纳米CeO_2制备及其对聚合物改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次通过Ce(NO3)3·6H2O和三乙醇胺(TEA)反应合成Ce-TEA配合物晶体,以此配合物作为制备纳米CeO2粒子的前驱体,进一步水解制备纳米CeO2粒子。
     研究表明,Ce-TEA配合物的化学式为[Ce((C2H5O)3N)(H2O)]NO3,其中Ce主要以+4价形式存在,即原料反应生成配合物期间Ce(III)被氧化成了Ce(Ⅳ)。配合物的形成使Ce(Ⅳ)离子在水溶液中的水解速率明显下降;当控制反应温度为25℃、TEA/Ce(NO3)3摩尔比为8:1、前驱体溶液浓度为0.067mol·L-1时,配合物均匀沉淀生成水合CeO2,将沉淀于室温下(25℃)在水介质中进一步老化,获得结晶度较高的纳米CeO2粒子。借助XRD, HRTEM和SAED分析表明,得到的纳米Ce02粒子具有完整的立方晶型结构,平均粒径为5-6nm,近似球形,团聚程度小,粒径分布窄,单分散性好。XPS分析表明,CeO2晶格中铈主要以Ce4+形式存在。
     研究表明,水介质中室温下沉淀老化工艺可替代常规高温焙烧过程,CeO2沉淀可进一步脱水、晶化,获得高结晶度的纳米CeO2粒子。
     三乙醇胺均匀沉淀法、氨水沉淀法和六次甲基四胺均匀沉淀法比较发现,三者制备的纳米CeO2粒子粒径相差不大,但三乙醇胺均匀水解法制备的纳米CeO2粒子单分散性要优于其它两种方法。研究发现,Ce(IV)-TEA配合物均匀水解法是一种制备单分散纳米Ce02晶体粒子的有效方法。
     课题还进一步研究了稀土元素钇(Y)对纳米Ce02粒子改性效果及水解释放的三乙醇胺对Ce02粒子表面原位有机化改性效果。研究表明,室温下通过Ce-Y-TEA配合物的均匀沉淀,可制备Cel-xYx02-x/2(X≤0.4)纳米水分散液。增加Y元素的含量可以提高Y掺杂Ce02纳米分散液的稳定性、抗紫外光能力和可见光区的透明度;当Y元素含量达到40m01%时,可以形成稳定的溶胶,溶胶粒子为晶体粒子,其平均粒径为4-5nm,且粒度分布狭窄,Y元素已完全进入Ce02晶格;该溶胶具有优异的紫外吸收性能,在可见光区有很高的透明度,其在高分子树脂清漆、护肤化妆品和其它光学涂层等透明性要求高的工业和民用领域有潜在的应用价值。
     研究进一步表明,当控制三乙醇胺含量不过量,由单-Ce(IV)-TEA配合物直接水解也能获得粒径为5~6nm的纳米Ce02粒子,并且当水解温度在50~70℃时,随着Ce02粒子的生成,前驱体中水解释放的三乙醇胺分子在Ce02粒子表面产生化学吸附,其吸附量达3.0wt%左右,使粒子的亲油性明显提高,可实现Ce02粒子的原位表面有机化改性。
     为了进一步提高纳米粒子分散性,我们还在制备纳米粒子的水解液中加入甲基丙烯酸甲酯(MMA)和苯乙烯(St)两种高分子单体,前驱体水解完成后在同一反应液中引发单体聚合,制备粒子包埋于聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)基质中的“纳米Ce02/PMMA"和“纳米Ce02/PS”有机-无机复合材料(粉末)
     研究发现,生成的纳米CeO2晶体粒子在PMMA和PS基体中分散比较均匀,PMMA的热稳定性和玻璃化温度均得到提高,说明纳米粒子与聚合物分子间发生了相互作用。研究表明,纳米CeO2可以提高PMMA的紫外吸收性能和拉伸强度。同样,采用20mol%Y元素掺杂的纳米CeO2可以显著提高“纳米CeO2/PMMA"复合材料的可见光透过率
     本课题研究制备的“纳米CeO2/PMMA"和“纳米CeO2/PS"有机-无机复合材料在涂层材料、膜材料及其它光学材料中具有良好的潜在应用价值。
A novel cerium-triethanolamine(TEA) complex crystal was obtained through the reaction of cerium(III) nitrate and triethanolamine. It was used as the precursor to synthesize CeO2nanoparticles, i.e., it hydrolysized homogeneously to produce CeO2nanoparticles.
