用户名: 密码: 验证码:
核壳结构改性剂增韧聚甲基丙烯酸甲酯类树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚甲基丙烯酸甲酯类树脂通常包括甲基丙烯酸甲酯均聚物与甲基丙烯酸甲酯及少量丙烯酸酯类单体的共聚物以及甲基丙烯酸甲酯与苯乙烯等单体的共聚物。该类材料是一种典型的刚性无定形聚合物,因其优异的耐紫外线性能与光学性能而广泛地应用于家用电器、电子产品、医疗与汽车等领域。但由于其宏观力学性能具有明显的脆性与缺口敏感性,因此对其增韧改性的研究一直备受关注,其中采用核壳结构改性剂的增韧方法是聚甲基丙烯酸甲酯类树脂增韧的最为重要的手段。与其它材料增韧相比,聚甲基丙烯酸甲酯类树脂的增韧更为复杂,增韧时不仅要求所采用改性剂能够有效地促进增韧产物断裂能的吸收以实现共混物的力学性能提高,而且还要求其折光指数与基体树脂相匹配以保持基体树脂的良好透光性能。虽然采用聚丙烯酸丁酯(PBA)为橡胶相的耐候级改性剂与聚丁二烯(PB)为橡胶相的非耐候级改性剂都能够增韧聚甲基丙烯酸甲酯类树脂,但由于PBA与PB的折光指数与基体树脂折光指数不匹配,会使增韧产物的透光性能显著下降,因此在改性剂橡胶相的乳液聚合过程中共聚定量的高折光指数的St以匹配改性剂与基体折光指数,才能获得较高透光性能的增韧产物。
     本研究从结构与性能可控的改性剂合成出发,考察了改性剂结构、橡胶相交联程度、改性剂与基体树脂界面性能变化等因素对聚甲基丙烯酸甲酯类树脂的增韧的影响,主要研究内容与结论如下:
     1、在丙烯酸酯类冲击改性剂(Acrylic impact modifiers, AIMs)的橡胶相P(BA-co-St)种子乳液聚合的反应恒速期内,考察了聚合反应速率与引发剂浓度之间关系,研究了在种子乳液聚合过程中橡胶相粒子粒径的变化规律。结果表明聚合反应速率与引发剂浓度关系为Rp∞I0.44,橡胶粒子粒径以逐步长大方式增长。合成出了BA-St共聚物为橡胶核,PMMA为外壳的两层结构AIM改性剂与PS或PMMA为内核,PBA或BA-St共聚物为橡胶层,PMMA为外壳的三层结构AIM改性剂。考察了AIM结构对PMMA树脂增韧的影响,结果表明采用两层结构AIM改性剂增韧PMMA时,其最大冲击强度、断裂能与最大应力强度因子(Kmax)所对应的最优AIM橡胶相粒子粒径为269nm,其裂纹增长能(Uprop)在AIM橡胶相粒子粒径为351nm时达到最大,增韧产物的可见光透过率随着橡胶相粒子粒径的增长逐步下降,雾度逐步上升。与两层结构AIM对PMMA的增韧相比较,三层结构AIM的增韧产物的Kmax明显高于两层结构AIM的增韧产物,表明了三层结构改性剂中橡胶相的形变形式更有利于阻止共混物断裂过程中裂纹的产生。通过两种三层结构AIM增韧PMMA的形变区透射电镜观察可见,改性剂中间橡胶层为BA-St共聚物时,橡胶粒子发生了明显的空洞化,而中间层橡胶为PBA时,断裂形变区中可发现银纹的产生,这表明三层结构改性剂的中间橡胶层的性质对增韧机理的影响显著。
     2、研究了AIM的橡胶相交联程度对PMMA增韧的影响,结果发现随着橡胶相的交联程度上升,共混物冲击强度呈先上升后下降的趋势,当采用橡胶相交联程度适当的AIM时,共混物冲击强度、Kmax与Uprop达到最大值。共混物冲击断面的形态分析表明其断裂机理为橡胶粒子空洞化引起基体树脂的剪切屈服,适当交联程度的橡胶相在断裂时有利于形成较多的空洞并能够更有效地促进橡胶粒子周围基体树脂的局部剪切屈服。
     3、为研究改性剂与基体树脂间界面粘结性能对增韧的影响,将带有羧酸基团的AIM、PMMA与本体法制备的甲基丙烯酸甲酯-甲基丙烯酸环氧丙酯-丙烯酸甲酯三元共聚物熔融共混制备出增韧产物,考察共混过程中共混物转矩值变化与所制得共混物的性能变化,结果显示随着AIM改性剂壳层中羧酸含量的提高,熔融共混过程中的最大转矩值与平衡转矩值逐步提高,共混物的冲击强度与Kmax逐步上升,但光学性能不受影响。这表明了共混过程中改性剂上的羧酸官能团已经与基体树脂中环氧官能团发生了反应,并且随着化学反应程度的上升,两相间的界面粘结性能提高。这不仅使共混物熔体粘度上升,转矩值提高,而且有利于共混物断裂形变过程中更多橡胶粒子发生了空洞化并促进基体树脂更大程度的剪切屈服。
     4、采用乳液聚合方法合成了甲基丙烯酸甲酯-丁二烯-苯乙烯核壳结构接枝共聚物(MBS)作为聚甲基丙烯酸甲酯类树脂的非耐候级改性剂,研究了MBS中丁苯橡胶(SBR)粒子粒径随着乳液聚合中乳化剂用量变化的规律,考察了在SBR粒子上St与MMA的不同接枝方式制备的三种MBS与甲基丙烯酸甲酯-苯乙烯共聚物(MS)的界面粘结力变化对其增韧产物性能的影响。结果表明:SBR粒子粒径随乳液聚合中乳化剂用量上升而下降;三种MBS改性剂都能够在MS树脂中均匀分散,其中采用混合MMA与St的接枝方式制备的MBS壳层为St与MMA的无规共聚物,这种改性剂与MS熔融共混过程中平衡转矩值最高,共混物冲击强度最大,透光性能最好。而MMA与St按照不同先后顺序接枝在SBR上制备出的MBS,其壳层为接枝在SBR粒子上的MMA与St均聚物,这种改性剂对MS树脂的增韧效果较差,共混物透光性能较低。这表明了MBS与MS间良好的界面性能有助于共混物性能的提高。
     本工作在保持聚甲基丙烯酸甲酯类树脂优异透光性能的前提下,成功地解决了其增韧问题,制备出透过率为88.6%,冲击强度较纯PMMA树脂提高了4倍的增韧产物,该材料的力学性能已超过HIPS等通用增韧树脂,能够满足实用要求。
Polymethyl methacrylate (PMMA) resins usually comprise the polymethyl methacrylate homopolymer and the compolymers containing predominantly methyl methacrylate but with small amounts of methyl or ethyl acrylate, acrylonitrile or styrene comonomers added for improved toughness. PMMA resins are rigid, amorphous polymers particularly noted for their exceptional clarity and UV resistance, and therefore wildly used for making household appliances, electronic products, medical devices and automobile, etc. Due to the poor toughness and notch sensitivity, the research on toughening receives much concern, in which adopting core-shell modifiers toughening PMMA resins is one of the most important method. The strategy of PMMA resins toughened by core-shell modifiers show more complexity than other amorphous polymer, which demands modifiers not only promote more fracture energy absorption in the process of toughened blends fracture, which highen the mechanical properties, but refractive index of modifiers match with PMMA resins to maintain better optical property of matrix resins. Both weatherable modifiers with polybutyl acrylate (PBA) rubber phase and non-weatherable modifier with polybutadiene (PB) rubber phase can toughen PMMA resins effectively, but transmittance of blends decreases markly for mismatch of refractive index of PBA and PB with PMMA resins. So combined St with PBA or PB to match refractive index of modifiers with matrix resins can prepare toughening blends with high light transmittance.
