用户名: 密码: 验证码:
重磁三维物性实时可视化反演关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,“重磁三维反演计算”和“反演结果可视化评价”是以两个前后独立工作的方式而存在。三维反演计算通常很耗时,反演结果无法及时得到评价,同时,基于当前的结果评价,反演算法的参数经常需要调整,重新进行耗时的反演计算,以此反复得到理想的反演结果。这种工作模式效率低下,不是理想的方式。基于此背景,本文提出一个新的研究课题:针对地球物理重磁数据,将三维反演计算和反演结果可视化相结合,利用三维图形图像可视化方式,直观了解反演过程中的细节;同时,介入交互干预、引导反演过程,综合评价反演状态;实现实时可视化交互反演,提高反演结果的合理性和反演工作的效率。
     本文以实现新课题提出的任务为目标,开展了其相关关键技术研究工作。
     首先,研究了起伏地形下三维重磁物性自动反演技术。提出了一种起伏地形直接快速正演计算的方法,该方法将起伏地形上的测点按特定规则进行规则网格剖分,利用“几何格架层间等效性”,实现插值等效直接快速正演计算。基于该快速正演计算方法,结合“随机子域”反演方法,实现了起伏地形下三维重磁物性快速自动反演。
     第二,交互可视化反演过程中,需要对三维反演的中间结果进行滤波处理,以引导后续的反演过程。以此为目标,研究并实现了针对三维体数据的三维矩阵平均光滑滤波算法和非线性三维小子域光滑滤波算法。同时,将算法并行化实现。
     第三,分析、总结可视化反演的特点和需求,设计并开发实现了三维数据可视化图件集成显示。其中深入剖析了VTK三维开发库的内部机制和数据结构表达,并给出三维可视化图件的具体实现方法。
     最后,进行了重磁三维物性实时可视化反演软件系统设计和研发。其中,使用多线程程序编程技术和对数据同步方案进行精心设计,核心解决“实时可视化、参数实时交互调节”技术实现上的难题。利用面向对象编程方法,体现模块化集成思想,使该软件系统具备易维护性、可扩展性。
     本论文所做的工作,对地球物理实时可视化反演技术的研究和发展具有探索意义。
Traditionally,3D gravity and magnetic inversion and evaluation on the inversion result are two independent work procedures. The inversion calculation normally is time-consuming and the result has a limitation of immediate evaluation. Besides, based on the current result evaluation, inversion algorithm parameters commonly have to be adjusted for the next calculation. Repeat this procedure for chasing the ideal result. This inversion working mode can be viewed as a very inefficient one. Due to these drawbacks, this paper proposes a new research topic on process of gravity and magnetic data by combining inversion calculation with data 3D visualization and by enabling interactive operation on inversion process to promote the reasonability of inversion result and the efficiency of calculation process.
     To achieve the object, the following aspects have been researched and fulfilled.
     Firstly, the research works on automatic inversion technology for 3D gravity and magnetic physical properties inversion for observed data measured on terrain. A new forward calculation method is proposed for terrain observed point. The purpose of this method is to realize direct forward calculation, which using geo-frame equivalence between layers. Combined with "random sub-region" inversion method, rapid and automatic 3D inversion for gravity and magnetic physical properties based on terrain observed data is implemented.
     Secondly, in the process of interactive visual inversion, intermediate inversion result has to be smoothed by filtering in order to guide the ensuing inversion calculation. Therefore, we researched and then realized two kinds of smooth filtering algorithm for 3D volume physical properties data:average smoothing method by using 3D matrix operator and nonlinear smoothing method by using 3D sub-domain operators. These algorithms have been fulfilled by parallel programming.
     Thirdly, based on analysis and summarization on the characters and demands of visual inversion,3D visualization displayed in an integrated environment has been implemented. The research dissects the inner mechanism of VTK (visualization toolkit) and the core of VTK data structure and then the elaborate implementation of 3D visualization graphic elements is provided.