     The molecular formula of the cerium-TEA complex was deduced to be [Ce((C2H5O)3N)(H2O)]NO3, wherein tetravalent cerium was predominante, i.e., spontaneous oxidation of cerium(III) to cerium(IV) by oxygen took place in the synthesis process of the complex. Hydrolysis of cerium(IV) cation was slown down substantially by the coordination, which facilitated the generation of a hydrated CeO2precipitate under such optimizated condition as hydrolysis temperature of25℃, concentration of0.067mol-L-1for the precursor solution and TEA/Ce(NO3)3molar ratio of8. The hydrated CeO2precipitate can be transformed finally to CeO2nanoparticles with higher crystallinity via being aged further in water at room temperature. The obtained particles showed uniform size distribution with an mean particle size of5-6nm, which was observed by transmission electron microscopy (TEM). X-ray diffraction (XRD) as well as high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) gave evidence that all of the as-synthesized nanoparticles were well crystalline in the cubic fluorite structure. X-ray photoelectron spectroscopy(XPS) demonstrated that cerium in CeO2was tetravalent.
     According to the results, the age process in aqueous media can substitute for the calcination at high temperature for the further dehydration and crystallization of the hydrated CeO2precipitate.
     CeO2nanoparticle prepared in this study showed near identical size with those prepared by the precipitation method using hexamethylenetetramine and ammonia, but its monodispersion was more excellent. The results indicated that the homogeneous precipitation method using Ce-TEA complex is an effective method to prepare monodispersed CeO2nanoparticles.
     In this study, property-modification effect of CeO2nanoparticles by the element yttrium(Y) and organic modification effect of the particles by the TEA realeased from the hydrolysis were also investigated.
     The results indicated that the homogeneous precipitation method using Ce-Y-TEA complex is effective to prepare Ce1-xYxO2-x/2(x≤0.4) nanoparticle aqueous dispersion. The as-synthesized nanoparticles were well crystalline. Yttrium was dopped into CeO2lattice and the dispersion stability, UV shielding ability and high transparency in visible light region were improved with the increase of yttrium content. When x=0.4, a sol was achieved and it showed an mean particle size of4-5nm and possessed excellent UV shielding ability and high transparency in visible light region. The obtained sol had potential applications in industrial or civil fields with high transparency being required such as acrylic varnishes, personal care products and other optical coatings.
     The results further indicated that under no excess TEA, the Ce-TEA complex can also hydrolysis directly to generate CeO2with particle size of5-6nm. Moreover, along with the hydrolysis at50~70℃, chemical adsorption onto the nanoparticles for the TEA released from the precursor would occurr, and the adsorption capacity was about3.0wt%, which improved greatly the lipophilicity of CeO2nanoparticles and can fulfill in situ organic surface-modification of the nanoparticles.
     In order to further enhance the dispersion stability and inhibit the aggregate, the monomer such as methylmethacrylate(MMA) and styrene(St) were introduced into the feed aqueous solution for hydrolysis respectively. The polymerization of the monomer was initiated after the hydrolysis in one pot, and a nano-CeO2/PMMA as well as nano-CeO2/PS organic-inorganic composite were achieved respectively.
     The results showed that CeO2nanoparticles were embedded into the polymethylmethacrylate (PMMA) and polystyrene(PS) matrix of the composite and dispersed homogeneously. For the obtained composite, The thermal stability and the glass transition temperature of PMMA were enhanced, which indicated the formation of the bond between the nanoparticles and the polymer chains. Moreover, under some range of the weight content, CeO2nanoparticles can improve the UV absorption ability and tensile strengh of the PMMA. Meantime, the dopping of20mol%yttrium can improve greatly the transparency in visible light region of the CeO2/PMMA composite.
     The prepared nano-CeO2/PMMA and nano-CeO2/PS organic-inorganic composite powders in this study had potential applications in film, coating materials and other optical materials.
引文
[1]王素娜,江国庆,白俊峰等.无机分子纳米材料的研究进展[J].无机化学学报,2005,21(1):1-11.
    [2]严东生.纳米材料的合成与制备[J].无机材料学报,1995,10(1):1-6.
    [3]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.6.
    [4]张立德.我国纳米材料技术应用的现状和产业化机遇[J].材料导报,2001,15(7):2-5.
