28]T.Villmow,P.P(o|¨)tschke,S.Pegel,L.H(a|¨)ussler,B.Kretzschmar,Polymer,2008,49,3500.
    [29]D.F.Wu,L.Wu,M.Zhang,Y.L.Zhao,Polym.Degrad.Stab.,2008,93,1577.
    [30] L. Jiang, J.W. Zhang, M.P. Wolcott, Polymer, 2007,48,7632.
    
    [31] JR. Sarasua, RE. Prud'homme, M. Wisniewski, A. Le Borgne, N. Spassky,Macromolecules, 1998,31, 3895.
    [32] B.B. Marosfoi, A. Szabo, G. Marosi, D. Tabuani, G. Camino, S. Pagliari, J.Therm. Anal. Calorim., 2006, 86,669.
    [33] G. Gorrasi, M. Sarno, A. Di Bartolomeo, D. Sannino, P. Ciambelli, V. Vittoria, J.Polym. Sci. Part B Polym. Phys., 2007,45,597.
    
    [34] H.S. Kim, B.H. Park, J.S. Yoon, H.J. Jin, Eur. Polym. J., 2007,43, 1729.
    [35] B. Schartel, P. Potschke, U. Knoll, M. Abdel-Goad, Eur. Polym. J., 2005,41,1061.
    
    [36] S.S. Ray, P. Maiti, M. Okamoto, K. Yamada, K. Ueda, Polymer, 2003,44, 857.
    [37] G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak, U.S.Ishiaku, Polym. Degrad.Stab., 2005,90,488.
    [38] S.M. Li, M. Tenon, H. Garreau, C. Braud, M. Vert, Polym. Degrad. Stab., 2000,67, 85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700