用户名: 密码: 验证码:
适用于生物人工肝的微囊化肝细胞的大规模冻存研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,由病毒性肝炎及药物性肝损害导致的急性肝衰竭,其病情危急,死亡率很高。生物人工肝可以使患者过渡到肝移植或自身肝细胞再生,因此一直是当前研究的热点。而生物人工肝的开展,需要大量的肝细胞。因此,我们需要建立一个肝细胞库,从而源源不断地为生物人工肝提供足量的肝细胞。肝细胞冻存被认为是肝细胞长期储存的最理想也是唯一的方案。微囊化肝细胞不仅仅是填充灌流床式或流化床式生物人工肝的理想生物活性成分,同时也被认为是肝细胞冻存极为有前景的冻存方式。
     本研究的目的在于为海藻酸钠-壳聚糖微囊化原代猪肝细胞及可逆性人源性永生化肝细胞(HepLi4)的冻存,摸索出一个理想的微囊冻存方案。然后,在这一冻存条件下,开展海藻酸钠-壳聚糖微囊化原代猪肝细胞及可逆性人源性永生化肝细胞(HepLi4)的大规模冻存。
     本实验通过本实验室建立的Dispase-胶原酶四步灌流法分离获得原代猪肝细胞,而通过复苏及培养获得足量的可逆性人源性永生化肝细胞(HepLi4)。对两种肝细胞进行海藻酸钠-壳聚糖(AC)微囊化包裹,分别获取AC微囊化原代猪肝细胞及AC微囊化HepLi4细胞,并对两种微囊化肝细胞进行冻存,在液氮中冻存40天。其中,AC微囊化原代猪肝细胞的冻存尝试了5种不同DMSO浓度(5%,10%,15%,20%,25%)与胎牛血清及UW液组成的冻存保护液。复苏后,对AC微囊化原代猪肝细胞的微囊完整性、微囊机械强度、活率及白蛋白分泌功能进行了比较。而对于AC微囊化HepLi4细胞的冻存,则探索了3种不同DMSO浓度(10%,15%.20%)与胎牛血清及UW液组成的冻存保护液。复苏后,对AC微囊化HepLi4细胞的微囊完整性、微囊机械强度及活率进行了比较。结果显示,15%DMSO、20%胎牛血清及65%UW液组成的冻存保护液可以实现AC微囊化原代猪肝细胞及AC微囊化HepLi4细胞的最佳冻存。
     本实验利用上述的微囊肝细胞冻存方案,进一步研究了AC微囊化原代猪肝细胞及AC微囊化HepLi4细胞的大规模冻存。我们分离获取了大量的原代猪肝细胞,并通过转瓶大规模培养获取了足够的HepLi4细胞。对两种肝细胞进行AC微囊化包裹,分别制备了足量的AC微囊化原代猪肝细胞及AC微囊化HepLi4细胞。对于两种微囊化肝细胞均比较了1.8ml冻存管与50ml冻存管两种方式的冻存,均在液氮中冻存了40天。复苏后,对AC微囊化原代猪肝细胞及AC微囊化HepLi4细胞的微囊完整性、微囊机械强度及活率进行了比较。其中,在功能方面,AC微囊化原代猪肝细胞检测了2种冻存方式在白蛋白分泌功能、铵清除功能及地西泮清除功能上的差异;而AC微囊化HepLi4细胞进行了GS、GST、ALB及HBCF-X等功能基因mRNA表达的差异比较。结果显示,采用50ml冻存管的冻存方式可以作为微囊化肝细胞的大规模冻存的较理想的方案。
     我们的研究摸索出了AC微囊化肝细胞冻存的最佳冻存保护液配方以及AC微囊化肝细胞大规模冻存的方案,从而可以为生物人工肝的进一步研究提供充足的肝细胞来源。
Acute liver failure, mainly caused by viral or toxin-induced hepatitis in China, remains associated with an unacceptably high mortality rate. Bioartificial liver (BAL), known as a "bridging" device, has been under intense investigation over the years as a way to bridge patients to liver transplantation or spontaneous recovery. A liver cell bank is urgently needed, to provide a sufficient, readily available hepatocyte supply for the application of BAL. It is believed that cryopreservation remains the only viable option for long-term storage of hepatocytes.'Microencapsulated hepatocytes have not only been proposed as promising bioactive agents, for packed-bed or fluidized-bed bioartificial liver assist devices (BLADs), but have also been considered as one of the best ways for hepatocyte cryopreservation currently.