     In this paper, preformed modifiers with controllable structure and proterties were synthesized. The influence of modifiers structure, cross-linking density of rubber phase, and the variance of interface property between modifiers and matrix on PMMA resins toughening were investigated. The main research works and conclusions are as follows:
     1. The relationship between reaction rate and initior concentration was investigated in the process of constant rate period of P(BA-co-St) emulsion polymerization, and the results showed that the relationship of reaction rate and initior concentration was Rp∞I0.44. The diameter of P(BA-co-St) rubber particles increased according to grow-out manner. Two layers acrylic impact modifiers (AIM), which was composed of BA-St copolymer rubber core and PMMA outer shell, and three layer modifiers with PS or PMMA inner core, BA or BA-St copolymer interface layer and PMMA external shell were synthsized by emulsion polymerization. The influence of AIM structure on PMMA toughess was investigated, and results showed that the optimum diameter of rubber particle of two layers AIMs was269nm, which led to maxium impact strength, fracture energy and stress intensity factor (Kmax) of AIM/PMMA blends, and crack propagating energy (Uprop) reached maxium when rubber particle diameter of AIM was351nm. The transmittance of blends decreased with the increament of rubber particles diameter, whereas the haze increased. The blends with three layers AIM had higher Kmax than those blends with two layers AIM, which indicated that the deformation of rubber phase of three layers AIM was benificial to hinder the generation of crack in the process of blends fracture. Morphology analysis of deformation zone of three layers AIM toughening PMMA blends showed that the AIM with BA-St copolymer as interface rubber layer generated evident cavitation, and the AIM with PBA as interface rubber layer arised matrix crazing, which can be attributing to the influence of rubber phase property on toughening mechanism.
     2. The influence of rubber phase cross-linking density of AIM on PMMA toughening was studied. It was shown that Kmax, Uprop and Izod impact strength of AIM/PMMA blends reached maximum when appropriate rubber cross-linking density was adopted. Morphology analysis of impact fracture surface showed that deformation mechanism of AIM/PMMA blends was local matrix shear yielding initiated by rubber particles cavitation. The rubber of AIM with appropriate cross-linking density was beneficial to form intensive voids and initiated local shear yielding of PMMA matrix nearby modifiers effectively in impact test.
     3. Blends of PMMA, AIM with carboxylic acid group and methyl methacrylate-glycidyl methacrylate-methacrylate copolymer were prepared by melt blending. Maxium torque and equilibrium torque of blends in the process of melt blending increased with the increase of carboxylic acid group content in the shell of AIM increament, and impact strength and Kmax of blends enhanced accordingly, but the optical propertie of blends was not affected. It indicated that the reaction of carboxylic acid group of modifiers and epoxy group of matrix resin increased interfacial cohesion of two phases, which led to not only the cohension increament of mixture melt but also more rubber particles cavitation and promoted massive yielding of maxtrix resins in the process of fracture deformation.
     4. Methyl methacrylate-butadiene-styrene copolymers (MBS), which were used as no-whetherable modifiers in PMMA toughening, were synthsized by emulsion polymerization. The variance of diameter of SBR, which was rubber phase of MBS modifiers, with emulsifier content was studied, and result showed that the diameter of SBR particles decreased with the increase of emulsifier content in emulsion polymerization. Three kinds of MBS core-shell modifier, synthesized by seeded-emulsion polymerization by changing St and MMA addition sequence, can disperse uniformly in MS resins. MBS prepared by grafting St and MMA mixture on SBR can strengthen interfacial adhesion between modifiers and matrix, and the blend showed higher notched-Izod impact strength and transmittance. It indicated that better interfacial property highen the mechanical and optical properties.
     In this work, on the premise of maintaining PMMA resins outstanding optical properties, the toughening of PMMA was solved successfully. High preformance blends, which transmittance was88.6%and impact strength increased four times than pure PMMA resins, were prepared. The mechanical properties of blends had exceeded general-purpose toughening resins, such as HIPS, and can fulfilled practice demand.
引文
1. Williams J G, Marshall G P. Environmental crack and craze growth phenomena in polymers [J], Proc. R. Soc.,1975, A342:55-77.
    2. Miller P, Buckley D J, Kramer E J. Microstructure and origin of cross-tie fibrils in crazes [J], J. Mater. Sci.,1991,26(16):4445-4454.
    3. Brown H R, A molecular interpretation of the toughness of glassy polymers [J], Macromolecules,1991,24(10):2752-2756.
    4. Vazquez F, Schneider M, Pith T, Lambla M. Effect of the composition of structured rubber particles on the toughness of poly(methylmethacrylate) [J], Polym. Int.,1996,41(1):1-12.
    5. He C, Donald A M, Butler F, In-Situ Deformation Studies of Rubber Toughened Poly(methyl methacrylate):Influence of Rubber Particle Concentration and Rubber Cross-Linking Density [J], Macromolecules,1998,31(1):158-164.
    6. Shah N. Effect of modifier concentration on the fracture behaviour of rubber-modified PMMA [J], J. Mater. Sci.,1988,23(10):3623-3629.
    7. Utracki L A, Polymer Blends Handbook [M], Netherlands:Kluwer Academic Publishers, 2003, PP:1056-1058.
    8. Hofmann F, Delbruck K.1909, Farbenfabriken Bayer A G:Ger. Pat.250690.
    9. Dinsmore R P.1929, U. S. Pat.1732795.
    10. Harkins W D, A General Theory of the Reaction Loci in Emulsion Polymerization [J], J. Chem. Phys.,1945,13(9):381-383.
    11. Harkins W D, A General Theory of the Reaction Loci in Emulsion Polymerization Ⅱ [J], J. Chem. Phys.,1945,14(1):47-48.
