用户名: 密码: 验证码:
股骨肿瘤切除术中的定制型假体有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
股骨是连接髋关节和膝关节的重要骨骼结构,也是原发性骨肿瘤的多发部位。在外科治疗股骨恶性骨肿瘤的过程中,常采用肿瘤段的整块切除即边缘切除或更广泛的外科边界切除方法,肿瘤切除后,造成大段骨缺损,股骨近段的定制型假体置换是对股骨近段大段骨缺损进行修复重建的最主要方法之一。假体置换保留了患者肢体功能,也容易因应力遮挡和时间的增加导致假体脱粘和松动。
     随着计算机技术、有限元方法及计算机图形学等学科的迅猛发展,基于数值模拟的计算机辅助工程技术在医学领域得到了广泛应用,由于有限元方法在分析不规则物体的力学特点方面具有优越性,在骨骼尤其是髋关节置换的生物力学研究中,以及新假体的设计优化中得到广泛应用。本文对股骨进行三维重建,建立三种截骨面长度的三维有限元模型,对应四种不同的髓内柄长度,分析股骨-骨水泥-假体的应力分布以及股骨近段假体髓内柄长度的变化对应力分布的影响,为医生对股骨肿瘤患者临床置换假体的选择提供参考。
     有限元分析结果表明假体髓内柄所受应力在外侧假体柄远端达到最大值,应力值均小于假体强度极限;股骨前后侧应力变化规律不明显,内外侧应力由股骨近端向远端逐渐增加,在假体柄末端处达到最大值,但均远小于股骨干强度极限。骨水泥层的内侧近端和外侧远端应力值较大,并且自近端向远端逐渐增大,至假体柄远端时达到最大值。
     模拟结果分析得出以下结论:1.假体的植入不能避免股骨近端应力遮挡现象的发生,假体柄长度的变化对股骨的应力遮挡范围的影响不大。2.股骨假体的髓内柄长度要大于截骨面的长度尺寸,过长易导致股骨皮质穿孔或迸裂,过短易发生骨水泥层碎裂或脱粘。3.长柄假体可以明显降低髓内柄远端对骨水泥层产生的应力,但近端骨水泥层的应力水平也相应提高,因此切除的肿瘤段应尽量短。
Femur is one of the most common locations of metastatic or myeloma lytic lesions. The complete tumour resection namely edge resection can be given for surgical treatment, and this causes large bone lost. Custom-prosthesis of hip joint replacement is one of the key methods to repair the bone lost and reconstruction the limb function, but it can also lead to the prosthesis breaking and loosing which due to the stress shielding in the long term.
     With the development of computer, the finite element method (FEM) and computer graphics, the computer aided engineering technology based on numerical simulation are increasingly employed in medicine field. As FEM has advantages on analyzing the mechanical property of anomalous objects, it is extending applied in human bones, especially in the biological mechanics of the hip joint replacement and the optimization of new prosthesis design. In this study, with constructed three-dimensional femur, three cases of the length of bone section corresponding with different length of limb stem are determined and analyzed for the stress distribution on bone, cement and prosthesis respectively. The results of simulation will give surgeons useful suggestions about the scheme of operation.
     The FEA results show: the max stress of prosthesis stem occurs at about one of three lengths far away bottom stem, less than the limit. Stress on medial and lateral femur is obviously higher than one on anterior and posterior femur, and displays to be increasing gradually from top to bottom. The max magnitude occurs at the bottom of limb stem. Simultaneously, proximal medial cement and bottom lateral cement got higher stress magnitude than other positions.
     The simulation mentioned above made several conclusions: 1. Putting in prosthesis produces stress shielding phenomenon on proximal femur, but the change of stem-lengths is independent to the region of stress shielding .2.The prosthesis stem must have a certain length, at least as long as the length of bone section. 3.The long stem prosthesis can reduce the stress magnitude of bone cement bottom, but increase the proximal stress. So short bone section is a better choice.
