用户名: 密码: 验证码:
高温构件三维尺寸红外视觉测量的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光视觉测量技术是一种常用的非接触式尺寸测量方法,但是在高温、高速气流等恶劣环境下,可见光相机的成像效果会受到较大影响,并会产生光线偏折的问题。红外热成像技术以接收目标自身的热辐射并进行光电转换为基本工作原理,在解决可见光面临的上述挑战时具有较大的优势。
     以高温恶劣环境下的尺寸测量方法为主要研究目标,结合航天某院提出的某测量任务和要求,提出了高温构件三维尺寸测量的红外视觉方案,并围绕此方案的相关理论和关键技术展开研究,主要的研究内容如下:
     1.概括论述了高温恶劣环境下尺寸测量的需求和应用,总结分析了国内外高温构件尺寸测量方法的发展状况和红外热成像技术的应用研究进展,明确了研究方向和意义。
     2.从普朗克黑体辐射定律、可见光CCD的响应曲线等出发讨论了高温恶劣环境下影响视觉成像效果的因素。利用有限元方法分析了高温空气场内的温度分布,在此基础上,结合光的色散模型,选取0.38μm、0.65μm和14.0μm三个典型的波长,求解了空气场内各区域的折射率分布情况和光线在传输过程中产生的偏折程度。最后通过实验进一步验证了可见光视觉和红外视觉影像误差的大小。结果表明,构件处于约的高温状态时,在距离约1m处,可见光的影像误差约为远红外视觉的10倍。900?C
     3.从红外热像仪的理想透视模型出发,建立了高温构件三维尺寸红外视觉测量系统的数学模型。提出了两种比较容易实现的测量方案:简化的高温红外双目测量方案和基于单热像仪的测量方案。设计了红外视觉测量的总体方案,根据实际测量条件确定了方案中各硬件的型号参数。最后,搭建了高温环境和被测构件模拟系统、红外与可见光视觉成像对比实验系统、简化的高温红外视觉测量系统、基于单个热像仪的高温红外视觉测量系统以及高温红外视觉标定系统等实验平台,并进行了一些简单的验证实验。
     4.研究了高温构件红外图像非均匀性校正方法和红外图像增强方法。改进了传统BP神经网络应用于非均匀性校正时的一些不足,提高了校正的效果。此外,针对高温构件红外图像的纹理不足的特点,提出了基于方向波变换的红外图像增强方法,采用方向波变换对图像进行频域分解,建立多方向性的各向异性滤波器,提高了构件红外图像的增强效果。
     5.研究了高温红外视觉测量系统中红外热像仪内外参数的标定方法。结合红外热成像的原理,设计了一种专用的高温红外视觉测量系统的标定靶标。分析了可见光视觉测量中基于径向一致约束(Radial Alignment Constraint,RAC)的标定方法和张正友标定方法,并利用径向一致约束准则结合遗传优化算法对测量系统进行标定。结果表明,在双目热像仪前方距离约900mm处,传统标定方法的误差最大不超过0.85 mm,改进方法的误差最大不超过0.41mm,改进方法提高了系统标定的精度。
     6.研究了高温构件边缘提取、双目特征匹配和三维测量的方法。提出了一种基于脉冲耦合神经网络和空间灰度矩相结合的红外亚像素级边缘检测方法,有效地提高了检测的自适应性和精度。分析了基于极线约束关系的初始匹配方法,以及多种手段相结合的误匹配剔除方法。通过对三维离散坐标数据的处理,完成了高温构件主要三维尺寸的测量和形貌的重建。
     论文的主要创新工作包括:
     1.提出了基于红外热成像技术的高温构件三维尺寸测量方案,减小了在高温环境下光线偏折等原因对测量结果的影响。
     2.针对高温构件红外图像纹理不足的特点,提出了基于方向波变换的红外图像增强方法,获得了良好的效果。
     3.研究了一种基于径向一致约束准则与遗传优化算法相结合的红外双目视觉标定方法。获得了较高的标定精度。
     4.研究了一种脉冲耦合神经网络和空间矩相结合的高温构件亚像素级红外边缘检测方法,有效地提高了红外边缘检测的自适应性和精度。
Visible vision technology is a non-contacting method widely used in geometry size measuring, however, the visible imaging result will be greatly affected in harsh environments such as high temperature, high-speed airflow, etc. Infrared thermal imager receives the radiation of target and converted it to electrical signals through photoelectric conversion. It has many advantages in dealing with the challenge in some harsh environments compared with visible camera.