    12. Harkins W D, A General Theory of the Mechanism of Emulsion Polymerization [J], J. Amer. Chem. Soc.,1947,69 (6):1428-1444.
    13. Smith W V. The Kinetics of Styrene Emulsion Polymerization [J], J Amer Chem Soc, 1948,70(11):3695-3702.
    14. Smith W V, Ewart R H. Kinetics of Emulsion Polymerization [J], J Chem Phys,1948, 16(6):592-599.
    15. Smith W V. Chain Initiation in Styrene Emulsion Polymerization [J], J Amer Chem Soc, 1949,71(12):4077-4082.
    16. Paul D R, Bucknall C B. Polymer blends:Formulation&performance [M], New York:A wiley-interscience publication,1999,534-562.
    17.耿耀宗,曹同玉.合成聚合物乳液制造与应用技术[M],北京:中国轻工业出版社,1999,97-98.
    18. Feuer S S.1958, U. S. Pat.2857360.
    19. Steenbrink A C, Litvinov V M, Gaymans R J. Toughening of SAN with acrylic core-shell rubber particles:particle size effect or cross-link density [J], Polymer,1998,39(20): 4817-4825
    20. Parker D S, Sue H J, Huang J, Yee F. Toughening mechanisms in core-shell rubber modified polycarbonate [J], Polymer,1990,31(12):2267-2277
    21. Kalfoglou N K, Kallitsis J K, Skafidas D S. Blends of Polyethylene terephthalate) with unmodified and maleic anhydride grafted acrylonitrile-butadiene-styrene terpolymer [J], Polymer,1996,37(15):3387-3385
    22. Hage E, Hale W, Keskkula H, Paul D R. Impact modification of poly(butylene terephthalate) by ABS materials [J], Polymer,1997,38(13):3237-3250.
    23. Lu M, Keskkula H, Paul D R. Reactive coupling of core-shell impact modifiers to polyamide matrices using styrene-maleic anhydride copolymers [J], Polymer,1993,34(9): 1874-1885
    24. Kim B K, Lee Y M, Jeong H M. Physical properties of ABS/SMA/nylon-6 ternary blends: effect of blending sequence [J], Polymer,1993,34(10):2075-2080
    25. Majumdar B, Keskkular H, Paul D R. Mechanical properties and morphology of nylon-6/acrylonitrile-butadiene-styrene blends compatibilized with imidized acrylic polymers [J], Polymer,1994,35(25):5453-5467
    26. Min T I, Klein A, El-Aasser M S, Vanderhoff J W. Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization [J], J Polym Sci, Polym Chem Ed,1983,21(10):2845-2861.
    27. Dimonie V, El-Aasser M S, Klein A,Vanderhoff J W. Core-shell emulsion copolymerization of styrene and acrylonitrile on polystyrene seed particles [J], J. Polym. Sci., Polym Chem Ed,1984,22(9):2197-2215.
    28. Gasperowicz A, Kolenaowicz M, Skowronshi T. Grafting of styrene onto poly(butyl acrylate) in emulsion [J], Polymer,1982,23(6):839-842.
    29. Annemieke M A, Jolanda E D, Jenci K, Anton L G. Emulsifier free grafting of styrene and methyl methacrylate onto polybutadiene and determination of the copolymer microstructure [J], Polymer,1994,35(8):1636-1674.
    30. Zhao J, Yan H, Pan Z. Grating mechanism in SBR-St-MMA core-shell emulsion copolymerization [J], J Appl Polym Sci,1994,53(11):1447-1452,.
    31. Locatelli J L, Riess G. Influence de la solvatation preferentielle dans les reactions de greffage, polydispersite en composition des copolymers SAN dans les resins ABS [J], Angew, Makromol Chem,1974,175(12):3523-3529.
    32. Locatelli J L, Riess G. Etude de copolymeres greffes ABS (acrylonitrile-butadiene-styrene):solvatation preferentielle du polybutadiene par les promoteurs [J], J Polym Sci part A:Polym Chem,1973,11(12):3309-3320.
    33. Robert A H, Futamura S. Kinetics and mechanism of the polymerization of styrene-acrylonitrile in the presence of polybutadiene [J], J Polym Sci:Polym Chem Ed, 1981,19(4):985-991.
    34. Sperling L H, Friedman D W. Synthesis and mechanical behavior of interpenetrating polymer networks:Poly(ethyl acrylate) and polystyrene [J], J. Polym. Sci.:Part A-2: Polym Phys,1969,7(2):425-427.
    35. Sperling L H, Interpenetrating Polymer Networks and Related Materials [J], J Polym Sci: Macromol Rev,1977,12(1):141-180.
    36. Okubo M, Yamaguchi S, Matsumoyo T. Morphology of composite polymer emulsion particles consisting of two kinds of polymers between which ionic bonding intermolecular interaction operates [J], J. Appl. Polym. Sci.,1986,31(4):1075-1082.
    37. Merz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems [J], J Polym Sci,1956,22(101):325-341.
    38. Schmitt J A, Keskkula H. Short-time stress relaxation and toughness of rubber-modified polystyrene [J], J Appl Polym Sci,1960,3(8):132-142.
    39. Newman S, Strella S. Stress-strain behavior of rubber-reinforced glassy polymers [J], J. Appl. Polym. Sci.,1965,9(6):2297-2310.
    40. Kunz-Douglass S, Beaumont P W R, Ashby M F. A model for the toughness of epoxy-rubber particulate composites [J], J Mater Sci,1980,15(5):1109-1123.
    41. Kunz S, Beaumont P W R. Low-temperature behavior of epoxy-rubber particulate composites [J], J Mater Sci,1981,16(11):3141-3152.
    42. Bucknall C B, Smith R R, Stress-whitening in high-impact polystyrene [J], Polymer,1965, 6(8):437-446.
    43. Matsuo M, Observation of crazes in ABS-polymer and High-impact polystyrene under the electron microscope [J], Polymer,1966,7(8):421-425.
    44. Matsuo M, Ueda A, Kondo Y. Fine structure and fracture processes in plastic-rubber two-phase polymer systems Ⅲ, Temperature dependence of Charp Impact strength [J], Polym Eng Sci,1970,10(5):253-260.
    45. Bucknall C B, Relation between the structure and mechanical properties of rubber-modified thermoplastics. Ⅱ [J], Brit Plastics,1967,40(12):84-86.
    46. Donald A M, Plastic deformation mechanisms in poly(acrylonitrile -butadiene -styrene) [ABS] [J], J. Mater. Sci,1982,17(6):1765-1772.
    47. Donald A M, Kramer E J, Craze initiation and growth in High-impact polystyrene [J], J Appl Polym Sci,1982,27(10):3729-3741.