     Finally, the application software with integrated environment has been designed for real-time visual inversion. In this software project, there are two difficult issues:how to achieve real-time visualization while inversion calculation is heavily running? How to edit inversion parameters and ask inversion calculation thread to use the changed parameters in real-time way? By multi-threaded programming and data synchronization mechanism, the solutions of these two issues are provided.
     The research in this dissertation has an exploratory significance for study and development on the technology of real-time visual inversion in geophysics field.
引文
1. Ander, M. E., and Huestis, S. P. Gravity ideal bodies:Geophysics,1987,52:1265-1278.
    2. Backus, G. E., and Gilbert, F. Numerical application of a formalism for geophysical inverse problems:Geophys. J. Roy. Astr. Soc.,1967,13,247-276.
    3. Backus, G. E., and Gilbert, F. The resolving power of gross earth data:Geophys. J. Roy. Astr. Soc.,1968,16:169-205.
    4. Baranov, W. A new method for interpretation of aeromagnetic maps:pseudo-gravimetric anomalies:Geophysics,1957,22:359-383.
    5. Barbosa, V. C. F., and Silva, J. B. C. Generalized compact gravity inversion:Geophysics, 1994,59:57-68.
    6. Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E. Gravity inversion of basement relief using approximate equality constraints on depths:Geophysics,1997,62:1745-1757.
    7. Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E. Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations:Geophysics,1999,64:754-764.
    8. Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E. Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depths:Geophysics,1997,62: 1429-1438.
    9. Barnett, C. T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics,1976,41:1353-1364.
    10. Bear, G. W., Al-Shukri, H. J., and Rudman, A. J. Linear inversion of gravity data for 3-D density distributions:Geophysics,1995,60:1354-1364.
    11. Beltrao, J. F., and Silva, J. B. C. Mapping and depth ordering of residual gravity sources: Geophysics,1993,58:1408-1416.
    12. Bhattacharyya, B. K. Two-dimensional harmonic analysis as a tool for magnetic interpretation:Geophysics,1965,30:829-857
    13. Billings, S., Kennett, B., Sambridge, M. Hypocentre location:genetic algorithms incorporating problem specific information:Geophys. J. International,1994,118:693-706.
    14. Boschetti, F., Dentith, M. C., List, R. D. Inversion of potential field data by Genetic Algorithms:Geophys. Prosp.,1997,45:461-478.
    15. Braile, L. W., Keller, G. R., and Peeples, W. J. Inversion of gravity data for two-dimensional density distributions:J. Geophys. Res.,1974,79:2017-2021.
    16. Camacho, A. G., Montesinos, F. G., and Vieira, R. Gravity inversion by means of growing bodies:Geophysics,2000,65:95-101
    17. Chavez, R. E., and Garland, G. D. Linear inversion of gravity data using the spectral expansion method:Geophysics,1985,50:820-824.
    18. Cordell, L. Potential-field sounding using Euler's homogeneity equations and Zidarov bubbling:Geophysics,1994,59:902-908.
    19. Fedi, M., and Rapolla, A.3-D inversion of gravity and magnetic data with depth resolution: Geophysics,1999,64:452-460.
    20. Guillen, A., and Menichetti, V. Gravity and magnetic inversion with minimization of a specific functional:Geophysics,1984,49:1354-1364.
    21. Hansen R.O., Pawlowski R. S. Reduction to the pole at low latitudes by wiener filtering: Geophysics,1989,54:1607-1613.
    22. Hoerl, A. E., and Kennard, R. W. Ridge regression:Biased estimation for nonorthogonal problems:Technometrics,1970,12:55-67.
    23. Huestis, S. P., and Parker, R. L. Bounding the thickness of oceanic magnetized layer:J. Geophys. Res.,1977,82:5293-5303.
    24. Keating P., Zerbo L. An improved technique for reduction to the pole at low latitude: Geophysics,1996,61:131-137.
    25. Last, B. J., and Kubik, K. Compact gravity inversion:Geophysics,1983,48:713-721.
    26. Leao, J. W. D., and Silva, J. B. C. Discrete linear transformations of potential-field data: Geophysics,1989,54:497-507.