     Centering on three-dimensional size measuring methods in harsh environments of high temperature, and in combination with the task and demand from a space research institute, a novel method based on infrared vision is proposed to measure 3-D size of high-temperature components, and the related theory and key techniques in this method are researched. The main research contents are as follows:
     1. The thesis discusses the demand and application of size measuring at high temperature, and it also summarizes the comtemporary state-of-art size measuring methods of high-temperature components and the development of infrared thermal imaging application technology. The research direction and meaning are then determined.
     2. Based on the Planck blackbody radiation law and CCD’s response curve,?factors that affect the vision imaging result in high temperature harsh environment are detailed discussed. The field distribution of high-temperature air is analyzed by means of finite element method.Then the refractive index distribution and the bending extent of light at the selected wavelengthes of 0.38μm, 0.65μm and 14.0μm are both calculated.The bending extent of visible light and infrared light are further verified through some imaging experiments, and results illustrate that the bending extent of visible light is about 10 times compared with far-infrared light at ? and a distance of 1.0 m. 900?C
     3. A mathematical model of 3D infrared vision measurement systems used for high-temperature component size measurements is established based on the ideal perspective model of infrared thermal imager. Two measurement molds are proposed, which are the simplified high-temperature infrared binocular measurement mold and the measurement mold based on single thermal imager. Both of them are easy to implement. An overall scheme for the infrared vision measurement is presented, and the hardware parameters in the scheme are provides. Some experiment platforms are set up, including the imitation of the actual measured workpiece and the actual high-temperature environment, the comparative experiment system of infrared and visible vision imaging, the simplified high-temperature infrared measurement system, the high-temperature infrared vision measurement system based on single thermal imager and the high-temperature infrared?binocular vision calibration system.
     4. Non-uniformity correction methods and image enhancement methods of infrared image from high-temperature components are studied. By improving the traditional non-uniformity correction method based on BP neural network, the non-uniformity of infrared image is reduced. In addition, to overcome the lack of sharpness for infrared image from high-temperature component, several measures are developed to heighten the enhancement effect of infrared image, including a novel enhancement algorithm named directionlet transform. In this method, infrared image is decomposed in frequency domain by means of directionlets, which uses some anisotropic and multi-directional filters.
     5. Calibration methods of internal and external parameters of infrared thermal imagers in high-temperature infrared vision measurement system are researched. A calibration target is designed for infrared high-temperature vision measurement according to the characteristics of infrared thermal imaging. The binocular calibration method based on radial alignment constraint and Zhang Zhengyou algorithm are mainly analyzed. On this basis, the infrared binocular measurement system is calibrated with a method which combines radial alignment constraint and genetic optimization algorithm. The results illustrated that the calibration error of the novel method is less than 0.41mm, and that of traditional methods is less than 0.85mm when the measured workpiece is about 900mm away.
     6. The methods for edge extraction, binocular feature matching and 3D reconstruction are studied. A sub-pixels method by combining pulse coupled neural network(PCNN) and spatial gray moment is applied to effectively improve the adaptivity and accuracy of edge detection. The approaches to binocular feature initial matching are figured out by using epipolar geometric constraint, and system works efficiently with some other methods which can reduce the possibility of mismatches. Finally, three-dimensional critical sizes measurement and shape reconstruction of high-temperature components are accomplished via data processing of 3D discrete coordinates.
     The main innovations of this study include:
     1. For high temperature environment, a solution for 3D size measurement of high-temperature components based on infrared thermal imaging technology was proposed, which can decline the influence of light bending on vision measurement.