    48. Donald A M, Kramer E J. Internal structure of rubber particles and craze break-down in high-impact polystyrene (HIPS) [J], J. Mater. Sci,1982,17(8):2351-2358.
    49. Bucknall C B, Toughened Plastics [M], London:Applied Science Publishers Ltd,1977, 207-208.
    50. Argon A S. Role of heterogeneities in the crazing of glassy polymers [J], Pure Appl Chem, 1975,43(1-2):247-272.
    51. Ricco T, Pavan A, Danusso F. Micromechanical analysis of a model for particulate composite materials with composite particles-survey of craze initiation [J], Polym Eng Sci, 1978,18(10):774-780.
    52. Patrich R P. Impact reinforcement of poly(vinyl chloride) [J], Polym. Eng. Sci,1973, 13(4):248-254.
    53. Breuer H, Haff F, Stabenow J. Stress whitening and yielding mechanism of rubber-modified PVC [J], J Macromol Sci, Part B,1977,14(3):387-417.
    54. Cillon M, Bevis M, The microstructure and deformation of model ABS compounds [J], J. Mater. Sci,1982,17(7):1895-1902.
    55. Truss R W, Chadwick G A, Tensile deformation behavior of ABS polymers [J], J. Mater. Sci,1976,11(1):111-117.
    56. Plummer C J G, Donald A M. The deformation behavior of polyethersulfone and polycarbonate [J], J Polym Sci Part B:Polym Phys,1989,27(2):325-336.
    57. Jang B Z, Uhlmann D R, Vander Sande J B. Rubber-toughening in polypropylene [J], J. Appl. Polym. Sci,1985,30(6):2485-2504.
    58. Haaf F, Breuer H, Stabenow J. Untersuchungen an kautschukmodifiziertem PVC [J], Die Angew Makromol Chem,1977,58(1):95-119.
    59. Siegmann A, Hadas A. Irreversible deformation of plasticized and impact-modified poly(vinyl chloride) [J], J. Appl. Polym. Sci,1987,33(8):2689-2705.
    60. Bucknall C B, Page C J. Rubber-toughening of plastics. Part 6:Effects of rubber particles on the kinetics of creep in polypropylene [J], J. Mater. Sci,1982,17(3):808-816.
    61. Chou C J, Vijayan K, Kirby D. Ductile-to-brittle transition of rubber modified polypropylene. Part 1:Irreversible deformation mechanisms [J], J. Mater. Sci,1988,23(7): 2521-2532.
    62. Hobbs S Y, Dekkers M E J. Deformation mechanisms in toughened poly(phenylene oxide)-polyamide blends [J], J. Mater. Sci,1989,24(4):1316-1322.
    63. Kinloch A J, Shaw S J, Hunston D L. Deformation and fracture behavior of a rubber-toughened epoxy.1. Microstructure and fracture studies [J], Polymer,1983,24(10): 1341-1354.
    64. Bascom W D, Ting T Y, Moulton R J, The fracture of an epoxy polymer containing elastomeric modifiers [J], J Mater Sci,1981,16(10):2657-2664.
    65. Sultan J N, McGarry F J, Effect of rubber particle size on deformation mechanisms in glassy epoxy [J], Polym Eng Sci,1973,13(1):29-34.
    66. Bucknall C B, Clayton D, Keast W E. Rubber-toughening of plastics Part 2 Creep mechanisms in HIPS/PPO blends [J], J Mater Sci,1972,7(12):1443-1453.
    67. Kambour R P. A review of crazing and fracture in thermoplastics [J], J Polym Sci: Macromol Rev,1973,7(1):1-154.
    68. Wu S. Phase structure and adhesion in polymer blends. A criterion for rubber toughening [J], Polymer,1985,26(12):1855-1863.
    69. Wu S. A generalized criterion for rubber toughening:The critical matrix ligament thickness [J], J. Appl. Polym. Sci,1988,35(2):549-561.
    70. Pearson R A, Yee A F. Toughening mechanisms in elstomer-modified epoxies Part 2 Microscopy studies [J], J. Mater. Sci,1986,21(7):2475-2488.
    71. Yee A F. The yield and deformation behavior of some polycarbonate blends[J], J. Mater. Sci,1977,12(4):757-765.
    72. Yee A F, Olszewsik V W, Miller S, Toughness and brittleness of plastics [M], Ed. by Deanin R D, Crugnola A M, Amer Chem Soc, Washington D. C.:97-106.
    73. Hourston D J, Lane S, Zhang H X. Toughened thermoplastics:2 Impact properties and fracture mechanisms of rubber modified poly(butylenes terephthalates) [J], Polymer,1991, 32(12):2215-2220.
    74. Yee A F, Du J, Thouless M D. Toughening of epoxies. Polymer Blends. Vol.2 [M], (ed. by Paul D R, Bucknall C B) Wiley-Interscience, New York:225-267.
    75. Lazzeri A, Bucknall B C. Dilatational bands in rubber-toughened polymers [J], J. Mater. Sci,1993,28(24):6799-6808.
    76. Narisawa I, Kuriyama T, Schemer B, Friedrich K. Design and control of morphology for high performance polymer alloys [J], Macromol. Symp,1996,101,273-280.
    77. Wu S. Chain structures, phase morphology, and toughness relationships in polymers and blends [J], Polym. Eng. Sci,1990,30(13),753-761.
    78. Kramer E J, Craze fibril formation and breakdown [J], Polym. Eng. Sci,1984,24(10): 761-769.
    79. Kambour R P. Correlations of the dry crazing resistance of glassy polymers with other physical properties [J], Polym Commun,1983,24(10):292-297.
    80. Wu S. Formation of dispersed phase in incompatible polymer blends:Interfacial and rheological effects [J], Polym Eng Sci,1987,27(5):335-343.
    81. Van der Wal A, Mulder J J, Oderkerk J, Gaymans R J. Polypropylene-rubber blends:1. The effect of the matrix properties on the impact behaviour [J], Polymer,1998,39(26): 6781-6787.
    82. Oshinski A J, Keskkula H, Paul D R. The role of matrix molecular weight in rubber toughened nylon 6 blends:3. Ductile-brittle transition temperature, Polymer [J],1996, 37(22):4919-4928.
    83. Van der Wal A, Mulder J J, Nijhof R, Gaymans R J. Polypropylene-rubber blends:2. The effect of the rubber content on the deformation and impact behaviour [J], Polymer,1999, 40(22):6031-6044.
    84. Muratogul O K, Argon A S, Cohen R E, Weinberg M. Toughening mechanism of rubber-modified polyamides [J], Polymer,1995,36(5):921-930.
    85. Muratogul O K, Argon A S, Cohen R E, Weinberg M. Microstructural processes of fracture of rubber-modified polyamides [J], Polymer,1995,36(25):4771-4786.