     The purpose of this thesis is to explore an optimal method for cryopreseravtion of alginate-chitosan (AC) microcapsulated primary porcine hepatocytes and reversibly immortalized human hepatocytes (HepLi4). Additionally, to develop a protocol for large-scale cryopreservation of microencapulated primary porcine hepatocytes and HepLi4 cells.
     Primary porcine hepatocytes were isolated using a modified four-step collagenase perfusion method, whilst the reversibly immortalized human hepatocytes (HepLi4) were thawed and cultured. These two types of hepatocytes were then microencapsulated. Microencapulated primary porcine hepatocytes were cryopreservated in liquid nitrogen for 40 days with University of Wisconsin (UW) solution, fetal calf serum and 5 different concentrations of DMSO (5%,10%,15%,20%,25%) respectively. After thawing, microencapsulated primary porcine hepatocytes were evaluated on their integrity, mechanical stability, viability and functionality. Microencapulated HepLi4 cells were cryopreservated in liquid nitrogen for 40 days with University of Wisconsin (UW) solution, fetal calf serum and 3 different concentrations of DMSO (10%,15%,20%) respectively. After thawing, the microencapsulated HepLi4 cells were evaluated on their integrity, mechanical stability and viability. Results showed that 15% DMSO with 20% fetal calf serum and 65% UW solutions could be an optimal freezing solution for cryopreseravtion of AC microcapsulated primary porcine hepatocytes and HepLi4 cells.
     We further studied the large-scale cryopreservation of microencapulated primary porcine hepatocytes and HepLi4 cells using a freezing solution of 15%DMSO with 20% fetal calf serum and 65% UW solutions. Microencapsulated primary porcine hepatocytes and HepLi4 cells were cryopreserved in liquid nitrogen for 40 days in 1.8 ml and 50 ml vials, respectively. After thawing, we compared the microencapsulated primary porcine hepatocytes in two vials on their integrity, mechanical stability, viability and functionality. In order to test functionality, microencapsulated primary porcine hepatocytes were assessed on their capacity for albumin secretion, ammonia removal and diazepam clearance. Similarly, microencapsulated Hepli4 cells were tested for mRNA expression of GS、GST、ALB and HBCF-X. Resluts showed that microencapsulated hepatocytes cryopreserved in the 50 ml vial may be a better option for large-scale cryopreservation.
     In this study, we have elucidated an optimal freezing solution for cryopreseravtion of AC microcapsulated hepatocytes and presented a protocol for the large-scale cryopreservation of microencapsulated hepatocytes. This work contributes to the development of a BAL system which may be readily applied to a variety of situations and locations.
引文
[0-1]. Li, L.J., et al., Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol,2006.44(2):p.317-24.
    [0-2]. Terry, C., et al., Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology,2006.53(2):p.149-59.
    [0-3]. Stephenne, X., M. Najimi and E.M. Sokal, Hepatocyte cryopreservation:is it time to change the strategy?. World J Gastroenterol,2010.16(1):p.1-14.
    [0-4]. Guyomard, C., et al., Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol Appl Pharmacol,1996.141(2):p.349-56.
    [0-5]. Coundouris, J.A., et al., Cryopreservation of human adult hepatocytes for use in drug metabolism and toxicity studies. Xenobiotica,1993.23(12):p. 1399-409.
    [0-6]. Alexandre, E., et al., Cryopreservation of adult human hepatocytes obtained from resected liver biopsies. Cryobiology,2002.44(2):p.103-13.
    [0-7]. Koebe, H.G., et al., Cryopreserved porcine hepatocyte cultures. Chem Biol Interact,1999.121(1):p.99-115.
    [0-8]. de Sousa, G., et al., Increase of cytochrome P-450 1A and glutathione transferase transcripts in cultured hepatocytes from dogs, monkeys, and humans after cryopreservation. Cell Biol Toxicol,1996.12(4-6):p.351-8.