     2. An infrared image enhancement algorithm based on directionlet transform is developed to enhance the feture such as edge and texture of high-temperature component. The results showed that it gets a better enhancement effect compared with some common methods.
     3. A novel infrared binocular calibration method combining radial alignment constraint with genetic optimization algorithm is researched. Experiments illustrated that it can effectively improve the accuracy of infrared binocular vision system, and thus is more suitable for infrared binocular calibration.
     4. A sub-pixel level edge detection method based on PCNN (Pulse Coupling Neural Network) and spatial gray moment is proposed, with which the adaptivity and accuracy of infrared edge detection were both improved.
引文
[1] Akira, O., Yasuhiro, W., Yasunori, K. Development of Shape Measurement System for Hot
    [2]张晓玲.远距离运动物体动态参数测试技术的理论和实验研究[D].天津大学,博士学位论文, 2005
    [3]张广军.视觉测量[M].北京:科学出版社, 2008
    [4]杨永跃.异形曲面视觉坐标在线热检系统研究[D].合肥工业大学,博士学位论文, 2004
    [5] Negreanu, I., Gary, G., Mohr, D. Temperature and emissivity measurement in dynamic experiments using an advanced infrared detector array technique [J]. 2009, 1: 179-183
    [6]李国华.红外热像技术及其应用的研究进展[J].红外与激光工程, 2004, 33(3): 227-230
    [7] Maldague, X., Galmiche, F., Ziadi, A. Advances in pulsed phase thermography [J]. Infrared Physics & Technology, 2002, 43(3-5): 175-181
    [8]徐要刚.热态大锻件尺度的在线测量技术研究[D].上海交通大学,硕士学位论文, 2009
    [9]于鹏.新型大锻件尺寸测量系统的关键技术研究[D].上海交通大学,硕士学位论文, 2008
    [10]徐要刚,赵现朝,田志松.激光测距法测量大锻件尺寸[J].机械设计与研究, 2008, 24(6): 94-97
    [11]李树奎,聂绍珉,唐景林, et al.大型锻件尺寸测量CCD图像的去噪算法研究[J].塑性工程学报, 2009, 16(1): 202-205
    [12]Bokhabrine, Y., Voon, L. F. C. L. Y., Seulin, R., et al. 3D reconstruction of hot metallic surfaces for industrial part characterization [C]. The International Society for Optical Engineering (SPIE), 2009 (7251): 725107-725109
    [13] Tian, Z., Gao, F., Jin, Z., et al. Dimension measurement of hot large forgings with a novel time-of-flight system [J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(1): 125-132
    [14] Lyons, J., Liu, J., Sutton, M. High-temperature deformation measurements using digital-image correlation [J]. Experimental Mechanics, 1996, 36(1): 64-70
    [15] Jia, Z., Wang, B., Liu, W., et al. An improved image acquiring method for machine vismeasurement of hot formed parts [J]. Journal of Materials Processing Technology, 2010, 210(2): 267-271
    [16] Dworkin, S. B., Nye, T. J. Image processing for machine vision measurement of hot formed parts [J]. Journal of Materials Processing Technology, 2006, 174(1-3): 1-6
    [17]刘桂华,刘先勇,冯全源, et al.大型锻件热态三维结构2010, 37(9): 91-97
    [18]赵毅.热态锻件结构光三维测量技术[C].中国机械工程, 2006 (17卷增刊): 125-128
    [19]刘勇,黄劫,李扬扬, et al.大型锻件几何尺寸非接触在线测量系统研究[J].中国测试技术, 2008, 34(5): 116-118
    [20] Energy, O. O. I. T. E. E. a. R. Inventions and Innovation: A Hoteye?-based Coordinate Measuring Machine for the Forging Industry [J]. U.S.A:Department of Energy, 2001: 1-2
    [22]聂绍珉,张庆,李树奎, et al.大型锻件尺寸CCD测量的数学模型研究[J].塑性工程学报, 2006, 13(6): 110-113
    [21] Rech, R., Muller, N., Lamm, R., et al. Laser Measurement on Large Open Die Forgings [J]. Stahl und Eisen(S0340-4803), 2006, 126(2): 53-57
    [22]聂绍珉,张庆,李树奎, et al.大型锻件尺寸CCD测量的数学模型研究[J].塑性工程学报, 2006, 13(6): 110-113
    [23]聂绍珉,唐景林,郭宝锋, et al.基于CCD的大型锻件尺寸测量研究[J].塑性工程学报2005, 12(z1): 85-88
    [24]吴瑞敏.大尺寸高温锻件双目视觉测量技术[D].大连理工大学,硕士学位论文, 2008
    [25]李鹏燕.光学接触靶测量高温大型锻件关键技术的研究[D].天津大学,硕士学位论文, 2009
    [26]帅永,董士奎,刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].红外与毫米波学报, 2005, 24(2): 100-104
    [27]杭建,林贞彬,郭大华, et al.高焓风洞中钝体近尾流红外辐射测试技术[J].实验流体粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].