    27. Leao, J. W. D., Menezes, P. T. L., Beltrao, J. F., et al. Gravity inversion of basement relief constrainted by the knowledged of depth at isolated points:Geophysics,1996,61: 1702-1714.
    28. Leao, J. W. D., Silva, J. B. C. Discrete linear transformation of potential field data: Geophysics,1989,54:497-507.
    29. Lee, T., and Biehler, S. Inversion modeling of gravity with prismatic mass bodies: Geophysics,1991,56:1365-1376.
    30. Li, Y., and Oldenburg, D. W.3-D inversion of magnetic data:Geophysics,1996,61: 394-408.
    31. Li, Y., and Oldenburg, D. W.3-D inversion of gravity data:Geophysics,1998,63:109-119.
    32. Li, Y., and Oldenburg, D. W. Stable reduction to the pole at the magnetic equator: Geophysics,2001,61:394-408.
    33. Medeiros, W. E., and Silva, J. B. C. Geophysical inversion using approxing equality constraints:Geophysics,1996,61:1678-1688.
    34. Medeiros, W. E., Silva, J. B. C., and Loures, L. G. C. L. Symmetric and directionally smooth gravity inversion:62nds Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1992,529-532.
    35. Mottl, J., and Mottlova, L. Solution of the inverse gravimetric problem with the aid of integer linear programming:Geoexploration,1972,10:53-62.
    36. Parker, R. L. Best bounds on density and depth from gravity data:Geophysics,1974,39: 644-649.
    37. Parker, R. L. The theory of ideal bodies for gravity interpretation:Geophys., J. Roy. Astr. Soc.,1975,2:315-334.
    38. Pilkington, M.3-D magnetic imaging using conjugate gradients:Geophysics,1997,62: 1132-1142.
    39. Portniaguin, O., and Zhdanov, M. S. Focusing geophysical inversion images:Geophysics, 1999,64:874-887.
    40. Portniaguin, O., and Zhdanov, M. S.3-D magnetic inversion with data compression and image focusing:Geophysics,2002,67:1532-1541.
    41. Rene, R. M., xGravity inversion using open, reject, and "shape to the anomaly" fill criteria: Geophysics,1989,51:988-994.
    42. Richardson, R. M., and Machines, S. C. The inversion of gravity data into three-dimensional polyhedral models:J, Geophys., Res.,1989,94:7555-7562.
    43. Safon, C., Vasseur, G., and Cuer, M., Some applications of linear programming to the inverse gravity problem:Geophysics,1977,42:1215-1229.
    44. Silva, J. B. C., and Hohmann, G. W. Nonlinear magnetic inversion using a random search method:Geophysics,1983,48:1645-1658.
    45. Silva, J. B. C., Medeiros, W. E., and Barbosa, V. C. F. Potential-field inversion:Choosing the appropriate technique to solve a geological problem:Geophysics,2001,66:511-520.
    46. Smith, M. S., Scales, J. A., Fischer, T. L. Global search and genetic algorithms:The Leading Edge of Exploration,1992,11(1):22-26.
    47. Silva, J. B.,C. Reduction to the pole as an inverse problem and its application to low latitude anomalies:Geophysics,1986,51:369-382.
    48. Talwani, M., Ewing, M. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics,1960,25:203-225.
    49. Vigneresse, J. L. Damped and constrained least-squares method with application to gravity interpretation:Geophys.,1978,45:17-28.
    50. Zidarov, D., and Zhelev., Z. On obtaining a family of bodied with identical exterior fields-method of bubbling:Geophys. Prosp.,1970,18:14-33.