    [0-9]. Sosef, M.N., et al., Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function. Ann Surg,2005. 241(1):p.125-33.
    [0-10]. Swales, N.J., C. Luong and J. Caldwell, Cryopreservation of rat and mouse hepatocytes. Ⅰ. Comparative viability studies. Drug Metab Dispos,1996.24(11): p.1218-23.
    [0-11].Seglen, P.O., Preparation of isolated rat liver cells. Methods Cell Biol,1976.13: p.29-83.
    [0-12]. Chesne, C. and A. Guillouzo, Cryopreservation of isolated rat hepatocytes:a critical evaluation of freezing and thawing conditions. Cryobiology,1988. 25(4):p.323-30.
    [0-13]. Dou, M., et al., Thawed human hepatocytes in primary culture. Cryobiology, 1992.29(4):p.454-69.
    [0-14]. Belzer, F.O. and J.H. Southard, Principles of solid-organ preservation by cold storage. Transplantation,1988.45(4):p.673-6.
    [0-15]. Olinga, P., et al., Influence of 48 hours of cold storage in University of Wisconsin organ preservation solution on metabolic capacity of rat hepatocytes. J Hepatol,1997.27(4):p.738-43.
    [0-16]. Southard, J.H., et al., Important components of the UW solution. Transplantation,1990.49(2):p.251-7.
    [0-17]. Baust, J.M., Van Buskirk and J.G. Baust, Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim, 2000.36(4):p.262-70.
    [0-18]. Stevenson, D.J., et al., Cryopreservation of viable hepatocyte monolayers in cryoprotectant media with high serum content:metabolism of testosterone and kaempherol post-cryopreservation. Cryobiology,2004.49(2):p.97-113.
    [0-19]. Li, A.P., Overview:hepatocytes and cryopreservation--a personal historical perspective. Chem Biol Interact,1999.121(1):p.1-5.
    [0-20]. Muller, P., et al., Serum-free cryopreservation of porcine hepatocytes. Cell Tissue Res,2004.317(1):p.45-56.
    [0-21].张安业,李兰娟,冻存保护剂在肝细胞冻存中的研究进展.国际流行病学传染病学杂志,2009.36(3):第193-196页.
    [0-22]. Shanina, I.V., et al., A comparison of a sucrose-based solution with other preservation media for cold storage of isolated hepatocytes. Cryobiology,2000. 41(4):p.315-8.
    [0-23]. De Loecker, P., et al., Cryopreservation of isolated rat hepatocytes:effects of iron-mediated oxidative stress of metabolic activity. Cryobiology,1997.34(2): p.150-6.
    [0-24]. De Loecker, W., et al., Effects of cell concentration on viability and metabolic activity during cryopreservation. Cryobiology,1998.37(2):p.103-9.
    [0-25]. Baust, J.M., R. Van Buskirk and J.G. Baust, Modulation of the cryopreservation cap:elevated survival with reduced dimethyl sulfoxide concentration. Cryobiology,2002.45(2):p.97-108.
    [0-26]. Gook, D.A., D.H. Edgar and C. Stern, Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum Reprod,1999.14(8):p.2061-8.
    [0-27]. Utesch, D., et al., Characterization of cryopreserved rat liver parenchymal cells by metabolism of diagnostic substrates and activities of related enzymes. Biochem Pharmacol,1992.44(2):p.309-15.
    [0-28]. Canaple, L., et al., Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules--in vitro cryopreservation studies. J Hepatol, 2001.34(1):p.11-8.
    [0-29]. Skett, P., P. Roberts and S. Khan, Maintenance of steroid metabolism and hormone responsiveness in cryopreserved dog, monkey and human hepatocytes. Chem Biol Interact,1999.121(1):p.65-76.
    [0-30]. Diener, B., et al., A method for the cryopreservation of liver parenchymal cells for studies of xenobiotics. Cryobiology,1993.30(2):p.116-27.
    [0-31]. Lloyd, T.D., et al., Development of a protocol for cryopreservation of hepatocytes for use in bioartificial liver systems. Ann Clin Lab Sci,2004.34(2): p.165-74.