引文
1.上海第一医学院《医学卫生普及全书》修订小组,《医学卫生普及全书外科》
    2.徐万鹏,冯传汉等.骨科肿瘤学.北京:人民军医出版社,2001:529-534
    3.GazdagAR,Lane JM,et al.Alternatives to autogenous bone graft:efficacy and indications.J Am Acad Orthop Surg,1995,3:1-8
    4.Christopher GF.Bone-grafting and bone-graft substitutes Journal of Bone and Joint Surgery,2002,84(3):454
    5.陈振光,余国荣等.骨肿瘤切除后骨缺损的显微外科修复(附109例报告)中国修复重建外科杂志.1996,10(1):3
    6.Donati D,Giacomini S,Gozzi E,Mercuri M.Proximal femur reconstruction by an allograft prosthesis composite.Clin Orthop,2002,Jan(394):192-200
    7.第三军医大学西南医院骨科,秦辉.四肢长骨大段骨缺损修复治疗的研究进展.1671-8348(2004)10-1576-03
    8.Suk KS,Shin KH,Hahn SB.Limb salvage using original low heat-treated tumor -beating bone.Clin Orthop.2002,Apt(397):385-93
    9.王亦璁.膝关节外科的基础和临床,585
    10.Henry DC,Timothy AD.Head and neck replacement prostheses in revision hip arthroplasty:Experiences with a single modem design.Orthopedics,1999,22(3):313
    11.McLaughlin JR,Harris Wil.Revision of the femoral component of a total hip arthroplasty with the calcar-replacement femoral component:results after a mean of 10.8 years postoperativelyJ Bone Joint Surg(Am).1996.78:3 31-339
    12.Harris WH,Allen JR.The calcar replacement femoral component for total hip arthroplasty:design,uses and surgical technique.Clin Orthop,1981,157:215-224
    13.张鹤宇,王志义,罗先正.人工关节在骨肿瘤保肢治疗中的应用[J].中华骨科杂志.2000,20(7):400-405
    14.康黎云.定制型髋假体的设计方法研究及接触有限元分析[D].重庆.重庆大学.2005,2
    15.沈彬,裴福兴.人工髋关节假体材料的研究现状.中国矫形外科杂志.2000,7(8): 790-792
    16.王华,张立新.人工髋关节用新型钛合金医疗卫生装备.2001(3):25-28
    17.温宏,刘忠堂.陶瓷髋关节假体现状.临床骨科杂志.2003,6(1):91-94
    18.Haddad FS,Spangehl MJ,Masri BA,et al.Circumferental allograt replacement of the proximal femur[J].Clin Orthop Rel Res,2000,371:98-107
    19.尚鹏.完整步态下自然股骨与人工髋关节的力学特性研究.上海交通大学.2003:1-10
    20.李宏杰.人工全髋关节置换术的研究现状.国外医学外科学分册.1999,26(1):34-36
    21.Ruben J,Chang C,Akin J,et al.Aknowledge-based computer-aided design and manufacturing system for total hip replacement,Clin Othrop,1992,(285):48-56
    22.Reize P,Gichl J,Schanbacher J,et al.Clinical and radiological results of individual hip stems of the type AdaPtiva(R)without cement.Z Orthop Ihre Grenzgeb,2002,140(3):304-309
    23.Frank D,Won Y,Eduardo A,et al.Long-tem results of total hip arthroplasty with a cemented custom-designed swan-neck femoral computer for congenital dislocation or severe dysplasia.J Bone Joint Surg Am,2002,84:204-207
    24.Haentjens P,Deboeck H,Opdecam P.Proximal femoral replacement prosthesis for salvage of failed hip arthroplasty[J].Acta Prthop Scand,1996,67:37-42
    25.Kabukuoglu,Yavuz,Grimer,etal.Endoprosthetic Replacement for Primary Malignant Tumors of Proximal Femur[J].Clin Othop,1999,358:8-14
    26.Malnaki AL,Settecerri JJ,Sim FH,et al.Long-term results of proximal femoral replacement for non-neoplastic disorders[J].J Bone Surg(Br)1995,77:351-356