    51. Julien Blanehard, BrunoPinaud, Paseale Kuntz, et al. A 2D-3D visualization support for human-centered rule mining. Computers&Graphics,2007,31:350-360
    52. Mark Jessell. Three-dimensional geological modeling of potential-field data. Computers & Geosciences,2001,27:455-465
    53. McCormick B.H. et al. Visualization in Scientific Computing, Computer Graphics,1987, 7(10):69-69
    54. Moraes R.A, Hansen R.O. Constrained inversion of gravity fields for complex 3D structures. Geophysics,2001,66(2):501-510
    55. Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section its properties and use for automated anomaly interpretation. Geophysics,1972, 37(2):507-512
    56. Barbosa, V.C.F., and Silva, J.B.C. Generalized compact gravity inversion. Geophysics,2009, 59:57-68.
    57. Emilia Fregoso and Luis A. Gallardo. Cross-gradients joint 3D inversion with applications to gravity and magnetic data GEOPHYSICS,2009,74(4):L31-L42.
    58. Raymond A. Wildman and George A. Gazonas. Gravitational and magnetic anomaly inversion using a tree-based geometry representation. GEOPHYSICS,2009,74(3):I23-I35.
    59. Guillaume Caumona, Bruno Levyb, Laurent Castaniea, Jean-Claude Paulb.c.Visualization of grids conforming to geological structures:a topological approach. Computers & Geosciences,2005,31:671-680.
    60. Zon, T. V., Chowdhury, K. R. Structural inversion of gravity data using linear programming. Geophysics,2006,71:41-50.
    61.孙中任,赵雪娟,甄凡玉.高精度磁测成图上作中异常分离的重要性.物探与化探,2007,31(增刊):31-46.
    62.李军,李才明,王邦华,等.0 DUT DUGW算法磁测三维反演方法策略.物探化探计算技术,2004,26(4)320324.
    63.杨文采,施志群,侯遵汗,等.离散小波变换与重力异常多重分解.地球物理 报,2001,44(4):534-541.
    64.羊春华.筛选-趋势分析法分离区域异常与局部异常.物探与化探,2005,29(2):167-170.
    65.李健,周云轩,卢焱.重磁场多尺度分析原理.世界地质,2000,19(2):379-391
    66.魏伟,吴招才,刘天佑。基于WR& 平台三维可视化规则几何形体磁场反演.工程地球物理学报,2001,3(6):54-59.
    67.林振民,陈少强.计算机上的橡皮膜技术.物化探计算技术,1996,18(1).:6-17.
    68.林振民,陈少强.平面及直线与多面体相交算法.物化探计算术,1996,18(3):215-218.
    69.杨宇山,刘天佑,李媛媛.任意形状地质体数值积分法重磁场三维可视化反演.地质与勘探,2005,42(5):79-83.
    70.林振民,陈少强.三维重磁交互解释及区域与局部异常的分离.地球物理学报,1996,39(5):705-711.
    71.刘展,王万银.曲面位场的正则化线性规划法直接反演技术.地质与勘探,1999,35(6):62-66.
    72.杨高印,管志宁.重磁异常的人机联作校正—迭代反演.现代地质,1995,9(3):372-381
    73.田黔宁,吴文鹂,管志宁.任意形状重磁异常三度体人机交互联作反演.物探化探计算技术,2001,23(2):125-1291.
    74.吴文鹂,管志宁,高艳芳,等.重磁异常数据三维人机联作模拟.物探化探计算技术,2005,27(3):227-2321.
    75.郜延红,周云轩,刘万崧.地球物理位场可视化建模初步探讨.长春科技大学学报,200030(2):185-189.
    76.曾新平,杨自安,刘碧虹,等.地质体三维可视化建模的技术方法研究.矿产与地质.2005,19(1):103-106.
    77.吴文鹂 管志宁.基于八叉树结构的可视化三维位场正反演.物探与化探,1997,24(4):282-288.
    78.林振民,陈少强.三维可视化技术在固体矿产中的应用.物探化探计算技术,1994,16(4):338-344.