    [0-32]. Li, A.P., et al., Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics:consensus of an international expert panel. Chem Biol Interact,1999.121(1):p.117-23.
    [0-33].Karlsson, J.O., et al., Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide. Biophys J, 1993.65(6):p.2524-36.
    [0-34]. Karlsson, J.O. and M. Toner, Long-term storage of tissues by cryopreservation: critical issues. Biomaterials,1996.17(3):p.243-56.
    [0-35]. Pegg, D.E., The history and principles of cryopreservation. Semin Reprod Med, 2002.20(1):p.5-13.
    [0-36]. Ostrowska, A., et al., Investigation of functional and morphological integrity of freshly isolated and cryopreserved human hepatocytes. Cell Tissue Bank, 2000.1(1):p.55-68.
    [0-37].Baust, J.M., Van Buskirk and J.G. Baust, Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim, 2000.36(4):p.262-70.
    [0-38]. Fu, T., et al., Apoptosis occurs in isolated and banked primary mouse hepatocytes. Cell Transplant,2001.10(1):p.59-66.
    [0-39]. Gebhardt, R., et al., New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev,2003. 35(2-3):p.145-213.
    [0-40]. Hengstler, J.G., et al., Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev,2000.32(1):p.81-118.
    [0-41]. Aoki, T., et al., Intrasplenic transplantation of encapsulated cells:a novel approach to cell therapy. Cell Transplant,2002.11(6):p.553-61.
    [0-42]. Chesne, C., et al., Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation. Hepatology,1993.18(2):p.406-14.
    [0-43]. Diener, B., et al., Xenobiotic metabolizing enzyme activities and viability are well preserved in EDTA-isolated rat liver parenchymal cells after cryopreservation. Toxicol Appl Pharmacol,1995.130(1):p.149-53.
    [0-44]. Watts, P. and M.H. Grant, Cryopreservation of rat hepatocyte monolayer cultures. Hum Exp Toxicol,1996.15(1):p.30-37.
    [0-45]. De Loecker, P., et al., Metabolic activity of freshly prepared and cryopreserved hepatocytes in monolayer culture. Cryobiology,1993.30(1):p.12-8.
    [0-46]. Loven, A.D., et al., Phase Ⅰ and Ⅱ metabolism and carbohydrate metabolism in cultured cryopreserved porcine hepatocytes. Chem Biol Interact,2005. 155(1-2):p.21-30.
    [0-47]. Chen, Z., Y. Ding and H. Zhang, Cryopreservation of suckling pig hepatocytes. Ann Clin Lab Sci,2001.31(4):p.391-8.
    [0-48]. Shaddock, J.G., J.E. Snawder and D.A. Casciano, Cryopreservation and long-term storage of primary rat hepatocytes:effects on substrate-specific cytochrome P450-dependent activities and unscheduled DNA synthesis. Cell Biol Toxicol,1993.9(4):p.345-57.
    [0-49]. Li, A.P., et al., Cryopreserved human hepatocytes:characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact,1999.121(1):p.17-35.
    [1-1]. Neuberger, J., Prediction of survival for patients with fulminant hepatic failure. Hepatology,2005.41(1):p.19-22.
    [1-2]. Bernal, W., et al., Acute liver failure. Lancet,2010.376(9736):p.190-201.
    [1-3]. Cronin, D.N., J.M. Millis and M. Siegler, Transplantation of liver grafts from living donors into adults--too much, too soon. N Engl J Med,2001.344(21):p. 1633-7.
    [1-4]. Abramowicz, M., Hyponatremia and mortality among patients waiting for liver transplantation. N Engl J Med,2008.359(24):p.2615; author reply 2615.
    [1-5]. Montejo, G.J., et al., Artificial liver support system in acute liver failure patients waiting liver transplantation. Hepatogastroenterology,2009.56(90):p. 456-61.
    [1-6]. Ding, Y.T. and X.L. Shi, Bioartificial liver devices:Perspectives on the state of the art. Front Med China,2010.