    [5]Hoshino T, Kurata Y, TerasakiY, et al. Mechanism of polishing of SiO2 films by CeO2 particles[J]. J. Non-Cryst. Solids,2001,283(1):129-136.
    [6]Trovarelli A, Leitenburg C, Boaro M, et al. The utilization of ceria in industrial catalysis[J]. Catal. Today,1999,50(2):353-367.
    [7]Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based in the three-way catalysis[J]. Catal. Today,1999,50(2):285-298.
    [8]Liu X, Chen S, Wang X. Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders[J]. J. Lumin.,2007,127(2):650-654.
    [9]Ji Y, Liu J, He T, et al. The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte[J]. J. Alloys Compd.,2005,389(1-2):317-322.
    [10]Izu N, Shin W, Matsubara I, et al. Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method[J]. Sens. Actuators, B,2006,113(1):207-213.
    [11]Teresa H, Piedad M. Effect of the phosphorous/cerium ratio in the properties of sintered Ce-monazite[J]. J. Alloy. Compd.,2008,466(1-2):568-575.
    [12]Sato T, Katakura T, Yin S, et al. Synthesis and UV-shielding properties of calcia-doped ceria nanoparticles coated with amorphous silica[J]. Solid State Ionics,2004,172(1-4):377-382.
    [13]裘丙毅.化妆品化学与工艺技术大全[M].北京:化学出版社,1999.21.
    [14]赵亚洲.纳米二氧化铈对PP抗辐射改性研究.硕士学位论文,北京服装学院,2008.
    [15]刘桂霞,孙多先,洪广言.阳离子聚氨酯/CeO2纳米复合材料的制备[J].应用化学,2003,20(3):266-268.
    [16]郭涛,王炼石,周奕雨.过渡金属化合物对P(SBP/N330)硫化胶的增强作用[J].华南理工大学学报,2003,31(2):91-95.
    [17]董相廷,孙晶,刘桂霞等.纳米CeO2/PMMA杂化材料的制备与表征[J].化学学报,2003,61(1):122-125.
    [18]彭华湘,朱美芳,陈彦模等.PP/纳米Ce02复合纤维的制备及性能研究[J].合成纤维工业,2005,28(3):1-3.
    [19]Shang Z, Lu C, Lu X, et al. Studies on syntheses and properties of novel CeO2/polyimide nanocomposite films from Ce(Phen)3 complex[J]. Polymer,2007,48(14):4041-4046.
    [20]王增林,孙万明,唐功本.添加稀土氧化物对聚丙烯热稳定性的影响[J].稀土,1994,15(2):13-17.
    [21]钱捷吕亚萍钟明强.稀土氧化物和硫酸盐对聚氯乙烯热稳定作用的研究[J].中国塑料,1999,13(1):85-89.
    [22]邓庆仪,喻淼,黄少慧.稀士化合物对聚丙烯结晶形态与热稳定性的影响[J].中山大学学报(自然科学版),1999,38(5):121-123.
    [23]汪联辉,章文贡.掺钕聚苯乙烯(Nd/PS)及其性质研究[J].功能材料1993,24(3):238--241.
    [24]Bian L J, Qian X F, Yin J. Preparation and properties of rare earth oxide/polyimide hybrids[J]. Polymer Testing,2002,21(7):841-845.
    [25]曲桂杰,唐功本,杨玉华.浇铸尼龙-6的结晶与熔融[J].应用化学,1995,12(2):76-79.
    [26]田茂忠,魏月贞,张志谦.稀土对环氧树脂热稳定性影响的研究[J].材料科学与工艺,1996,4(4):68-71.
    [27]张明,李幼荣,邱关明.稀土复合弹性材料的抗热氧化作用[J].中国稀土学报,2000,18(4):317-321.
    [28]彭亚岚,张霞,苏正涛等.纳米氧化铈的制备及其对硅橡胶耐热性能的影响[J].橡胶工业,2005,52(9):540-541.
    [29]席宝信,王梅,邢强等.聚苯乙烯/纳米二氧化铈复合材料的制备与表征[J].工程塑料应用,2005,33(3):57-60.
    [30]席宝信,邢强,王益亨等.聚苯乙烯/CeO2纳米复合微球的粒径及其影响因素[J].化工新型材料,2005,33(7):29-31.