    86. Muratogul O K, Argon A S, Cohen R E, Weinberg M. Microstructural fracture processes accompanying growing cracks in tough rubber-modified polyamides [J], Polymer,1995, 36(25):4787-4795.
    87. Bartczak Z, Argon A S, Cohen R E, Weinberg M. Toughness mechanism in semi-crystalline polymer blends:I. High-density polyethylene toughened with rubbers [J], Polymer,1999,40(9):2331-2346.
    88. Jiang W, Wang X, Jiang B Z. Effect of y irradiation on brittle-tough transition of PBT/EPDM blends [J], Polymer,1997,38(16):4275-4278.
    89. Van der Sanden M C M, De Kok J M M, Meijer H E H. Deformation and toughness of polymeric systems:7. Influence of dispersed rubbery phase [J], Polymer,1994,35(14): 2995-3004.
    90. Pearson R A, Yee A F. Toughening mechanisms in elastomer-modified epoxies Part 2 Microscopy studies [J], J Mater Sci,1986,21(7):2475-2488
    91. Manson J A, Sperling T H. Polymer blends and composites[M],, New York:Plenum Press,1976,77-96.
    92. Cigna G, Lomellini P, Merlotti M. Impact thermoplastics:Combined role of rubbery phase volume and particle size on toughening efficiency [J], J. Appl. Polym. Sci.,1989, 37(6):1527-1534.
    93. Boggreve R J M, Gaymans R J, Shuijer J. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size [J], Polymer,1987,28(9):1489-1494.
    94.刘浙辉,朱小光,张学东等,聚合物共混物脆韧转变性能研究-形态参数对聚氯乙烯/丁腈橡胶共混物脆韧转变性能的影响[J],高分子学报,1996,(4),468-474.
    95. Flower M E, Keskkula H, Paul D R. Mechanical behavior of dual-rubber-modified SAN [J], J. Appl. Polym. Sci.,1988,35(6):1563-1571.
    96. Morbitzer L, Kranz D, Humme G. Structure and properties of ABS polymers. X. Influence of particle size and graft structure on loss modulus temperature dependence and deformation behavior [J], J Appl Polym Sci,1976,20(10):2691-2704.
    97. Breuer H, Haaf F, Stabenow J. Stress whitening and yielding mechanism of rubber-modified PVC[J], J Macromlo Sci Phys B,1977,14(3),387-417.
    98. Ryan C F, Jalbert F L. Encyclopedia of PVC[M], Nass L I, Ed, New York:Dekker,1977, Vol.2, Chapter 12, pp 609-632.
    99. Liu Z H, Zhang X D, Zhu X G. Effect of morphology on the brittle ductile transition of polymer blends:3. The influence of rubber particle spatial distribution on the fracture behaviour of poly(vinyl chloride)/nitrile rubber blends [J], Polymer,1998,39(21), 5027-5033.
    100. Msjumdar B, Keskkula H, Paul D R. Mechanical properties and morphology of nylon-6/acrylonitrile-butadiene-styrene blends compatibilized with imidized acrylic polymers [J], Polymer,1994,35(25),5453-5465.
    101. Keskkular H, Kim H, Paul D R. Toughening of SAN copolymers by an SAN emulsion grafted rubber [J], Polymer,1990,31(5):869-876.
    102. Dijkatra K, Wevers H, Gaymans R J, Nylon-6/rubber blends:7. Temperature-time effects in the impact behaviour of nylon/rubber blends [J], Polymer,1994,35(2):323-329.
    103. Marechal P, Coppens G, Legras R, Dekoninck J M. Amine/anhydride reaction versus amide/anhydride reaction in polyamide/anhydride carriers [J], J Polym Sci. Part A,1995, 33(5):757-766.
    104. Wu S. Phase structure and adhesion in polymer blends:A criterion for rubber toughening [J], Polymer,1985,26(12),1855-1860.
    105. Borggreve R J, Gaymans R J. Impact behaviour of nylon-rubber blends:4. Effect of the coupling agent, maleic anhydride [J], Polymer,1989,30(1):63-70.
    106. Hobbs S Y, Bopp R C, Watkins V H. Toughened nylon resins [J], Polym Eng Sci,1983, 23(7):380-389.
    107. Liu N C, Baker W E, The separate roles of phase structure and interfacial adhesion in toughening a brittle polymer [J], Polym Eng Sci,1992,32(22),1695-1700.
    108. Liu N C, Baker W E. Basic functionalization of polypropylene and the role of interfacial chemical bonding in its toughening [J], Polymer,1994,35(5):988-994.
    109. Sue H, Huang J, Yee A F. Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene [J], Polymer,1992,33(22):4868-4871.
    110.刘浙辉,朱小光,张学东等,界面粘结对聚氯乙烯/丁腈橡胶共混物脆韧转变的影响[J],高分子学报,1997, (3):283-285.
    111. Clovis J S, Owens F H.1979, U. S. Patent 4,148,846.
    112. Clovis J S, Owens F H.1976, U. S. Patent3,984,479.
    113. Aoki Y. Dynamic viscoelastic properties of ABS polymer in the molten state.5. Effect of grafting degree [J], Macromolecules,1987,20(9):2208-2213.
    114. Hasegawa R, Aoki Y, Doi M. Optimum Graft Density for Dispersing Particles in Polymer Melts [J], Macromolecules,1996,29(20):6656-6662.
    115. Bertin M P, Marin G, Monfort J P. Viscoelastic properties of acrylonitrile-butadiene-styrene (ABS) polymers in the molten state [J], Polym Eng Sci, 1995,35(17):1394-1406.
    116. Choi J H, Ahn K H, Kim S Y. Effect of the degree of graft on the tensile and dynamic behavior of high impact polystyrene [J], Polymer,2000,41(14):5229-5236.
    117. Memon N A, Rheological properties and interface in polycarbonate/impact modifier blends:effect of modifier shell molecular weight [J], Journal of Polymer Science:Part B: Polymer Physics,1998,36(7):1095-1105.
    118. Segall I, Dimonie V L, El-aasser M S, Soskey P R, Mylonakis S G. Core-shell structured latex particles. III.Structure-properties relationship in toughening of polycarbonate with poly(n-butyl acrylate)/poly(benzyl methacrylate-styrene) structured latex particles [J], J Appl Polym Sci,1995,58(2):419-425.
    119. Orowan E. Fracture and strength of solids [J], Rept Prog Phys,1949,12(1):185-232.
    120. Clegg P L, Huck N D. The Effect of Extrusion Variables on the Fundamental Properties of Tubular. Polyethylene-Part Ⅰ [J], Plastics, April,1961,26:114-119.
    121. White J L, Calmak M, Orientation, crystallization, and haze development in tubular film extrusion [J], Advances in Polymer Technology,1988,8(1):27-61.