    27.Murphy SB,Rijeuski PK,Millis MB,et al.the palnning of orthopaedic reconstructive surgery using computer aided simalation and design.In:Comput Med Lmaging Graph,1988,12(1):35-45
    28.Ching-Lung Tai,Chun-Hsiung Shih.Finite element analysis of the cervico-trochanteric stemless femoral prosthesis.Clinical Biomechanics.2003.18.53-58
    29.Truner RH,Mattingly DA,Scheller A.Femoral rebision total hip arthroplasty using a long-term femoral component[J].Clinical and radiographic analysis[J].J Arthroplasty,1987,2:247-258
    30.任先军,G.A.Fuchs.同一设计的骨水泥和非骨水泥股骨假体的效果比较.骨与关节损伤杂志.1999,1(6):367-369
    31.刘建国,马卫华.计算机辅助股骨近段髓腔结构三维重建及个体化股骨假体设计.骨与关节损伤杂志,2003,18(2):107-110
    32.马卫华,刘建国.三维图像重建及个体化人工髋关节研究进展及现状.骨与关节损伤杂志,2003,18(2):139-141
    33.钱西汉.个性化人工关节敏捷制造系统及其关键技术研究[D].上海交通大学,2000
    34.钮军.人工关节敏捷制造系统及相关技术研究[D].武汉理工大学,2001
    35.滕勇,王臻,李迪尘等.快速成型的个体化人工半膝关节的研制—股骨裸的三维建模.中国修复重建外科杂志,2004,18(4):257-260
    36.Stulberg S,Stugberg B,Wixson R.The fationable,design characteristics,and ptrliminary trsults of a primary total hip prosthesis.Clin Orthop,1989,(249):79-96
    37.Martini F,Sell S,Kremling E,et al.Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stem.Int Orthop,1996,20(4):218-221
    38.Wettstein M,Mouhsine E,Argenson JN,et al.Three-dimensional computed cementless custom femoral stems in young patients-Midterm followup.Clin Orthop Relat Res,2005,(437):169-175
    39.Huo M,Salvati E,Lieberman J,et al.Custom-designed femoral prostheses in total hip arthroplasty done with cement for severe dysplasin of the hip.J Bone Joint Surg Am,1993,75:1497-1504
    40.Bargar W,Murzic W,Taylor J,et al.Management of bone loss in revision total hip arthroplasty using custom cementless femoral components.J Arthroplasty,1993,8(3):245-252
    41.张玉朵.股骨三维重建与人工髋关节生物力学研究[D].天津.天津大学,2006,8-9
    42.郑思竞.人体解剖学,1978年12月第1版.北京.人民卫生出版社.1983.16-17
    43.Crawford SA,Siney PD,Wroblewski BM.Revision of failed total hip arthroplasty with a proximal felnaki AL,Setecerri JJ,S im FH,et al.Long-term results of proximal femoral replacement femoral modular cemented stem[J].J Bone Joint Surg(Br),2000,82:684-688.
    44.Malawar MM,Canfield D,Meller Ⅰ:Porous-coated segmental prosthesis for large tumor defects.A prosthesis based upon immediate fixation(PMMA)and extracortical bone fixation.In:Yamamuro T,eds.New Developments of Limb Salvage in Musculoskeletal Tumors,New York[M]:Springer;1989:247-255
    45.Chao EY,Conventry MB.Fracture of the femoral component after total hip replacement[J].J Bone Jt Surg.63A1078-1094.
    46.Unwin PS,Cannon SR,Grimer RJ,et al.Aseptic loosening in cemented custom- made prosthetic replacements for bone tumors of the lower limb[J].J Bone Joint Surg.1996(b),78:5-13.