    [31]Galembeck A, Alves O L. Planar heterostructures oxide/conducting polymer (CuO/polypyrrole and Ce02/polypyrrole) [J]. Synth. Met.,1999,102(1-3):1238-1239.
    [32]Vijayakumar G, Karthick S N, Priya A R S, et al. Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries[J]. J. Solid State Electrochem.,2008,12 (9):1435-1441.
    [33]Liu F, He Y, Huh J S. Study on the synthesis and characterization of PANi/nano-CeO2 composites[J]. Diffusion and Defect Data. Part B:Solid State Data, Solid State Phenomena, 2007, (124-126)(1):287-290.
    [34]Chuang F Y, Yang S M. Cerium dioxide/polyaniline core-shell nanocomposites[J]. J. Colloid Interface Sci.,2008,320(1):194-201.
    [35]Sabitha G, Reddy K B, Yadav J S. et al. Ceria/vinylpyridine polymer nanocomposite:an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones[J]. Tetrahedron Lett.,2005,46 (47) 8221-8224.
    [36]Djuricic B, Pickering S. Nanostructured cerium oxide:preparation and properties of weakly-agglomerated powders[J]. J. Eur. Ceram. Soc.,1999,19(11):1925-1934.
    [37]Kirk T J, Winnick J. A hydrogen sulfide solid-oxide fuel cell using ceria-based electrolytes [J]. J. Elecdtrochem. Soc.,1993,140(12):3494-3496.
    [38]董相廷,李铭,张伟等.沉淀法制备CeO2纳米晶与表征[[J].中国稀土学报,2001,19(1):24-26
    [39]Zhou X D, Huebner W, Anderson H U. Processing of nanometer-scale CeO2 particles[J]. Chem. Mater.,2003,15(2):378-382.
    [40]Yin L, Wang Y, Pang G, et al. Sonochemical Synthesis of Cerium Oxide Nanoparticles Effect of Additives and Quantum Size Effect [J]. J. Colloid Interface Sci.,2002,246(1):78-84.
    [41]韩业斌,梅燕,聂祚仁.沉淀法制备纳米CeO2粒子的化学原理及影响因素研究[J].材料导报,2006,20(专辑Ⅵ):156-158.
    [42]Tsai M S. Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance[J]. Mater. Sci. Eng., B,2004,110(2):132-134.
    [43]李霞章,陈杨,陈志刚等.纳米CeO2颗粒的制备及其化学机械抛光性能研究[J].摩擦学学报,2007,27(1):1-5.
    [44]嘎日迪,李霞,丽丽等.酒石酸络盐均相沉淀法制备CeO2纳米晶的研究[J].光谱学与光谱分析,2006,26(9):1746-1748.
    [45]Chu X, Chung W, Schmidt L D. Sintering of sol-gel prepared submicrometer particles studied by transmission electron microscopy[J]. J. Am Ceram. Soc.,1993,76(8):2115-2118.
    [46]Chen P L, Chen 1 W. Reactive cerium (IV) oxide powders by the homogeneous precipitation method[J]. J. Am. Ceram. Soc.,1993,76(6):1577-1583.
    [47]Polezhaeva O S, Yaroshinskaya N V, Ivanov V K. Formation mechanism of nanocrystalline ceria in aqueous solutions of cerium(III) nitrate and hexamethylenetetramine[J]. Inorg. Mater., 2008,44(1):51-57.
    [48]Deshpande A S, Pinna N, Beato P, et al. Synthesis and characterization of stable and crystalline Ce1-xZrxO2 nanoparticle sols[J]. Chem. Mater.,2004,16(13):2599-2604.
    [49]孙晶,董相廷,李昌立等.CeO2纳米粒子的油酸包覆研究[J].长春光学精密机械学院学报,2001,24(4):23-26.
    [50]Chen H I, Chang H Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,242(1-3):61-69.
    [51]Yao S Y, Xie Z H. Deagglomeration treatment in the synthesis of doped-ceria nanoparticles via coprecipitation route[J]. J. Mater. Proc. Techn.,2007,186(1-3):54-59.
    [52]Bae D S, Lim B, Kim B I, et al. Synthesis and characterization of ultrafine CeO2 particles by glycothermal process [J]. Mater. Letter.,2002,56(4):610-613.
    [53]Yamashita K, Ramanujachary K V, Greenblatt M. Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics[J]. Solid State Ionics,1995,81(1-2):53-60.