    [28] Le Sant, Y., Marchand, M., Millan, P., et al. An overview of infrared thermography techniques used in large wind tunnels [J]. Aerospace Science and Technology, 2002, 6(5): 355-366
    [29] Le Sant, Y., Deleglise, B., Mebarki, Y. An automatic image alignment method applied to pressure sensitive paint measurements [C]. Instrumentation in Aerospace SimulatFacilities (ICIASF), International Congress on, 1997: 57-65
    [30] Goldhahn, E., Seume, J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field [J]. Experiments in Fluids, 2007, 43(2): 241-249
    [31] Richard, H., Raffel, M. Principle and applications of the background oriented schlieren (BOS) ethod [J]. Measurement Science and Technology, 2001, 12(9): 1576 s [J]. Instrumentation in Aerospace
    [32] Iffa, E. D., Aziz, A. R. A., Malik, A. S. Velocity field measurement of a round jet using quantitative schlieren [J]. Appl. Opt., 2011, 50(5): 618-625
    [33] Leopold, F. The application of the colored background oriented schlieren technique (CBOS) to wind tunnel, free-flight and in-flight measurement [J]. Instrumentation in Aerospace Simulation Facilities (ICIASF), 22nd International Congress on, 2009, 16(4): 279-293 Simulation Facilities (ICIASF), 22nd International Congress on, 2009, 16(4): 279-293
    [34] Klinge, F., Kirmse, T., Kompenhans, J. Application of quantitative background oriented schlieren (BOS): investigation of a wing tip vortex in a transonic windtunnel [C]. PSFVIP-4, 2003:
    [35]李明.高超声速低密度风洞气动热测量中的红外热图技术试验研究[D].中国人民解放军国防科学技术大学,硕士学位
    [36]张铫,刘铁根,李宝强, et al.高温湍流场对激光测量的影响[J].宇航计测技术, 2008, 28(4): 19-22
    [37]杨永跃,邓善熙,梁发云.视觉测量中高温构件图像处理方法设计[J].电子测量与仪器学报, 2005, 19(6): 41-44
    [38]洪占勇,邓善熙,杨永跃.车轮热轧轮胚尺寸激光测量系统的研究[J].电子测量与仪器学报, 2010, 24(7): 686-691
    [39]田裕鹏.红外检测与诊断技术[M].北京:化学工业出版社, 2006
    [40]雷亚贵,王戎瑞,陈苗海.国外非制冷红外焦平面阵列探测器进展[J].激光与红外, 2007, 37(9): 801-805
    [41]何伟,焦斌斌,薛惠琼, et al.非制冷红外焦平面阵列进展[J].电子工业专用设备2008, 37(5): 18-23
    [42]吴继平,李跃年.红外热成像仪应用于电力设备故障诊断[J].电力设备, 2006, 7(9): 38-41
    [43]蒋淑芳,郭兴旺,沈京玲, et al.固体火箭发动机绝热层脱粘的红外热波无损检测[J].激光与红外, 2005, 35(8): 584-586
    [44] ,金万平,李艳红, et al.玻璃钢平底洞缺陷试件红外热波检测方法[J].激光与红外, 2005, 35(8): 584-586
    [45]军,吴育华, et al.遥感-岩石力学(IV)--岩石压剪破裂的热红外辐射规律及其地震前兆意义[J].岩石力学与工程学报, 2004, 23(4): 539-544
    [46] ust nonuniformity correction in infrared images based on global motion [C]. IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI), 2008: 275-279