    [1-7]. Carpentier, B., A. Gautier and C. Legallais, Artificial and bioartificial liver devices:present and future. Gut,2009.58(12):p.1690-702.
    [1-8]. Cattral, M.S. and G.A. Levy, Artificial liver support--pipe dream or reality? N Engl J Med,1994.331(4):p.268-9.
    [1-9]. Strain, A.J. and J.M. Neuberger, A bioartificial liver--state of the art. Science, 2002.295(5557):p.1005-9.
    [1-10]. Li, J., et al., Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J,2005.51(3):p.262-8.
    [1-11]. Stephenne, X., M. Najimi and E.M. Sokal, Hepatocyte cryopreservation:is it time to change the strategy? World J Gastroenterol,2010.16(1):p.1-14.
    [1-12]. Terry, C., et al., Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology,2006.53(2):p.149-59.
    [1-13].Orive, G., et al., Cell encapsulation:promise and progress. Nat Med,2003.9(1): p.104-7.
    [1-14]. Selden, C., et al., Three-dimensional in vitro cell culture leads to a marked upregulation of cell function in human hepatocyte cell lines--an important tool for the development of a bioartificial liver machine. Ann N Y Acad Sci,1999. 875:p.353-63.
    [1-15]. Khalil, M., et al., Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol,2001.34(1):p.68-77.
    [1-16]. Benoist, S., et al., Survival and differentiation of porcine hepatocytes encapsulated by semiautomatic device and allotransplanted in large number without immunosuppression. J Hepatol,2001.35(2):p.208-16.
    [1-17]. Yin, C., et al., Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials,2003.24(10):p.1771-80.
    [1-18]. Yu, C.B., et al., In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs,2009.32(5):p.272-81.
    [1-19]. Ringel, M., et al., Hepatocytes cultured in alginate microspheres:an optimized technique to study enzyme induction. Toxicology,2005.206(1):p.153-67.
    [1-20]. Canaple, L., et al., Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules--in vitro cryopreservation studies. J Hepatol, 2001.34(1):p.11-8.
    [1-21]. Koizumi, T., et al., Long-term maintenance of the drug transport activity in cryopreservation of microencapsulated rat hepatocytes. Cell Transplant,2007. 16(1):p.67-73.
    [1-22]. Wu, Y., et al., Vitreous cryopreservation of cell-biomaterial constructs involving encapsulated hepatocytes. Tissue Eng,2007.13(3):p.649-58.
    [1-23]. Haque, T., et al., In vitro study of alginate-chitosan microcapsules:an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett,2005.27(5):p.317-22.
    [1-24].薛伟明等,载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究.高等学校 化学学报,2004.25(7):第1342-1346页.
    [1-25]. Kusano, T., et al., Microencapsule technique protects hepatocytes from cryoinjury. Hepatol Res,2008.38(6):p.593-600.
    [1-26]. Mahler, S., et al., Hypothermic storage and cryopreservation of hepatocytes: the protective effect of alginate gel against cell damages. Cell Transplant,2003. 12(6):p.579-92.
    [1-27]. Orive, G., et al., Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials,2006.27(20):p.3691-700.
    [1-28]. Murua, A., et al., Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials,2009.30(20): p.3495-501.
    [1-29]. Rialland, L., et al., Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol Toxicol,2000. 16(2):p.105-16.
    [1-30]. de Sousa, G., et al., Increase of cytochrome P-450 1A and glutathione transferase transcripts in cultured hepatocytes from dogs, monkeys, and humans after cryopreservation. Cell Biol Toxicol,1996.12(4-6):p.351-8.
    [1-31]. Somov, A.Y., et al., Mitochondrial function after liver preservation in high or low ionic-strength solutions:a comparison between UW-based and sucrose-based solution. Cryo Letters,2009.30(1):p.1-12.
    [1-32]. Lloyd, T.D., et al., Cryopreservation of hepatocytes:a review of current methods for banking. Cell Tissue Bank,2003.4(1):p.3-15.
    [1-33]. Yagi, T., et al., Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology,2001.33(6):p.1432-40.
    [1-34]. Liu, H.L., et al., Cryopreservation and gel collagen culture of porcine hepatocytes. World J Gastroenterol,2004.10(7):p.1010-4.