    [54]Piticescu R R, Monty C, Taloi D, et al. Hydrothermal synthesis of zirconia nanomaterials[J]. J. Eur. Ceram. Soc.,2001,21(10):2057-2060.
    [55]Zhang Y, Hu Q, Fang Z, et al. Self-assemblage of single/multiwall hollow CeO2 microspheres through hydrothermal method [J]. Chem. Lett.,2006,35(8):944-945.
    [56]Vantomme A, Yuan Z Y, Du G, et al. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods[J]. Langmuir,2005,21(3):1132-1135.
    [57]Zhou F, Zhao X, Xu H, et al. CeO2 spherical crystallites:synthesis, formation mechanism, size con trol, and electrochemical property study [J]. J. Phys. Chem., C,2007,111 (4):1651.
    [58]Tok A I Y, Du S W, Boey F Y C. et al. Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles[J]. Mater. Sci. Eng., A.2007.466(1-2):223-229.
    [59]Mai H X, Sun L D, Zhang Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J. Phys. Chem., B,2005,109(51): 24380-24385.
    [60]候文华,徐林,邱金恒等.采用不同的方法制备CeO2超细粒子Ⅰ:-溶胶-凝胶法[J].南京大学学报,1999,35(4):486-490.
    [61]陈汝芬.纳米Ce02的制备方法及应用研究进展[J].微纳电子技术,2005,42(8):356-360.
    [62]董相廷,麦世坚,张伟等.硬脂酸凝胶法制备CeO2纳米粉体[J].材料科学与工程,2001,19(1):99-101.
    [63]张鹏珍,雷红,张剑平等.纳米氧化铈的制备及其抛光性能的研究[J].光学技术,2006,32(5):682-684.
    [64]Quinelato A L, Leite E R, Bernardi M I B, et al. Synthesis and sintering of ZrO2-CeO2 powder by use of polymeric precursor based on Pechini process[J]. J. Mater. Sci.,2001,36(15): 3825-3830.
    [65]Yamamoto S, Kakihana M, Kato S. A polymer complex solution route to the low-temperature synthesis of tetragonal Zro.88Ceo.12O2 with a reduced amount of organic substance[J]. J. Alloys Compd.,2000,297(1-2):81-85.
    [66]Brittain H G, Gradeff P S. Synthesis and characterization of organosoluble cerium dioxide[J]. J. Less. Common Metals,1983,94(2):277-283.
    [67]Rocha R A, Muccillo E N S. Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique[J]. Mater. Res. Bull., 2003,38(15):1979-1986.
    [68]潘湛昌,肖楚民,张环华等.液相法制备纳米二氧化铈的方法比较[C].中国有色金属学会第五届学术年会论文集,2003,8:178-180.
    [69]李秀珍,潘湛昌,肖楚民等.纳米二氧化铈的制备方法研究[J].化工装备技术,2002,23(6):20-22.
    [70]张鹿,郑峰.喷雾热分解法制备纳米CeO2粉末的研究进展[J].粉末冶金材料科学与工程,2009,14(6):365-372.
    [71]Feng X, Sayle D C, Paras M S, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres[J]. science,2006.312(5779):1504-1508.
    [72]Madler L. Stark W J, Pratsinisa S E. Flame-made ceria nanoparticles[J]. J. Mater. Res.,2002, 17(6):1356-1362.
    [73]Xia B, Lenggoro I W, Okuyama K. Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition[J]. Adv. Mater.,2001,13(20):1579-1582.
    [74]Chen C Y, Tseng T K, Tsay C Y, et al. Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis[J]. J. Mater. Eng. Perform.,2008,17(1): 20-24.
    [75]Chen C Y, Tseng T K, Tsai S C, et al. Effect of precursor characteristics on zirconica and ceria particle morphology in spray pyrolysis[J]. Ceram. Int.,2008,34(2):409-416.
    [76]Suzuki M, Kagawa M, Syono Y, et al. Synthesis of ultrafine single-component oxide particles by the spray-ICP technique[J]. J. Mater. Sci.,1992,27(3):679-684.
    [77]徐华蕊,高玮,何斌等.用喷雾反应法制备实心球形氧化铈超细粉末[J].稀土,1999,20(6): 29-31.
    [78]Mei Y, Han Y, Li Y, et al. Measurement of microemulsion zone and preparation of monodispersed cerium oxide nanoparticles by W/O microemulsion method[J]. Mater. Lett., 2006,60(25-26):3068-3072.