    79.姚长利,郑元满,张聿文.重磁异常三维物性反演随机子域法方法技术.地球物理学报,2007,50(5):1576-1583
    80.姚长利,郝天珧,等.重磁遗传算法三维反演中高速计算及有效存储方法技术.地球物理学报,2003,46(2):252-258
    81.姚长利,黎益仕,管志宁.重磁异常正反演可视化实时方法技术改进.现代地质,1998,12(1):115-122
    82.姚长利,郑元满.重磁遗传算法三维反演中动态数组优化方法.物探化探计算技术,2002,24(3):240-245
    83.安玉林.三度体梯度磁异常全方位正反演方法.现代地质,2000,14(1):85-90
    84.安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载1).物探与化探,2003,27(1):33-38
    85.安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载2).物探与化探,2003,27(2):115-119
    86.安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载3).物探与化探,2003,27(3):206-211
    87.安玉林.起伏地形上规则二度体复重磁场正演和直接反演(连载4).物探与化探,2003,27(4):284-291
    88.安玉林,陈玉东,黄金明.重磁勘探正反演理论方法研究的新进展.地学前缘,2003,10(1):141-149
    89.王家映.地球物理资料非线性反演方法讲座(一)地球物理反演问题概述.工程地球物理学报,2007,4(1):1-3.
    90.王家映.地球物理资料非线性反演方法讲座(二)蒙特卡罗法.工程地球物理学报,2007,4(2):81-87.
    91.师学明,王家映.地球物理资料非线性反演方法讲座(三)模拟退火法.工程地球物理学报,2007,4(3):165-174.
    92.师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法.工程地球物理学报,2008,5(2):129-140.
    93.王家映.地球物理资料非线性反演方法讲座(五)人工神经网络反演方法.工程地球物理学报,2008,5(3):255-265.
    94.朱培民,王家映.地球物理资料非线性反演方法讲座(六)共轭梯度法.工程地球物理学报,2008,5(4):381-386.
    95.杨东来,张永波,王新春,等.地质体三维建模方法与技术指南.北京:地质出版社,2007.
    96.申宁华,管志宁.磁法勘探问题.北京:地质出版社,1985
    97.程思聪,杜清运,江文萍.基于97.的地形三维可视化研究.测绘信息与工程,2006,31(1):17-18
    98.刘占平,汪国平,董士海.一种新的9RO PH/,&可视化方法.中国图象图形学报,2001,6(5):470-474.
    99.卢宇彤,杨学军,所光.一种面向多核系统的并行计算任务分配方法.计算机研究与发展,2009,46(增刊),348-353.
    100.刘轶,张昕,李鹤,等.一种面向多核处理器并行系统的启发式任务分配算法.计算机研究与发展,2009,46(6),1058-1064.
    101.吴恩华.图形处理器用于通用计算的技术、现状及其挑战.软件学报,2004,15(10),1493-1504.
    102.赵改善.地球物理高性能计算的新选择:*38计算技术.勘探地球物理进展,2007,30(5),399-405.
    103.钱悦.图形处理器&8 编程模型的应用研究.计算机与数字工程,2008,36(12),177-180.
    104.郝文化,文自勇,王浩强等.:LQGR V多线程技术与实例.中国水利水电出版社,2005
    105. Jim Beveridge & Robert Wiener著,侯捷译.Win32多线程程序设计.华中科技大学出版社,2002
    106. Jeffrey Richter, Christophe Nasarre著,葛子昂,周靖,廖敏译.Windows核心编程(第5版).清华大学出版社,2008
    107.周伟民.多核计算与程序设计.华中科技大学出版社,2008
    108. Kitware, Inc. 《The VTK User's Guide》.2007
    109. Will Schroeder, Ken Martin, Bill Lorensen. Visualization Toolkit:An Object-Oriented Approach to 3D Graphics, Fourth Edition. Kitware, Inc.2006
    110.阿克特(Akhter, S.),罗伯茨(Roberts, J.)著,李宝峰,富弘毅,李韬译.多核程序设计技术——通过软件多线程提升性能.电子工业出版社,2007
    111.张舒,褚艳利.GPU高性能运算之CUDA.中国水利水电出版社,2009
    112. Jason Sanders,Edward Kandrot. CUDA by Example.an Introduction to General-Purpose GPU Programming. Addison-Wesley Professional,2009
    113. James Reinders. Intel Threading Building Blocks. O'Reilly Media Inc.,2009
    114. www.kitware.com
    115. www.vtk.org
    116. http://threadingbuildingblocks.org/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700