    [47] Pipa, D., Da Silva, E., Pagliari, C., et al. Joint bias and gain nonuniformity correction of infrared videos using tensorial-RLS technique [C]. 16th IEEE International Conference on Image Processing (ICIP), 2009: 3897-3900
    [48] Torres, S. N., Pezoa J. E., Hayat, M. M. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form [J]. Appl. Opt., 2003, 42(29): 5872-5881
    [49] Hardie, R. C., Hayat, M. M., Armstrong, E., et al. Scene-based nonuniformity correction with video sequences and registration [J]. Appl. Opt., 2000, 39(8): 1241-1250
    [50]李洁珺, et al.基于时域高通滤波的非均匀性校正算法研究[J].计算机与数字工程, 2007, 35(7): 1-4
    [51] Hayat, M. M., Torres, S. N., Armstrong, E., et al. Statistical algorithm for nonuniformity correction in focal-plane arrays [J]. Applied Optics, 1999, 38(5): 772-780
    [52] D. A., Sarkady, K. A., Kruer, M. R., et al. Adaptive nonuniformity correction for IRScribner, focal-plane arrays using neural networks [C]. The International Society for OpticalEngineering(SPIE),1991(1541):100—109
    [53]邸慧,于起峰,张小虎一种基于灰度变换的红外图像增强算法[J]应用光学,2006,27(1):12—14
    [54]杨必武,郭晓松,王克军,et al基于直方图非线性拉伸的红外图像增强新算法[J]红外与激光工程,2003,32(1):1—4
    [55]Vickers,V E Plateau equalization algorithm for real—time display of high—quality infrared imagery[J]Optical Engineering,1996,35(7):1921—1926
    [56]M R,R Image enhancement and denoising by wavelet transform for concealed weapon detectio[J]The International Society for Optical Engineering(SPIE),2006,2942(2):112—122
    [57]Sadjadi Firooz A Infrared target detection with probability density functions of wavelet transform subbands[J]Applied Optics,2004,43(2):315—1323
    [58]宫武鹏,王永仲一种基于小波变换的红外图像对比度增强技术[J]国防科技大学学报,2000,22(6):117-119
    [59]Flir数字图像细节增强(DDE)技术说明[EM/OL]http://www.flir.com,2010
    [60]L GRoberts Machine Perception of Three—dimensional Solids[J] Optical and Electro—Optical Information Processing,1963:159—197
    [61]Marr,D,Poggio,T A Computational Theory ofHuman Stereo Vision[J]Proceedings ofthe Royal Society ofLondon Series B Biological Sciences,1979,204(1156):301—328
    [62]邓建平,王国林,黄沛然用于高温测量的红外热成像技术[J]流体力学实验与测量,2001,15(1):43—47
    [63]王宁高温构件几何参数测量方法及实验研究[D]大连理工大学,硕士学位论文,2008
    [64]张铫,王宝光,梁洪峰et aL一种新型光学测量系统在高温环境中的应用研究[J]传感器与微系统,2008,27(5):73—75
    [65]陈志强,符松,郭隆德,et aL高速流场对光传输特性的影响[J]强激光与粒子束,2010,22(7):1515—1519
    [66]卢晓芬,张天序,洪汉玉气动光学效应像素偏移图像校正方法研究[J]红外与激光工程,2007,36(5):758—761
    [67]房建成,杨照华,吴琳基于涡结构的气动光学传输效应研究[J]红外与激光工程,2006,35(z1):372—379