    [79]朱文庆,许磊,马瑾等.粒径可控纳米CeO2的微乳液法合成[J].物理化学学报,2010,26(5):1284-1290
    [80]贺拥军,杨伯伦.微乳液和均匀沉淀耦合法制备Ce02纳米粒子[J].化学通报,2003,2:120-124.
    [81]Philips R J, Switer J A. Electrochemical synthesis and sintering of nanocrystalline cerium oxide Powders[J]. J. Am. Ceram. Soc.,1995,78(4):981-985.
    [82]Lu X, Huang X, Xie S, et al. Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties[J]. Langmuir,2010,26(10):7569-7573.
    [83]林良盛,潘湛昌,戴子林.钛基复合涂层阳极电化学法制备二氧化铈超细粉体[J].矿冶工程,2005,25(8):63-65.
    [84]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,14(2),12-15.
    [85]Taguchi M, Takami S, Naka T, et al. Growth mechanism and surface chemical characteristic of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water:Tailor-made water-soluble CeO2 nanocrystals[J]. Cryst. Growth Des.,2009,9(12):5297-5303.
    [86]Gonzalez J, Albano C, Ichazo M, et al. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3[J]. Eur. Polym. J., 2002,38(12):2465-2475.
    [87]Albano C. Mechanical and morphological behavior of polyolefin blends in the presence of CaCO3[J]. Compos. Struct.,2000,48(1-3):49-58.
    [88]Gonzalez J, Albano C, Ichazo M. Analysis of thermogravimetric data of blends of polyolefins with calcium carbonate treated with Lica 12 [J]. Polym. Degrad. Stab.,2001,73(2):211-224.
    [89]董相廷,刘桂霞,孙晶等.透明纳米CeO2的合成与表征[J].中国稀土学报,2002,20(2):123-125
    [90]席宝信,邢强,王益亨等.硬脂酸对CeO2纳米粒子的表面修饰研究[J].化工新型材料,2005,33(2):8-11.
    [91]Arita T, Ueda Y, Minami K, et al. Dispersion of fatty acid surface modified ceria nanocrystals in various organic solvents[J]. Ind. Eng. Chem. Res.,2010,49(4):1947-1952.
    [92]Arita T, Yoo J, Adschiri T. Relation between the solution-state behavior of self-assembled monolayers on nanoparticles and dispersion of nanoparticles in organic solvents[J]. J. Phy. Chem., C,2011,115(10):3899-3909.
    [93]周扬波,古菊,贾德民.纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品,2004,25(3):54-58.
    [94]李晓昆,向兰,向英等.纳米碳酸钙湿式复合改性工艺探索[J].材料科学与工程,2002,20(3):267-370.
    [95]Ji G, Fang J. Grafting onto the surface of plasma-modified fillers[J]. Appl. Surf. Sci.,1991, 81(1):63-68.
    [96]Gu H, Soucek M D. Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents[J]. Chem. Mater.,2007,19(5):1103-1110.
    [97]李晓晔,王文一.聚合物/无机纳米粒子复合材料的研究进展[J].中国粉体工业,2006,2:9-13.
    [98]Masui T, Machida K, Sakata T, et al. Preparation and characterization of cerium oxide ultrafine particles dispersed in polymer thin films[J]. J. Alloys Compd.,1997,256:97-101.
    [99]Rangari V K, Srivastava D N. Gedanken A. Preparation of ceria nanoparticles embedded in PMMA using sonochemical technique[J]. Mater. Lett.,2006,60(29-30):3766-3768.
    [100]董相廷,张丽,张伟等.纳米Ce02/聚苯乙烯杂化材料的制备与表征[J].物理化学学报,2001,17(8):739-742.
    [101]Sivudu K S, Shailaja D. One-step synthesis and characterization of poly(4vp-co-dvb)/ceria nanocomposite by simultaneous polymerization-oxidation approach[J]. Mater. Lett.,2007, 61(11-12):2167-2169.
    [102]Partch R, Gangolli S G, Matijevic E, et al. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxides particles[J]. J. Colloid Interface Sci.,1991,144(1):27-35.
    [103]Pati R K, Pramanik P. Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder[J]. J. Am. Ceram. Soc.,2000,83(7):1822-1824.