    122.官建国,袁润章。光学透明材料的现状和研究进展:光学透明高分子材料[J].武汉工业大学学报,1998,20(2):11-13.
    123. "Standard Test Method for Transparency of Plastic Sheeting",1970, ASTM D1746.
    124. "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics", 1961, ASTM D1003.
    125. Willmouth F M, "Transparency, Translucency and Gloss" in Optical Properties of Polymers [M], Meeten G H(ed) London:Elsevier Applied Science Publishers,1986, 265-333.
    126. Van de Hulst H C, Light Scattering by Small Particles, New York:Wiley,1957, 289-313.
    127. Kerker M. Scattering of Light and Other Electromagnetic Radiation [M], New York: Academic,1969,654-683.
    128. Bohren C F and Huffman D R. Absorption and Scattering by Small Partickes [M], New York:John Wiley & Sons,1983,96-112.
    129. Brandrup J, ImmerGut E H. Polymer Handbook (Second edition), New York:John Wiley & Sons,1975, Ⅲ 241-244.
    130. Weast R C. Handbook of Chemistry and Physics, Clebeland:The chemical Rubber Co., 1971,E 203-208.
    131. Alexander-Katz R. Haze and extinction for a composite medium with quasitransparent optically stratified particles [J], J Polym Phys Ed,1993,31(6):663-669.
    132. Bucknall C B. Toughened Plastics [M], London:Applied Science Publishers Ltd,1977, 62-78.
    133. Kinloch A J, Young R J. Fracture Behaviour of Polymers [M], London:Applied Science Publishers Ltd,1993,265-283.
    134. Imperial Xhemical Industries Ltd.1964, BP 965786.
    135. Imperial Chemical Industries Ltd.1967, BP 1093909.
    136. Rohm and Haas Company 1973, B P 1340025.
    137. Rohm and Haas Company 1975, B P 1414187.
    138. E I Du Pont de Nemours and Company,1979, G B 2039496.
    139. Lovell P A, Sherrantt M N, Young R J. Mechanical properties and deformation micromechanics of rubber-toughened acrylic polymers. In:Riew C K, Kinloch A J, eds. Rubber-Toughened Plastics Ⅱ [M], Advances in Chemistry Series 252. Washington, D.C.: American Chemical Society,1996,211-232.
    140. Wrotecki C, Heim P, Gaillard P. Rubber toughening of poly(methyl methacrylate). Part Ⅰ: Effect of the size and hard layer composition of the rubber particles [J], Polym. Eng. Sci., 1991,31(1):213-217.
    141. Bucknall C B, Partridge J K, Ward M V. Rubber toughening of plastics [J], J Mater Sci, 1984,19(6):2064-2072.
    142. Hooley C J, Moor D R, Whale M, Williams M J. Fracture toughness of rubber modified PMMA [J], Plast Rubber Proc Appl,1981,1(4):345-349.
    143. Milios J, Papanicolaou G C, Young R J. The Effect of Loading Rate and Crack-Tip Blunting on Crack Propagation in Rubber-Toughened PMMA [J] Plast Ruber Proc Appl, 1989,11(1):37-43.
    144. Shah N. Effect of modifier concentration on the fracture behaviour of rubber-modified PMMA [J], J Mater Sci,1988,23(10):3623-3629.
    145. Pavan A, Mercante L. Toughening in polymer composites. Preliminary results of a micro-mechanical analysis of yielding in particulate-modified glassy polymers under multiaxial stresses [J], Makrolmol Chem Makromol Symp,1991,48/49:211-221.
    146. Lovell P A, Ryan A J, Sherrantt M N, Young R J. Rubber-Toughened Acrylic Polymers. II. Deformation Micromechanics Of Compression-Molded Materials [J], American Chemical Society Division of Polymeric Materials:Science and Engineering,1994,70:155-156.
    1. Akira Yanagase, Masakazu Ito, Naoki Yamamoo, Masaru I. Mechanism of enhanced impact strength of PVC modified by acrylic graft copolymer [J], J Appl Polym Sci,1996, 60:87-93.
    2.温绍国,翁学志,黄志明.抗冲改性剂ACR的组成与粒径对R-PVC应用性能的影响[J],中国塑料,1997,11(5):53-58.
    3.沈家瑞,王小川.ACR的合成及PVC/ACR共混体系的研究[J],塑料工业,1988,2:36-40.
    4. Bucknall C B, Partridge I, Ward M V. Rubber toughening of plastic Part 7 kinetics and mechanisms of deformation in rubber-toughened PMMA [J], Journal of Materials Science, 1984,19,2064-2072.
    5. Laatsch J, Kim G M, Michler G H, Arndt T, Sufke T. Investigation of the micromechanical deformation behavior of transparent toughened with core-shell particles [J], Polymers for Advanced Technologies,1998,9(10-11):716-720.
    6.孙志娟,张心亚,江庆梅,黄洪,陈焕钦MMA/BA半连续乳液聚合的动力学特征及成核机理[J],高校化学工程学报,2007,21(4):614-620.
    7. Sajjadi S, Brooks B W. Butyl Acrylate Batch Emulsion Polymerization in the Presence of Sodium Lauryl Sulphate and Potassium Persulphate [J], Journal of Polymer Science Part A: Polymer Chemistry,1999,37(21):3957-3972.
    8. Cho K, Yang J, Park C E. The effect of rubber particle size on toughening behaviour of rubber-modified Poly(methyl methacrylate) with different test modes [J], Polymer,1998, 39(14):3073-3081.
    9. Nelliappan V, El-aasser M S, Klein A, Daniels E S, Roberts J E, Pearson R A. Effect of the core/shell latex particle interphase on the mechanical behavior of rubber-toughened poly(methyl methacrylate) [J], J Appl Polym Sci,1997,65(3):581-593.
    10. Xu X F, Wang R, Tan Z Y, Yang H D, Zhang M Y, Zhang H X. Effects of polybutadiene-g-SAN impact modifiers on the morphology and mechanical behaviors of ABS blends [J], Eur Polym J 2005,41(8),1919-1926.
    11. Schneider M, Pith T, Lambla M. Toughening of polystyrene by natural rubber-based composite particles, Part Ⅱ influence of the internal structure of PMMA and PS-grafted core-shell particles [J], J Mater Sci,1997,32(23),6343-6356.
    12. Smith W V, Ewart R H. Kinetics of emulsion polymerization [J], J Chem Phys,1948,16: 592-599.
    13. Kinloch A J, Young R J. Fracture Behavior of Polymer [M], London:Applied Science, 1983, Ch.7:229-280
    14. Cook D G, Rudin A, Plumtree A. The use of latex rubber-modified polystyrene as a model system for HIPS:Effect of particle size [J], J Appl Polym Sci,1993,48(1):75-84.