    47.Rohlmanm A,mossner U,Bergmann G,et al.Effects of stem design and material properities on stressain hip endoprostheses[J].J Biomed Eng.1987,Vol9:77-83.
    48.Turner RH,Matingly DA,SchellerA.Femoral revision total hip arthroplasty using a long-stem femoral component:Clinical and radiographic analysis[J].J Arthroplasty,1987,2:247-258.
    49.Zalzal P,Gandhi R,Petruccelli D,et al.Fractures at the tip of long-stem prostheses used for revision hip arthroplasty[J].Journal of Arthroplasty.2003,18(6):741-5.
    50.http://www.hzqsn.com/uploadFiles/2006-11/1164445411281.jpg
    51.王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:1-3.
    52.Brekelmans WA,Poort HW,SioofTJ,et al.Acta Orthop Scand,1972;43(5):301-307
    53.Rybicki EF,Simonen FH,Weis EB Jr,et al.J Biomesh,1972;5(2):203-215
    54.Hedia HS,Abdel-Shafi AA,Fouda N.Biomed Mater Eng,2000;10(2):73-82
    55.Korhonen RK,Koistinen A,Konttinen YT,et al.Biomed Eng Online,2005;4(1):32
    56.Nuno N,Amubili M.Clin Biomech,2002;17(1)41-48
    57.Namba RS,Keyak JH,Kim AS,et al.Clin Orthop,1998;347:261-267
    58.Gross S,Abel EW,A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur.J Biomesh,2001;34(8):995-1003
    59.Tai CL,Shih CH,Chen WP,et al.Clin Biomech,2003;18(6):S63-S68
    60.龚宪生,王超.工程设计学报,2006:12(5):288-293
    61.李伟,陆皓,孙康.生物骨科材料与临床研究,2005;2(3):1-4
    62.Bevill SL,Bevill GR,Penmetsa JR,et al.J Biomench,2005;38(12):2365-2374
    63.Nadzadi ME,Pedersen DR,Yack HJ,et al.J Biomench,2003;36(4):577-591
    64.张宗仁,顾良,刘纯亮.浅谈精密模锻成形工艺[J].金属成形工艺,1998,(3):20-22.
    65.秦绪佳.医学图像三维重建及可视化技术研究[D].国家863高科技计划项目(863-306-ZDl3-03-6).大连理工大学,2001,12
    66.禹正杨.三维重建及三维可视化技术在外科领域应用的初步探索[D].浙江.浙江大学,2005,38-39
    67.E.Keppel.Approximating complex surfaces by triangulation of contour lines[J].IBM Journal of Research and Development,1975,19(1):2-11
    68.H.Fuchs.Optical surfacere construction from planar contours[J],Communication of the ACM,20(10):693-702,1977.
    69.Herman G,Liu H.Three Dimensional Display of Human Organs from Computed Tomograms.Computer Graphics&Image Processing.Vol9,1979.
    70.Miller J.M,Breen D.E.Extracting Geometric Models through Constraint Minimization.Visualization' 90,1990
    71.Lorenson W.E,Cline H.E 1987.Marching Cudes.- A High Resolution 3D Surface Construction Algorithm.Computer Graphics,21(4),163-170
    72.WE.Lorensen,H.E.Cline.Marching Cubes:A high resolution 3D surface construction algorithm[J],Computer Graphics,2 1(4):163-169,1987
    73.王海洋.基于MC算法的三维空间数据场可视化及其应用研究[D].中国科学技术大学,2007
    74.唐泽圣.三维数据场可视化[D].北京:清华大学出版社,1999,130-155
    75.E.Keppel.Approximating complex surfaces by triangulation of contour lines[J].IBM Journal of Research and Development,1975,19(1):2-11
    76.M.J.Durst Letters:Additional reference to "Marching cubes"[J].ACM Computer Graphics,1988,22(4):72-73
    77.J.B.Klemp M.J.Mclrvin,W.S.Boyd.PolyPaint-a three dimensional rendering package[C].In American Meteorology Society Prceedings,6~(th)International Conference on Interactive Animation and Processing Systems,Anaheim,C.A.,USA,1990.286-293
    78.A.Dio,A.Koide.An efficient method of triangulating euqi-valued surfaces by using tetrahedral cells[J].IEICE Transactions,E74(1):214-224
    79.郑睿.医学图像三维重建系统设计与实现[D].电子科技大学,2007
    80.Sweeney K,Mueller K.Deluxe:The Shear-Warp algorithm revisited[A].Proceedings of the symposium on data visualization 2002[C].Barcelona,Spain:2002.95-104.