    [104]Das R N, Pathak A, Pramanik P. Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lanthanum zirconate titanate powders using triethanolamine[J]. J. Am. Ceram. Soc.,1998,81(12):3357-3360.
    [105]Liu Y, Gao L. Low-temperature synthesis of nanocrystalline yttrium aluminum garnet powder using triethanolamine[J]. J. Am. Ceram. Soc.,2003,86(10):1651-1653.
    [106]Ray J C, Pati R K, Pramanik P. Chemical synthesis of nanocrystalline zirconia by a novel polymer matrix-based precursor solution method using triethanolamine[J]. Mater. Lett.,2001, 48(2):74-80.
    [107]Pati R K, Lee I C, Gaskell K J, et al. Precipitation of nanocrystalline CeO2 using triethanolamine[J]. Langmuir,2009,25(1):67-70.
    [108]Srinivasan S K, Ganguly S. FT-IR spectroscopic studies of metal nitrates supported on a modified montmorillonite clay[J]. Catal. Lett.,1991,10 (3-4):279-288.
    [109]方晓明.TiCl4液相水解制备纳米TiO2粉体的研究.博士学位论文,华南理工大学,2002.
    [110]周英彦,高首山,李红霞.关于成核速率公式的研究[J].中国粉体技术,2000,6(增刊):287-294.
    [111]贾志谦,刘忠洲.液相沉淀法制备纳米粒子的过程特征和原理[J].化学工程,2002,30(1):38-41.
    [112]田玉明,黄平,冷叔炎等.沉淀法的研究及其应用现状[J].材料导报,2000,14(2):47-48.
    [113]高玮,古宏晨,胡英.面向21世纪的化工沉淀技术[J].化学工业与工程技术,2000,21(1):1-4.
    [114]李懋强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报,1994,22(1):85-90.
    [115]Lamer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. J. Am. Chem. Soc.,1950,72(11):4847-4854.
    [116]Morshed A H, Moussa M S, Bedair S M. Violet/blue emission from epitaxial cerium oxide films on silicon substrates[J]. Appl. Phys. Lett.,1997,70(13):1647-1649.
    [117]Chai C, Yang S, Liu Z, et al. The PL "violet shift" of cerium dioxide on silicon[J]. Chinese Science Bulletin,2001,46(24):2046-2048.
    [118]Mullins D R, Overbury S H, Huntley D R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces[J]. Surf. Sci.,1998,409(2):307-319.
    [119]Qiu L, Liu F, Zhao L, et al. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder[J]. Appl. Surf. Sci.,2006,252(14):4931-4935.
    [120]梅燕,闫建平,聂祚仁.焙烧条件对Ce离子价态影响的XPS研究[J].光谱学与光谱分析,2010,30(1):270-273.
    [121]韩伟,林仁存,谢兆雄等.Ce02乙苯脱氢催化剂的XRD、XPS研究[J].厦门大学学报(自然科学版),2008,47(5):701-704.
    [122]Andrews L, Citra A, Chertihin G V, et al. reactions of laser-ablated Co and Ni atoms with nitrogen atoms and molecules. Infrared spectra and DFT calculations of metal nitride molecular species and complexes[J]. J. Phys. Chem., A,1998,102(15):2561-2571.
    [123]吴刚,王迎军,陈晓峰等.193 nm激光引发PET表面的化学接枝[J].高等学校化学学报,2008,29(8):1655-1659.
    [124]Terribile D, Trovarelli A, Llorca J, et al. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route [J]. J. Catal.,1998,178(1):299-308.
    [125]郝仕油,黎胜.Ce02形态对CeO2/Au电极催化氧化乙醇的影响[J].中国稀土学报,2009,27(4):496-500.
    [126]郝仕油,吕天喜.多孔纳米Ce-M-O(M=Pr,La)粉末的微波诱导燃烧合成及其表征[J].化学学报,2008,66(10):1203-1208.
    [127]El-Toni A M, Yin S, Hayasaka Y. et al. Synthesis and UV-sheilding properties of silica-coated calcia-doped ceria nanoparticles via soft solution processes[J]. J. Electroceram.,2006,17:9-14.
    [128]Yamashiya M, Kameyama K, Yabe S. Synthesis and microstructure of calcia doped ceria as UV filters[J]. J. Mater. Sci.,2002,37(4):683-687.