    [68]金群锋大气折射率影响因素的研究[D]浙江大学,硕士学位论文,2006
    [69]黄战华,蔡怀宇,李贺骶et aL光线弯曲对激光测量热钢板厚度的影响[J]光电工程,2001,28(6):40—43
    [70]张学军,姜文汉大气折射和大气色散的数值计算及结果分析[J]光电工程,2002,29r2、:1—5
    [71]Owens,J C Optical Refractive Index of Air:Dependence on Pressure,Temperature andComposition[J]Appl Opt,1967,6(1):51—59
    [72]殷兴良高速飞行器气动光学传输效应的工程计算方法[J]中国工程科学,2006,8(11):74—79
    [73]赵玉华,袁峰,丁振良,et aL飞行器周边气体折射率变化对激光测量影响的模拟研究[J]光电工程,2010,37(4):30—38
    [74]吴斌大型物体三维形貌数字化测量关键技术研究[D]天津大学,博士学位论文,2002
    [75]邓宝松基于点线特征的大基线图像序列三维重建技术研究[D]国防科学技术大学,博士学位论文,2006
    [76]王文格基于计算机视觉的大型复杂曲面三维测量关键技术研究[D]湖南大学,博士学位论文,2003
    [77]张健新,段发阶,钟叽et aL用于三维尺寸检测的双目视觉传感器[J]计量学报,1 999,20(2):96—1 00
    [78]汪民非制冷焦平面阵列红外图像非均匀性校正研究[D]中山大学,博士学位论文,2008
    [79]朱建红外图像校正及处理算法研究[D]西安电子科技大学,硕士学位论文,2007
    [80]姚琴芬红外图像实时非均匀性校正技术研究及硬件实现[D]南京理工大学,硕士学位论文,2007
    [81]赵岩红外焦平面阵列非均匀校正算法研究[D]国防科学技术大学,硕士学位论文,2007
    [82]代少升红外焦平面阵列实时非均匀性校正研究[D]重庆大学,博士学位论文,2004
    [83]刘永进,朱红,赵亦工基于粒子滤波的红外焦平面阵列非均匀校正算法[J]红外与激光工程,2008,37(6):946—950
    [84]白俊奇基于环境温度的红外焦平面阵列非均匀性校正[J]红外与毫米波学报,2010,29(1):49—52
    [85]Godoy,S E,Pezoa,J E,Torres,S N Noise—cancellation—based nonuniformity correction algorithm for infrared focal—plane arrays[J]Applied Optics,2008,47(29):5394—5399
    [86]赖睿,杨银堂,王炳健et aL一种基于S曲线模型的红外焦平面阵列非均匀性自适应校正算法[J]光学学报,2009,29(4):927—931
    [87]Scribner,D A,Sarkady,K A,Caulfield,J T,et al Nonuniformity correction for staring IR focal plane arrays using scene—based techniques[c]The International Society for Optical Engineering(SPIE),1990(1308):224—233
    [88]姜光,周慧鑫,王炳健et aL基于场景运动分析的红外图像非均匀性校正[J]西安电子科技大学学报(自然科学版),2003,30(1):81—84
    [89]许慧慧基于场景的红外探测器非均匀校正算法研究[D]华中科技大学,硕士学位论文,2007
    [90]崔瑞青红外成像预处理关键技术研究[D]西北工业大学,硕士学位论文,2007
    [91]Hardie,R C,Baxley,E,Brys,B,et aL Scene—Based Nonuniformity Correction with Reduced Ghosting Using a Gated LMS Algorithm[J]Optics Express,2009,1 7(1 7):1491 8—14933
    [92]Torres,S N,Hayat,M M Kalman filtering for adaptive nonuniformity correction in infrared focal—plane arrays[J]J Opt Soc Am A,2003,20(3):470—480
    [93]简耀波改进的基于卡尔曼滤波的非均匀性校正算法[J]光电工程,2008,35(1):131—135
    [94]简耀波红外图像处理中的关键算法研究[D]华中科技大学,博士学位论文,2009
    [95]侯媛彬,杜京义,汪梅神经网络[M]西安:西安电子科技大学出版社,2007
    [96]史峰,王小川,郁磊Matlab神经网络30个案例分析[D]北京航空航天大学出版社,2010
    [97]苏赋,孙少华,杨文淑,et aL基于图像梯度的神经网络红外焦平面非均匀校正算法[J]红外与激光工程,2007,36(5):754—757
    [98]王炳健,刘上乾,赖睿,et aL基于神经网络的红外焦平面非均匀性自适应校正算法[J]红外与毫米波学报,2006,25(6):405—408
    [99]赖睿,杨银堂场景自适应的红外焦平面阵列非均匀性校正新方法[J]西安电子科技大学学报(自然科学版),2009,36(2):228—232