    [1-35]. Chin, H.B., H. Yu and N.S. Chye, Strategies for the cryopreservation of microencapsulated cells. Biotechnol Bioeng,2004.85(2):p.202-13.
    [2-1]. Allen, J.W., T. Hassanein and S.N. Bhatia, Advances in bioartificial liver devices. Hepatology,2001.34(3):p.447-55.
    [2-2]. Li, L.J., et al., Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol,2006.44(2):p.317-24.
    [2-3]. Li, J., et al., Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J,2005.51(3):p.262-8.
    [2-4]. Yu, C.B., et al., In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs,2009.32(5):p.272-81.
    [2-5]. Yu, C.B., X.P. Pan and L.J. Li, Progress in bioreactors of bioartificial livers. Hepatobiliary Pancreat Dis Int,2009.8(2):p.134-40.
    [2-6]. Terry, C., et al., Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology,2006.53(2):p.149-59.
    [2-7]. Kusano, T., et al., Microencapsule technique protects hepatocytes from cryoinjury. Hepatol Res,2008.38(6):p.593-600.
    [2-8]. Mahler, S., et al., Hypothermic storage and cryopreservation of hepatocytes: the protective effect of alginate gel against cell damages. Cell Transplant,2003. 12(6):p.579-92.
    [2-9]. Stephenne, X., M. Najimi and E.M. Sokal, Hepatocyte cryopreservation:is it time to change the strategy? World J Gastroenterol,2010.16(1):p.1-14.
    [2-10]. Strain, A.J. and J.M. Neuberger, A bioartificial liver--state of the art. Science, 2002.295(5557):p.1005-9.
    [2-11]. Haque, T., et al., In vitro study of alginate-chitosan microcapsules:an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett,2005.27(5):p.317-22.
    [2-12]. Totsugawa, T., et al., Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol,2007.47(1):p.74-82.
    [2-13]. Robert A. F. M. Chamuleau, T.D.A.R., Which Are the Right Cells to be Used. in a Bioartificial Liver. Metabolic Brain Disease,2005.20(4).
    [2-14]. Benoist S, S.R.C.N., Survival and differentiation of porcine hepatocytes encapsulated by semiautomatic device and allotransplanted in large number without immunosuppression. J Hepatol,2001.35(2):p.208-16.
    [2-15]. Redden E, D.R.B.U., Large quantity cryopreservation of bovine testicular cells and its effect on enrichment of type A spermatogonia. Cryobiology,2009. 58(2):p.190-5.
    [2-16]. Rowley, S.D., et al., Effect of cell concentration on bone marrow and peripheral blood stem cell cryopreservation. Blood,1994.83(9):p.2731-6.
    [2-17]. De Loecker, P., et al., Cryopreservation of isolated rat hepatocytes:effects of iron-mediated oxidative stress of metabolic activity. Cryobiology,1997.34(2): p.150-6.
    [2-18]. De Loecker, W., et al., Effects of cell concentration on viability and metabolic activity during cryopreservation. Cryobiology,1998.37(2):p.103-9.
    [2-19]. Kasai, S. and M. Mito, Large-scale cryopreservation of isolated dog hepatocytes. Cryobiology,1993.30(1):p.1-11.
    [2-20].周霖等,大规模猪肝细胞低温保存方法的建立.解放军医学杂志,2003.28(9):第816-818页.
    [2-21].龚独辉等,苦参碱联合DMSO大规模冻存人胎肝细胞的实验研究.广东医学,2009.30(4):第512-514页.
    [2-22]. Wu, L., et al., Cryopreservation of primary porcine hepatocytes for use in bioartificial liver support systems. Transplant Proc,2000.32(7):p.2271-2.
    [2-23]. Guyomard, C., et al., Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol Appl Pharmacol,1996.141(2):p.349-56.
    [2-24]. Hang, H., et al., In vitro analysis of cryopreserved alginate-poly-L-lysine-alginate-microencapsulated human hepatocytes.-Liver Int,2010.30(4):p.611-22.