    15. Wrotecki C, Heim P, Gaillard P. Rubber toughening of poly(methyl methacrylate). Part I: Effect of the size and hard layer composition of the rubber particles [J], Polym Eng Sci, 1991,31(1):213-217.
    16. Lazzeri A, Bucknall B C, Dilatational bands in rubber-toughened polymers [J], J. Mater. Sci,1993,28(24):6799-6808.
    17. Trent J S, Scheinbeim J I, Couchman P R. Ruthenium Tetraoxide Staining of Polymers for Electron Microscopy [J], Macromolecules,1983,16(4),589-598.
    1. Lovell P A, McDonald J J, Saunders D E, Young R J. Studies of rubber-toughened poly(methyl methacrylate):1. Preparation and thermal properties of blends of poly(methyl methacrylate) with multiple-layer toughening particles [J], Polymer,1993,34(1):61-69.
    2. Lovell P A, Sherratt M N, Young R J "Mechanical Properties and Deformation Micromechanics of Rubber-Toughened Acrylic Polymer,"in Toughened Plastics II:Novel Approaches in Science and Engineering, Riew C K, and Kinloch A J. (eds.) [M], WashingtonD C:ACS Advances in Chemistry Series, American Chemical Society,1996, CH.15,211-232.
    3. Bucknall C B, Partridge, I K, Ward M V. Rubber toughening of plastics [J], J Mat Sci 1984, 19(6),2064-2072.
    4. Rohm and Haas Company,1973, BP 1340025.
    5. Song J Y, Kim J W, Sun K D. Poly(methyl methacrylate) toughening with refractive index-controlled core-shell composite particles[J], J Appli Polym Sci 1999,71(10): 1607-1614.
    6. Sue H Y. Craze-like damage in a core-shell rubber-modified epoxy system [J], J Mater Sci 1992,27(11):3098-3107.
    7. Bubeck R A, Buckley D J, Kramer E J, Brown H R. Modes of deformation in rubber-modified thermoplastics during tensile impact [J], J Mater Sci 1991,26(23): 6249-6259.
    8. Gehant S, Schirrer R. Multiple light scattering and cavitation in two phase tough polymers [J], J Polym Sci Part B:Polym Phys,1999,37(2):113-126.
    9. Laure Lalande, Christopher J G, Plummer J E, Mason P G. The influence of matrix modification on fracture mechanisms in rubber toughened polymethylmethacrylate [J], Polymer,2006,47(7),2389-2401
    10. Lovell P A, Ryan A J, Sherratt M N, Young R J. Rubber-Toughened Acrylic Polymers. II. Deformation Micromechanics Of Compression-Molded Materials [J], American Chemical Society Division of Polymeric Materials:Science and Engineering,1994,70: 155-156.
    11. Wrotecki C, Heim P, Gaillard P. Rubber toughening of poly(methyl methacrylate). Part I: Effect of the size and hard layer composition of the rubber particles [J], Polym Eng Sci 1991,31(4):213-217.
    12. Frank O, Lehmann J. Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min [J], Colloid Polym Sci,1986,264(6):473481.
    13. Chaobin H, Athene M D, Michael F B. In-Situ Deformation Studies of Rubber Toughened Poly(methyl methacrylate):Influence of Rubber Particle Concentration and Rubber Cross-Linking Density [J], Macromolecules,1998,31(1):158-164.
    14. Hyun J H, Young J P, Jeong H A, Jung H K. Effect of interfacial chain structure on toughening behaviour in rubber modified poly(methyl methacrylate) [J], Polymer International,1997,44(4):490.
    15. Kilwon C, Jae H Y, Chan E P. The effect of rubber particle size on toughening behaviour of rubber-modified poly(methyl methacrylate) with different test methods [J], Polymer, 1998,39(14),3073-3081.
    16. Plummer C J G, Beguelin P, Kcusch H H. On the influence of particle morphology on microdeformation in rubber modified poly(methyl methacrylate) [J], Polymer 1996,37(1): 7-10.
    17. Kilwon C, Jae H Y, Chan E P. The effect of interfacial adhesion on toughening behaviour of rubber modified poly(methyl methacrylate) [J], Polymer 1997,38(20):5161-5167.
    18. Lazzeri A, Bucknall C B. Dilatational bands in rubber-toughened polymers [J], J Mat Sci 1993,28(24):6799-6808.
    19. Bucknall C B, Karpodinis A, Zhang X C. A model for particle cavitation in rubber-toughened plastics [J], J Mat Sci 1994,29(13):3377-3383.
    20. Fond C. Cavitation criterion for rubber materials:A review of void-growth models [J], J Polym Sci Part B:Polym Phys 2001,39(17):2081-2096.
    21. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles:2. Rubber cavitation behaviour in poly(vinyl chloride)/methyl methacrylate-butadiene-styrene graft copolymer blends [J], Polymer 1994,35(22),4750-4759.
    22. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles:3. Impact mechanical behaviour of poly(rmvinyl chloride)/methyl methacrylate-butadiene-styrene graft copolymer blends [J], Polymer 1994,35(22):4760-4765.
    23. Lazzeri A, Bucknall C B. Applications of a dilatational yielding model to rubber-toughened polymers [J], Polymer,1995,36(15):2895-2902.
    24. Bucknall C. B, Ayre D S, Dijkstra D J. Detection of rubber particle cavitation in toughened plastics using thermal contraction tests [J], Polymer,2000,41(15):5937-5947.
    25. Fond C, Gehant S, Schirrer R. Effects of mechanical interactions on the hydrostatic stress in randomly distributed rubber particles in an amorphous polymer matrix [J], Polymer, 2002,43(3):909-919.
    26. Dompas D, Groeninckx G. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles:1. A criterion for internal rubber cavitation [J], Polymer 1994,35(22),4743-4749.
    27. Milios J, Papanicolau F C, Young R J. The Effect Of Loading Rate And Crack-Tip Blunting On Crack-Propagation In Rubber-Toughened Pmma [J], Plast. Rubber Proc. Appl. 1989,11(1):37-43.
    28. Cho K, Yang J, Park C E. The effect of rubber particle size on toughening behaviour of rubber-modified Poly(methyl methacrylate) with different test modes [J], Polymer,1998, 39(14):3073-3081.
    29. Shah N. Effect of modifier concentration on the fracture behaviour of rubber-modified PMMA [J], J. Mater. Sci.,1988,23(10):3623-3629.
    30. Williams J G. Viscoelastic And Thermal Effects On Crack Growth In Pmma [J], Internal Journal of Fracture Mechanics,1972,8(4):393-401.
    1. Paul D R, Bucknall C B. Polymer Blends Volume2:Performance [M], New York:John Willey&Sons,1999,547-549.
    2. Lee P C, Kuo W F, Chang F C. In situ compatibilization of PBT/ABS blends through reactive copolymers [J], Polymer 1994,35(26):5641-5650.