    81.Schulze JP,KrausM,Lang U,et al.Integrating pre-integration into the Shear-Warp algorithm [C]//Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume Graphics Tokyo:ACM Press,2003:109-118.
    82.Ramaninaka NA,Rakotomanana LR,Leyvraz PF.The fixation of the cemented femoral component.Effects of stem stiffness,cement thickness and roughness of the cement-bone surface[J].J Bone Joint Surg(Br),2000,82(2):297-303
    83.Will Schroeder.KenMartin & Bill Lorensen.The Visualization Toolkit:An Object_Oriented Approach to 3D Graphics[M].2~(nd)Edition.PrenticeHall old Tappan,N,J,1998
    84.http://www.vtk.org/
    85.杨丽萍,张爱武.可视化类库vTK在三维建模中的应用,首都师范大学学报(自然科学版),第28卷第1期,2007年2月
    86.Nikolaus P.Zant,Charles K.Y.Wong,Jie Tong,Fatigue failure in the cement mantle of a simplified acetabular replacement model,International Journal of Fatigue 29(2007)1245-1252
    87.M.Doblare,J.M.Garc.Application of an anisotropic bone-remodellingrnodel based on adamage-repair theory to the analysis of the proximal femur before and after total hip replacement.Joural of Biomechanics 34(2001)1157-1170
    88.Kowalczyk P.Design optimization of eementless femoral hip prostheses using finite element analysis[J].Journal of Biomechanieal Engineering.2001,123(5):396-402
    89.Ryan Krone,PPT:An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of tbe Human Femur,October 28,2004
    90.B.W.Stansfield,A.C.Nicol,J.P.Paul,I.G.Kelly,F.Gralchen,G.Bergmann.Direct comparison of calculated hip joint contact forces with those measured using instrumented implants.An evaluation of a three-dimensional mathematical model of the lower limb.Journal of Biomechanics 36(2003)929-936
    91.G.Bergmann,G.Deuretzbacher,M.Heller,F.Graiehen,A.Rohlmarm,J.Strauss,G.N.Duda.Hip contact forces and gait patterns from routine activities.Journal of Biomechanics 34(2001)859-871
    92.Brekelmans W.New method to analyse the mechanical behaviour of the Skeletal parts[J].Acta OrthopScand.1972;43:301.
    93. Nikolaus P. Zant, Charles K. Y. Wong, Jie Tong. Fatigue failure in the cement mantle of a simplified acetabular replacement model. International Journal of Fatigue 29 (2007) 1245-1252
    
    94. Lengsfeld M, Schmitt J, Alter P, et al. Comparison of geometry-based and CT voxel-based finite element modeling and experimental validation [J]. Med Eng Phys, 1998, 20(7) : 515-522.
    
    95. Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone [J]. Med Eng Phys, 1995, 17(5): 347-355.
    
    96. Wirtz DC, Schiffers N, Pandorf T, et al. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. [J]. JBiomech, 2000, 33(10): 1325-1330.
    
    97. J. Y. Rho, M. C. Hobatho and R. B. A&ma, Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. Vol. 17. No. 5. pp. 347-355, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700