    [129]Li R, Yabe S, Yamashita M, et al. Synthesis and UV-shielding properties of ZnO-and CaO-doped CeO2 via soft solution chemical process[J]. Solid State Ionics,2002,151 (1):235-241.
    [130]Yan B, Zhao W. Wet chemical synthesis of nanometer CeO2 with strong ultraviolet absorption property by in situ assembly of hybrid precursors[J]. Mater. Sci. Eng., B,2004,110 (1):23-26.
    [131]Tessier F, Chevire F, Munoz F, et al. Powder preparation and UV absorption properties of selected compositions in the CeO2-Y2O3 system[J]. J. Solid State Chem.,2008,181 (5): 1204-1212.
    [132]Li J G, Ikegami T, Wang Y, et al. Nanocrystalline Ce1-xYxO2-x/2 (0    [133]Dragoo A L, Domingues L P. Preparation of high-density ceria-yttria ceramics[J]. J. Am. Ceram. Soc.,1982,65 (5):253-259.
    [134]Aiken B, Hsu W P, Matijevic E. Preparation and properties of monodispersed colloidal particles of lanthanide compounds:III, Yttrium(Ⅲ) and mixed yttrium(Ⅲ)/cerium(Ⅲ) systems[J]. J. Am. Ceram. Soc.,1988,71 (10):845-853.
    [135]Yamashita K, Ramanujachary K V, Greenblatt M. Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics[J]. Solid State Ionics,1995, 81(1-2):53-60.
    [136]Singh P, Hegde M S. Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-δ(M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method:Structure and oxygen storage capacity[J]. J. Solid State Chem.,2008,181 (12):3248-3256.
    [137]Fu Y P. Ionic conductivity and mechanical properties of Y2O3-doped CeO2 ceramics synthesis by microwave-induced combustion[J]. Ceram. Int.,2009,35 (2):653-659.
    [138]Tadokoro S K, Porfirio T C, Muccillo R, et al. Synthesis, sintering and impedance spectroscopy of 8 mol% yttria-doped ceria solid electrolyte[J]. J. Power Sources,2004,130 (1-2):15-21.
    [139]Zha S, Fu Q, Lang Y, et al. Novel azeotropic distillation process for synthesizing nanoscale powders of yttria doped ceria electrolyte[J]. Mater. Lett..2001,47 (6) 351-355.
    [140]Greenwood R, Bergstrom L. Electroacoustic and rheological properties of aqueous ce-ZrO2 (Ce-TZP) suspensions[J]. J. Eur. Ceram. Soc,1997,17 (4):537-548.
    [141]Kim M J, Yang TY, Lee Y B, et al. Park, Stevens R. Dispersion stability of Y-TZP/Ce-TZP powder system and slip casting [J]. J. Mater. Sci.,2002,37 (8):1661-1665.
    [142]Anik M, Cansizoglu T. Dissolution kinetics of WO3 in acidic solutions[J]. J. Appl. Electrochem.,2006,36 (5):603-608.
    [143]Boskovic S B, Djurovic D R, Zec S P, et al. Doped and Co-doped CeO2:Preparation and properties[J]. Ceram. Int.,2008,34 (8):2001-2006.
    [144]Wang F, Cheng S, Chung C H, et al. Y2O3 and MgO co-doped ceria based electrolytes[J]. J. Solid State Electrochem.,2006,10(11) 879-885.
    [145]Zhang F, Jin Q, Chan S W. Ceria nanoparticles:Size, size distribution, and shape[J]. J. Appl. Phys.,2004,95 (8):4319-4326.
    [146]Goubin F, Rocquefelte X, Whangbo M H, et al. Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+(f0) Ions[J]. Chem. Mater.,2004 16(4):662-669.
    [147]Chevire F, Munoz F, Baker C F, et al. UV absorption properties of ceria-modified compositions within the fluorite-type solid solution CeO2-Y6WO12[J].J. Solid State Chem., 2006,179 (10):3184-3190.
    [148]姚超,丁永红,林西平等.纳米TiO2有机表面改性[J].无机化学学报,2005,21(5)638-642.
    [149]Jung G B, Huang T J, Hung M H, et al. Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method[J]. J. Mater. Sci.,2001,36 (24):5839-5844.
    [150]Mo Z, Sun Y, Chen H, et al. Preparation and characterization of a PMMA/Ce(OH)3, Pr2O3/graphite nanosheet composite[J]. Polymer,2005,46 (26):12670-12676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700