    [100]周欣红外图像视觉效果增强技术的研究[D]天津大学,博士学位论文,2008
    [101]王文龙基于小波变换的红外图像处理技术研究[D]西安电子科技大学,硕士学位论文,2008
    [102]刘启海,林玉池,冯伟昌,et aL采用提升方向波变换的异源图像融合新算法[J]红外与激光工程,2010,39(2):358—362
    [103]Velisavljevic,V,Beferull—Lozano,B,Ve~erli,M,et al Directionlets:anisotropic multidirectional representation with separable filtering[J]Image Processing,IEEE Transactions on,2006,15(7):1916—1933
    [104]Velisavljevic,V Low-一Complexity Iris Coding and Recognition Based on Directionlets[J] Information Forensics and Security,IEEE Transactions on,2009,4(3):410—417
    [105]Velisavljevic,V,Beferull—Lozano,B,Vetterli,M Space—Frequency Quantization for Image Compression With Directionlets[J]Image Processing,IEEE Transactions on,2007,16(7):1761—1773
    [106]Velisavljevic,V,Beferull—Lozano,B,Ve~erli,M Efficient image compression using directionlets[c] Information,Communications&Signal Processing,6th International Conference on,2007:1—5『107]白静,侯彪,王琵et aL基于提升Directionlet域高斯混合尺度模型SAR图像噪声抑制[J]计算机学报,2008,31(7):1234—1240
    [108]崔彦平运动目标姿态与速度测量的理论及实验研究[D]2006
    [109]张效栋便携式数字相位光栅投影全貌测量系统的研究[D]天津大学,博士学位论文,2006
    [110]Tsai,R A versatile camera calibration technique for high—accuracy 3D machine vision metrology using off-the—shelf TV cameras and lenses[J]Robotics and Automation,IEEE Journal of,1 987,3(4):323—344
    [111]Quan,L,Hang,S Improvement in camera calibration based on RAC[c] Intelligent Signal Processing and Communication Systems(ISPACS),International Symposium on,2007:172—175
    [112]Yonghuai,L,A1一Obaidi,A,Jakas,A,et a1.Accurate camera calibration using the collinearity constraint[c] Computational Intelligence in Robotics and Automation (CIRA),IEEE International Symposium on,2009:334—339[1 13]Zhang,Z A flexible new-technique for camera calibration[J]Pattern Analysis and Machine Intelligence,IEEE Transactions on,2000,22(1 1):1330—1334
    [114]Qiang,J,Yongmian,Z Camera calibration with genetic algorithms[J]Systems,Man and Cybernetics,PartA:Systems and Humans,IEEE Transactions on,2001,31(2):120—130
    [115]Bouchouicha,M,Khelifa,M B,Puech,w A non—linear camera calibration with genetic algorithms[c] Signal Processing and Its Applications,Seventh International Symposium on,2003(2):1 89—192