    3. Hale W, Keskkula H, Paul D R. Compatibilization of PBT/ABS blends by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers [J], Polymer,1999,40(2): 365-377.
    4. Hale W, Keskkula H, Paul D R. Effect of crosslinking reactions and order of mixing on properties of compatibilized PBT/ABS blends [J], Polymer,1999,40(13),3665-3676.
    5. Hale W, Keskkula H, Paul D R. Effect of compatibilization and ABS type on properties of PBT/ABS blends [J], Polymer,1999,40(15):4237-4250.
    6. Hale W, Keskkula H, Paul D R. Effect of PBT melt viscosity on the morphology and mechanical properties of compatibilized and uncompatibilized blends with ABS [J], Polymer,1999,40(13):3621-3629.
    7. Hale W, Keskkula H, Paul D R. Fracture behavior of PBT/ABS blends compatibilized by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers [J], Polymer,1999, 40(12):3353-3365.
    8. Aoki Y. Dynamic viscoelastic properties of ABS polymer in the molten state.5. Effect of grafting degree [J], Macromolecules,1987,20(9):2208-2213.
    9. Hasegawa R, Aoki Y, Doi M. Optimum Graft Density for Dispersing Particles in Polymer Melts [J], Macromolecules,1996,29(20):6656-6662.
    10. Bertin M P, Marin G, Monfort J P. Viscoelastic properties of acrylonitrile-butadiene-styrene (ABS) polymers in the molten state [J], Polym Eng Sci, 1995,35(17):1394-1406.
    11. Choi J H, Ahn K H, Kim S Y. Effect of the degree of graft on the tensile and dynamic behavior of high impact polystyrene [J], Polymer,2000,41(14):5229-5236.
    12. Memon N A. Rheological properties and interface in polycarbonate/impact modifier blends:effect of modifier shell molecular weight [J], Journal of Polymer Science:Part B: Polymer Physics,1998,36(7):1095-1105
    13. Segall I, Dimonie V L, El-aasser M S, Soskey P R, Mylonakis S G. Core-shell structured latex particles. Ⅲ.Structure-properties relationship in toughening of polycarbonate with poly(n-butyl acrylate)/poly(benzyl methacrylate-styrene) structured latex particles [J], J Appl Polym Sci,1995,58(2):419-425.
    14. Kilwon C, Jae H Y, Chan E P. The effect of rubber particle size on toughening behaviour of rubber-modified poly(methyl methacrylate) with different test methods [J], Polymer, 1998,39(14):3073-3081.
    15. Kilwon C, Jae H Y, Chan E P. The effect of interfacial adhesion on toughening behaviour of rubber modified poly(methyl methacrylate) [J], Polymer,1997,38(20):5161-5167.
    1. Steenbrink A C, Litvinov V M, Gaymans R J. Toughening of SAN with acrylic core-shell rubber particles:particle size effect or cross-link density [J], Polymer,1998,39(20): 4817-4825.
    2. Parker D S, Sue H J, Huang J, Yee F. Toughening mechanisms in core-shell rubber modified polycarbonate [J], Polymer,1990,31(12):2267-2277.
    3. Kalfoglou N K, Skafidas D S, Kallitsis J K. Blends of Poly(ethylene terephthalate) with unmodified and maleic anhydride grafted acrylonitrile-butadiene-styrene terpolymer [J], Polymer,1996,37(15):3387-3385.
    4. Hage E, Hale W, Keskkula H, Paul D R. Impact modification of poly(butylene terephthalate) by ABS materials [J], Polymer,1997,38(13):3237-3250.
    5. Lu M, Keskkula H, Paul D R. Reactive coupling of core-shell impact modifiers to polyamide matrices using styrene-maleic anhydride copolymers [J], Polymer,1993,34(9): 1874-1885.
    6. Kim B K, Lee Y M, Jeong H M. Physical properties of ABS/SMA/nylon-6 ternary blends: effect of blending sequence [J], Polymer,1993,34(10):2075-2080.
    7. Majumdar B, Keskkular H, Paul D R. Mechanical properties and morphology of nylon-6/acrylonitrile-butadiene-styrene blends compatibilized with imidized acrylic polymers [J], Polymer,1994,35(25):5453-5467.
    8. Utracki L A. Polymer Blends Handbook [M], Netherlands:Kluwer Academic Publishers, 2003, PP.1056-1058.
    9. Bertin M P, Marin G, Monfort J P. Viscoelastic properties of acrylonitrile-butadiene-styrene (ABS) polymers in the molten state [J], Polym.Eng. Sci., 1995,35(17):1394-1406.
    10. Lu M, Paul D R. Thermodynamics of solubilization of functional copolymers in the grafted shell of core-shell impact modifiers:1. Theory [J], Polymer,1996,37(1): 115-124.
    11. Vazquez F, Schneider M, Pith T, Lambla M. Effect of the composition of structured rubber particles on the toughness of poly(methylmethacrylate) [J], Polym Int,1996,41(1): 1-12.
    12. He C, Donald A M, Butler F. In-Situ Deformation Studies of Rubber Toughened Poly(methyl methacrylate):Influence of Rubber Particle Concentration and Rubber Cross-Linking Density [J], Macromolecules,1998,31(1):158-164.
    13.黄立本,张立基,赵旭涛.ABS树脂及其应用[M],北京:化学工业出版社2001161-173.
    14. Paul D R, Bucknall C B. Polymer Blends Volume2:Performance [M], New York:John Willey&Sons,1999,301-331.
    15. Dunkelberger D L, Dougherty E P. Effect of morphology and refractive index on toughness and clarity balance of MBS modified vinyl bottles [J], J.Vinyl. Technol.1990, 12,212-216.
    16.周超,核壳结构改性剂增韧聚氯乙烯的机理及性能优化(D),中国科学院长春应用化学研究所,2006.
    17.刘兰珍等,金顺子,张宪旺,朱善农.苯乙烯/甲基丙烯酸甲酯共聚物组分的测定[J],分析化学,1982,10(6)371-373.
    18. Albert R, Malone W M. Applications of refractive-index to polymer characterization [J], J Macromol Sci chem,1972, A6(2):347-352.
    19. Argon A S, Cohen R E. Toughenability of polymers [J], Polymer,44(19):6013-6032.
    20.彭静,乔金梁,魏根拴.橡胶增韧塑料机理,高分子通报[J],2001,5,1 3-24.
    21. Meeten G H. Optical Properties of Polymers [M], London:Elsevier Applied Science Publishers,1986,277-288.
    22. Conaghan B F, Rosen S L. The optical properties of two-phase systems:single scattering in monodisperse, non- absorbing systems [J], Polym Eng Sci,1972,12(2):134-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700