    [2-25]. Rialland, L., et al., Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol Toxicol,2000. 16(2):p.105-16.
    [2-26]. Orive, G., et al., Encapsulated cell technology:from research to market. Trends Biotechnol,2002.20(9):p.382-7.
    [2-27]. Kinasiewicz, A., et al., Culture of C3A cells in alginate beads for fluidized bed. bioartificial liver. Transplant Proc,2007.39(9):p.2911-3.
    [2-28]. Murua, A., et al., Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials,2009.30(20): p.3495-501.
    [1]Li, L. J., W. B. Du, et al. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol,2006,44(2): 317-24.
    [2]Terry, C., A. Dhawan, et al. Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology,2006,53(2):149-59.
    [3]Lloyd, T. D., S. Orr, et al. Development of a protocol for cryopreservation of hepatocytes for use in bioartificial liver systems. Ann Clin Lab Sci,2004,34(2): 165-74.
    [4]Lloyd, T. D., S. Orr, et al. Cryopreservation of hepatocytes:a review of current methods for banking. Cell and tissue banking,2003,4:3-15.
    [5]Meng, Q. Hypothermic preservation of hepatocytes. Biotechnol Prog,,2003,19(4): 1118-27..
    [6]Terry, C., A. Dhawan, et al. Cryopreservation of isolated human hepatocytes for transplantation:State of the art. Cryobiology,2006,53(2):149-59..
    [7]Gomez-Lechon, M. J., A. Lahoz, et al. Cryopreservation of rat, dog and human hepatocytes:influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica,2006,36(6):457-72.
    [8]Guillouzo, A., L. Rialland, et al. Survival and function of isolated hepatocytes after cryopreservation. Chem Biol Interact,1999,121(1):7-16.
    [9]Fuller, B. J. Cryoprotectants:the essential antifreezes to protect life in the frozen state. Cryo Letters,2004,25(6):375-88.
    [10]Baust, J.M. Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preservation Technol,2002,1:17-31.
    [11]Sugimachi, K., K. L. Roach, et al. Nonmetabolizable glucose compounds impart cryotolerance to primary rat hepatocytes. Tissue Eng,2006,12(3):579-88.
    [12]Loretz, L. J., A. P. Li, et al. Optimization of cryopreservation procedures for rat and human hepatocytes. Xenobiotica,1989,19(5):489-98.
    [13]Kasai S. and Mito M. Large-scale cryopreservation of isolated dog hepatocytes. Cryobiology,1993,30:1-11.
    [14]Son, J.H., K.H. Kim, et al. Optimization of cryoprotectants for cryopreservation of rat hepatocyte. Biotechnol Lett,2004,26(10):829-33.
    [15]Vara, E., J. Arias-Diaz, et al. Beneficial effect of S-adenosylmethionine during both cold storage and cryopreservation of isolated hepatocytes. Cryobiology, 1995,32(5):422-7.
    [16]Terry, C., A. Dhawan, et al. Preincubation of rat and human hepatocytes with cytoprotectants prior to cryopreservation can improve viability and function upon thawing. Liver Transpl,2005,11(12):1533-40.
    [17]Yagi, T., J. A. Hardin, et al. Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology,2001,33(6):1432-40.
    [18]Matsushita, T., T. Yagi, et al. Apoptotic cell death and function of cryopreserved porcine hepatocytes in a bioartificial liver. Cell Transplant,2003,12(2):109-21.
    [19]Fujita, R., T. Hui, et al. The effect of antioxidants and a caspase inhibitor on cryopreserved rat hepatocytes. Cell Transplant,2005,14(6):391-6.
    [20]Miyamoto, Y., S. Suzuki, et al. Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans." Cell Transplant,2006,15(10):911-9.
    [21]Katenz, E., F. W. Vondran, et al. Cryopreservation of primary human hepatocytes: the benefit of trehalose as an additional cryoprotective agent. Liver Transpl,2007, 13(1):38-45.
    [22]Hirano Y, Nishimiya Y, et al. Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Cryobiology,2008, 57(1):46-51.
    [23]Hamel, F., M. Grondin, et al. Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes. Biotechnol Bioeng,2006,95(4):661-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700