    [116]黄海赞利用遗传算法精确标定摄像机参数[J]上海交通大学学报,2000,34(7):948—951[1 17]Canny,J A Computational Approach to Edge Detection[J]Pattern Analysis and Machine Intelligence,IEEE Transactions on,1 986,PAMI一8(6):679—698[11 8]Jun—Tao,S,Ying,Z,Xiao—Li,C,et a1.Anovel approach of edge detection based on gray weighted absolute correlation degree and Prewitt operator[c] Intelligent Computing and Integrated Systems(ICISS),International Conference on,2010::232—234[1 19]Jianxin,Z,Wei,C,Lang,w Edge Detection Based on General Grey Correlation and LoG Operator[c] Artificial Intelligence and Computational Intelligence(AICI),International Conference on,2010(1):480—483
    [120]Johnson,J L,Padgett,M L PCN-N models and applications[J]Neural Networks,IEEE Transactions on,1999,10(3):480—498
    [121]于江波,陈后金PCN-N模型的改进及其在医学图像处理中的应用[J]电子与信息学报,2007,29(10):2316-2320
    [122]宋乐异源图像融合及其评价方法的研究[D]天津大学,博士学位论文,2008
    [123]马义德,绽琨,齐春亮自适应脉冲耦合神经网络在图像处理中应用[J]系统仿真学报,2008,20(1 1):2897—2900
    [124]Wei,S,Hung,Q,Hou,M Automatic image segmentation based on PCN-N with adaptive thresholdtime constant[J]Neurocomputing,2011,74(9):1485—1491
    [125]马义德,李廉,王亚能et a1.脉冲耦合神经网络原理及其应用[M]北京:科学出版社.2006
    [126]王培珍,董恒志,周可基于脉冲耦合神经网络的工件边缘定位[J]计算机技术与发展,2010,20(6):221—224
    [127]乔辉,杨勇,方志良,et aL用样条插值算法实现集成块引脚的高精度检测[J]仪器仪表学报,2002,23(z3):1-3
    [128]刘力双,张铫,卢慧卿,et aL图像的快速亚像素边缘检测方法[J]光电子·激光,2005,16(8):993—996
    [129]张舞杰,李迪,叶峰基于Sigmoid函数拟合的亚像素边缘检测方法[J]华南理工大学学报(自然科学版),2009,37(10):39—43
    [130]李云基于曲线拟合的亚像素边缘检测[J]重庆科技学院学报(自然科学版),2008,1 Or6、:82—84
    [131]Da,F,Zhang,H Sub—pixel edge detection based on an improved moment[J]Image and Vision Computing,2010,28(12):1645—1658
    [132]Olson,C F,Matthies,L H Maximum likelihood rover localization by matching range maps[c] Robotics and Automation,IEEE International Conference on,1998(1):272—277
    [133]王华,侯相深,丛建亭,et aL已知初始匹配对的图像四元松弛匹配算法[J]北京航空航天大学学报,2010,36(7):3
    [134]陈建祥,桑农已知最大定位误差的点特征松弛匹配[J]宇航学报,2006,27(4):794—797
    [135]Price,K E Relaxation Matching Techniques—A Comparison[J]PaRern Analysis and Machine Intelligence,IEEE Transactions on,1985,PAMI一7(5):617-623
    [136]姜露露,彭健基于极线几何约束的非标定图像的立体匹配[J]计算机应用,2007,27(1 1):2800—2803
    [137]魏振忠,樊妍睿,张广军光栅式双目立体视觉传感器的立体匹配方法[J]红外与激光工程,201 0,39(2):330—334
    [138]韩伟,郑江滨,李秀秀采用极线约束与圆窗口匹配的立体视觉检测[J]计算机工程与应用,2009,45(9):21 6-220
    [139]韩伟,郑江滨,李秀秀基于外极线约束的快速精确立体匹配算法[J]计算机工程与应用,2008,44(1):51—53
    [140]李玲基于双目立体视觉的计算机三维重建方法研究[D]武汉大学,硕士学位论文,2005
    [141]Joon Hee,H,Jong Seung,P Contour matching using epipolar geometry[J]PaRern Analysis and Machine Intelligence,IEEE Transactions on,2000,22(4):358—370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700